Hosken DJ, Stockley P. Sexual selection and genital evolution. Trends Ecol Evol. 2004;19(2):87–93.
Article
PubMed
Google Scholar
Eberhard WG. Evolution of genitalia: theories, evidence, and new directions. Genetica. 2010;138(1):5–18.
Article
PubMed
Google Scholar
Simmons LW. Sexual selection and genital evolution. Austral Entomol. 2014;53(1):1–17.
Article
Google Scholar
Gilman CA, Corl A, Sinervo B, Irschick DJ. Genital morphology associated with mating strategy in the polymorphic lizard Uta stansburiana. J Morphol. 2019;280(2):184–92.
Article
PubMed
Google Scholar
Reinhardt K. Natural selection and genital variation: a role for the environment, parasites and sperm ageing? Genetica. 2010;138(1):119–27.
Article
PubMed
Google Scholar
House CM, Lewis Z, Hodgson DJ, Wedell N, Sharma MD, Hunt J, et al. Sexual and natural selection both influence male genital evolution. PLoS ONE. 2013;8(5):1–8.
Article
Google Scