Andersen JL, Manenti T, Sørensen JG, Macmillan HA, Loeschcke V, Overgaard J. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct Ecol. 2015;29:55–65.
Article
Google Scholar
Kellermann V, Loeschcke V, Hoffmann AA, Kristensen TN, Fløjgaard C, David JR, et al. Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution. 2012;66:3377–89.
Article
PubMed
Google Scholar
Kimura MT. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia. 2004;140:442–9.
Article
PubMed
Google Scholar
Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am Nat. 2011;178:80–96.
Article
Google Scholar
Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B. 2011;278:1823–30.
Article
PubMed
Google Scholar
Addo-Bediako A, Chown SL, Gaston KJ. Thermal tolerance, climatic variability and latitude. Proc R Soc Lond Ser B. 2000;267:739–45.
Article
CAS
Google Scholar
Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. Oxford: Oxford University Press; 2009.
Book
Google Scholar
Doucet D, Walker VK, Qin W. The bugs that came in from the cold: molecular adaptations to low temperatures in insects. Cell Mol Life Sci. 2009;66:1404–18.
Article
CAS
PubMed
Google Scholar
Helmuth B, Kingsolver JG, Carrington E. Biophysics, physiological ecology, and climate change: does melanism matter? Annu Rev Physiol. 2005;67:177–201.
Article
CAS
PubMed
Google Scholar
Pörtner HO, Farrell AP. Physiology and climate change. Science. 2008;322:690–2.
Article
PubMed
Google Scholar
Somero GN. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’ J Exp Biol. 2010;213:912–20.
Article
CAS
PubMed
Google Scholar
Colinet H, Lee SF, Hoffmann A. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J Exp Biol. 2010;213:4146–50.
Article
CAS
PubMed
Google Scholar
Vigoder FM, Parker DJ, Cook N, Tournière O, Sneddon T, Ritchie MG. Inducing cold-sensitivity in the frigophilic fly Drosophila montana by RNAi. PLoS ONE. 2016;11:1–9.
Article
CAS
Google Scholar
MacMillan HA, Sinclair BJ. Mechanisms underlying insect chill-coma. J Insect Physiol. 2011;57:12–20. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jinsphys.2010.10.004.
Article
CAS
PubMed
Google Scholar
Gibert P, Moreteau B, Pétavy G, Karan D, David JR. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution. 2001;55:1063–8.
Article
CAS
PubMed
Google Scholar
Hoffmann AA, Anderson A, Hallas R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett. 2002;5:614–8.
Article
Google Scholar
Garcia MJ, Littler AS, Sriram A, Teets NM. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution. 2020;74:1437–50.
Article
CAS
PubMed
Google Scholar
Overgaard J, Macmillan HA. The integrative physiology of insect chill tolerance. Annu Rev Physiol. 2017;79:187–208.
Article
CAS
PubMed
Google Scholar
Andersen JL, Macmillan HA, Overgaard J. Muscle membrane potential and insect chill coma. J Exp Biol. 2015;218:2492–5.
PubMed
Google Scholar
Macmillan HA, Findsen A, Pedersen TH, Overgaard J. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling. J Exp Biol. 2014;217:2930–8.
PubMed
Google Scholar
Clark MS, Worland MR. How insects survive the cold: molecular mechanisms—a review. J Comp Physiol B. 2008;178:917–33.
Article
CAS
PubMed
Google Scholar
MacMillan HA, Williams CM, Staples JF, Sinclair BJ. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci USA. 2012;109:20750–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinclair BJ, Gibbs AG, Roberts SP. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol Biol. 2007;16:435–43.
Article
CAS
PubMed
Google Scholar
Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, et al. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics. 2012;44:764–77.
Article
CAS
PubMed
Google Scholar
Colinet H, Lee SF, Hoffmann A. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 2010;277:174–85.
Article
CAS
PubMed
Google Scholar
Hoffmann AA, Sørensen JG, Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative andmolecular approaches. J Therm Biol. 2003;28:175–216.
Article
Google Scholar
Hallas R, Schiffer M, Hoffmann AA. Clinal variation in Drosophila serrata for stress resistance and body size. Genet Res (Camb). 2002;79:141–8.
Article
Google Scholar
Overgaard J, Hoffmann AA, Kristensen TN. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J Therm Biol. 2011;36:409–16. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jtherbio.2011.07.005.
Article
Google Scholar
Maysov A. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species. J Exp Biol. 2014;217:2650–8.
Article
PubMed
Google Scholar
Castañeda LE, Lardies MA, Bozinovic F. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis. J Insect Physiol. 2005;51:1346–51.
Article
PubMed
CAS
Google Scholar
Kozak KH, Graham CH, Wiens JJ. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol. 2008;23:141–8.
Article
PubMed
Google Scholar
Hahn DA, Denlinger DL. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol. 2007;53:760–73.
Article
CAS
PubMed
Google Scholar
Zeuss D, Brandl R, Brändle M, Rahbek C, Brunzel S. Global warming favours light-coloured insects in Europe. Nat Commun. 2014;5:1–9.
Article
CAS
Google Scholar
Heidrich L, Friess N, Fiedler K, Brändle M, Hausmann A, Brandl R, et al. The dark side of Lepidoptera: colour lightness of geometrid moths decreases with increasing latitude. Glob Ecol Biogeogr. 2018;27:407–16.
Article
Google Scholar
Clusella-Trullas S, Terblanche JS, Blackburn TM, Chown SL. Testing the thermal melanism hypothesis: a macrophysiological approach. Funct Ecol. 2008;22:232–8.
Article
Google Scholar
Clusella-Trullas S, van Wyk JH, Spotila JR. Thermal melanism in ectotherms. J Therm Biol. 2007;32:235–45.
Article
Google Scholar
Bastide H, Yassin A, Johanning EJ, Pool JE. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol Biol. 2014;14:179.
Article
PubMed
PubMed Central
CAS
Google Scholar
Telonis-Scott M, Hoffmann AA, Sgrò CM. The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol Ecol. 2011;20:2100–10.
Article
PubMed
Google Scholar
Rajpurohit S, Parkash R, Ramniwas S. Body melanization and its adaptive role in thermoregulation and tolerance against desiccating conditions in drosophilids. Entomol Res. 2008;38:49–60.
Article
Google Scholar
Ramniwas S, Kajla B, Dev K, Parkash R. Direct and correlated responses to laboratory selection for body melanisation in Drosophila melanogaster: support for the melanisation-desiccation resistance hypothesis. J Exp Biol. 2013;216:1244–54.
CAS
PubMed
Google Scholar
Kutch IC, Sevgili H, Wittman T, Fedorka KM. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J Exp Biol. 2014;217:3664–9.
PubMed
Google Scholar
Chown SL, Gaston KJ. Body size variation in insects: a macroecological perspective. Biol Rev. 2010;85:139–69.
Article
PubMed
Google Scholar
Klockmann M, Günter F, Fischer K. Heat resistance throughout ontogeny: body size constrains thermal tolerance. Glob Change Biol. 2017;23:686–96.
Article
Google Scholar
Vinarski MV. On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol Bull Rev. 2014;4:232–42.
Article
Google Scholar
Blanckenhorn WU, Demont M. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol. 2004;44:413–24.
Article
CAS
PubMed
Google Scholar
Blanckenhorn WU, Tillwell RC, Young KA, Fox CW, Ashton KG. When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution. 2006;60:2004–11.
Article
PubMed
Google Scholar
Chown SL, Gaston KJ. Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol Rev. 1999;74:87–120.
Article
Google Scholar
Hegna RH, Nokelainen O, Hegna JR, Mappes J. To quiver or to shiver: increased melanization benefits thermoregulation, but reduces warning signal efficacy in the wood tiger moth. Proc R Soc B. 2013;280:20122812.
Article
PubMed
PubMed Central
Google Scholar
Aspi J, Hoikkala A. Male mating success and survival in the field with respect to size and courtship song characters in Drosophila littoralis and D. montana (Diptera: Drosophilidae). J Insect Behav. 1995;8:67–87.
Article
Google Scholar
Franks SJ, Hoffmann AA. Genetics of climate change adaptation. Annu Rev Genet. 2012;46:185–208.
Article
CAS
PubMed
Google Scholar
Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science. 2009;325:1244–7.
Article
CAS
PubMed
Google Scholar
Vesala L, Salminen TS, Kostál V, Zahradníĉková H, Hoikkala A. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. J Exp Biol. 2012;215:2891–7.
Article
CAS
PubMed
Google Scholar
Teets NM, Denlinger DL. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol Entomol. 2013;38:105–16.
Article
CAS
Google Scholar
Denlinger DL. Relationship between cold hardiness and diapause. In: Insects at low temperature. Boston, MA: Springer; 1991. p. 174–98.
Chapter
Google Scholar
Vesala L, Salminen TS, Kankare M, Hoikkala A. Photoperiodic regulation of cold tolerance and expression levels of regucalcin gene in Drosophila montana. J Insect Physiol. 2012;58:704–9. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jinsphys.2012.02.004.
Article
CAS
PubMed
Google Scholar
Gerken AR, Eller OC, Hahn DA, Morgan TJ. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Proc Natl Acad Sci USA. 2015;112:4399–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barber AF, Sehgal A. Cold temperatures fire up circadian neurons. Cell Metab. 2018;27:951–3. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cmet.2018.04.016.
Article
CAS
PubMed
Google Scholar
Gunawardhana KL, Hardin PE. VRILLE controls PDF neuropeptide accumulation and arborization rhythms in small ventrolateral neurons to drive rhythmic behavior in Drosophila. Curr Biol. 2017;27:3442–53. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cub.2017.10.010.
Article
CAS
PubMed
Google Scholar
Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet. 2011;74:141–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams JA, Sehgal A. Molecular components of the circadian system in Drosophila. Annu Rev Physiol. 2001;63:729–55.
Article
CAS
PubMed
Google Scholar
Kauranen H, Kinnunen J, Hiillos A, Lankinen P, Hopkins D, Wiberg RAW, et al. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. J Exp Biol. 2019;222:jeb205831.
Article
PubMed
Google Scholar
Enriquez T, Colinet H. Cold acclimation triggers major transcriptional changes in Drosophila suzukii. BMC Genomics. 2019;20:1–17.
Article
CAS
Google Scholar
MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJS, et al. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci Rep. 2016;6:1–14. https://0-doi-org.brum.beds.ac.uk/10.1038/srep28999.
Article
CAS
Google Scholar
Parker DJ, Vesala L, Ritchie MG, Laiho A, Hoikkala A, Kankare M. How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group? Heredity (Edinb). 2015;115:13–21.
Article
CAS
Google Scholar
Vesala L, Salminen TS, Laiho A, Hoikkala A, Kankare M. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Mol Biol. 2012;21:107–18.
Article
CAS
PubMed
Google Scholar
Des Marteaux LE, McKinnon AH, Udaka H, Toxopeus J, Sinclair BJ. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics. 2017;18:1–17.
Article
CAS
Google Scholar
Espinoza C, Bieniawska Z, Hincha DK, Hannah MA. Interactions between the circadian clock and cold-response in Arabidopsis. Plant Signal Behav. 2008;3:593–4.
Article
PubMed
PubMed Central
Google Scholar
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. New Phytol. 2019;221:1215–29.
Article
PubMed
Google Scholar
Patterson JT. Revision of the montana complex of the virilis species group. Univerisity Texas Publ. 1952;5204:20–34.
Google Scholar
Throckmorton LH. The virilis species group. Genet Bioogy Drosoph. 1982;3:227–96.
Google Scholar
Poikela N, Kinnunen J, Wurdack M, Kauranen H, Schmitt T, Kankare M, et al. Strength of sexual and postmating prezygotic barriers varies between sympatric populations with different histories and species abundances. Evolution. 2019;73:1182–99.
Article
PubMed
Google Scholar
Menegazzi P, Benetta ED, Beauchamp M, Schlichting M, Steffan-dewenter I, Helfrich-Förster C. Adaptation of circadian neuronal network to photoperiod in high-latitude European Drosophilids. Cell. 2017;27:833–9.
CAS
Google Scholar
Kauranen H, Ala-Honkola O, Kankare M, Hoikkala A. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes. J Insect Physiol. 2016;89:9–18. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jinsphys.2016.03.005.
Article
CAS
PubMed
Google Scholar
Kauranen H, Menegazzi P, Costa R, Helfrich-Förster C, Kankainen A, Hoikkala A. Flies in the North: locomotor behavior and clock neuron organization of Drosophila montana. J Biol Rhythms. 2012;27:377–87.
Article
PubMed
Google Scholar
Bertolini E, Schubert FK, Zanini D, Sehadová H, Helfrich-Förster C, Menegazzi P. Life at high latitudes does not require circadian behavioral rhythmicity under constant darkness. Cell. 2019;29:3928–36.
CAS
Google Scholar
Helfrich-Förster C, Bertolini E, Menegazzi P. Flies as models for circadian clock adaptation to environmental challenges. Eur J Neurosci. 2018;51:166–81.
Article
PubMed
PubMed Central
Google Scholar
Parker DJ, Envall T, Ritchie MG, Kankare M. Sex-specific responses to cold in a very cold-tolerant, northern Drosophila species. Heredity (Edinb). 2021;126:695–705. https://0-doi-org.brum.beds.ac.uk/10.1038/s41437-020-00398-2.
Article
CAS
Google Scholar
Aspi J, Lumme J, Hoikkala A, Heikkinen E. Reproductive ecology of the boreal riparian guild of Drosophila. Ecography (Cop). 1993;16:65–72.
Article
Google Scholar
Flatt T. Genomics of clinal variation in Drosophila: disentangling the interactions of selection and demography. Mol Ecol. 2016;25:1023–6.
Article
PubMed
Google Scholar
Overgaard J, Sørensen JG, Petersen SO, Loeschcke V, Holmstrup M. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol. 2005;51:1173–82.
Article
CAS
PubMed
Google Scholar
Overgaard J, Sørensen JG, Petersen SO, Loeschcke V, Holmstrup M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol Entomol. 2006;31:328–35.
Article
CAS
Google Scholar
Noh S, Everman ER, Berger CM, Morgan TJ. Seasonal variation in basal and plastic cold tolerance: adaptation is influenced by both long- and short-term phenotypic plasticity. Ecol Evol. 2017;7:5248–57.
Article
PubMed
PubMed Central
Google Scholar
Nyamukondiwa C, Terblanche JS, Marshall KE, Sinclair BJ. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J Evol Biol. 2011;24:1927–38.
Article
CAS
PubMed
Google Scholar
Terblanche JS, Klok CJ, Krafsur ES, Chown SL. Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am J Trop Med Hyg. 2006;74:786–94.
Article
PubMed
Google Scholar
Klok CJ, Chown SL. Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc. 2003;78:401–14.
Article
Google Scholar
Anderson AR, Hoffmann AA, McKechnie SW. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genet Res. 2005;85:15–22.
Article
PubMed
Google Scholar
Ayrinhac A, Gibert P, Legout H, Moreteau B, Vergilino R, David J. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more than genetic variability. Funct Ecol. 2004;18:700–6.
Article
Google Scholar
Bertoli CI, Scannapieco AC, Sambucetti P, Norry FM. Direct and correlated responses to chill-coma recovery selection in Drosophila buzzatii. Entomol Exp Appl. 2010;134:154–9.
Article
Google Scholar
Wiberg RAW, Tyukmaeva V, Hoikkala A, Ritchie MG, Kankare M. Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana. bioRxiv. 2021.
Zuther E, Schulz E, Childs LH, Hincha DK. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant, Cell Environ. 2012;35:1860–78.
Article
CAS
Google Scholar
Vesala L, Hoikkala A. Effects ofphotoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana. J Insect Physiol. 2011;57:46–51.
Article
CAS
PubMed
Google Scholar
Tyukmaeva VI, Lankinen P, Kinnunen J, Kauranen H, Hoikkala A. Latitudinal clines in the timing and temperature-sensitivity of photoperiodic reproductive diapause in Drosophila montana. Ecography (Cop). 2020;43:1–10.
Article
Google Scholar
Wittkopp PJ, Beldade P. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol. 2009;20:65–71.
Article
CAS
PubMed
Google Scholar
True JR. Insect melanism: the molecules matter. Trends Ecol Evol. 2003;18:640–7.
Article
Google Scholar
Davis JS, Moyle LC. Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evol Biol. 2019;19:1–14.
Article
Google Scholar
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, et al. Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster. Front Physiol. 2019;10:518.
Article
PubMed
PubMed Central
Google Scholar
Condon C, Acharya A, Adrian GJ, Hurliman AM, Malekooti D, Nguyen P, et al. Indirect selection of thermal tolerance during experimental evolution of Drosophila melanogaster. Ecol Evol. 2015;5:1873–80.
Article
PubMed
PubMed Central
Google Scholar
Gibert P, Huey RB. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol Biochem Zool. 2001;74:429–34.
Article
CAS
PubMed
Google Scholar
Norry FM, Loeschcke V. Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster. Evolution. 2002;56:299–306.
Article
PubMed
Google Scholar
Scharf I, Sbilordo SH, Martin OY. Cold tolerance in flour beetle species differing in body size and selection temperature. Physiol Entomol. 2014;39:80–7.
Article
Google Scholar
Flourakis M, Kula-Eversole E, Hutchison AL, Han TH, Aranda K, Moose DL, et al. A conserved bicycle model for circadian clock control of membrane excitability. Cell. 2015;162:836–48. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2015.07.036.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacMillan HA, Andersen JL, Davies SA, Overgaard J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci Rep. 2015;5:1–11. https://0-doi-org.brum.beds.ac.uk/10.1038/srep18607.
Article
CAS
Google Scholar
Hopkins D, Envall T, Poikela N, Pentikäinen OT, Kankare M. Effects of cold acclimation and dsRNA injections on Gs1l gene splicing in Drosophila montana. Sci Rep. 2018;8:1–11.
Article
CAS
Google Scholar
Salminen TS, Hoikkala A. Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. J Insect Physiol. 2013;59:450–7. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jinsphys.2013.02.005.
Article
CAS
PubMed
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. https://0-doi-org.brum.beds.ac.uk/10.1038/nmeth.2089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400.
Article
Google Scholar
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.
Article
Google Scholar
Hijmans RJ, Etten J Van. raster: Geographic data analysis and modeling. R package version 2.8-19. 2020.
Lê S, Josse J, Husson F. FactoMineR: an R Package for multivariate analysis. J Stat Softw. 2008;25:1–18.
Article
Google Scholar
Mazerolle M. AICcmodavg: model selection and multimodel inference based on QAICc. R package version 2.2-2, https://cran.r-project.org/package=AICcmodavg. 2019.
Parker DJ, Wiberg RAW, Trivedi U, Tyukmaeva VI, Gharbi K, Butlin RK, et al. Inter and intraspecific genomic divergence in Drosophila montana shows evidence for cold adaptation. Genome Biol Evol. 2018;10:2086–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv Prepr arXiv. 2012;:1207.3907 [q-bio.GN].
Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;408:402–8.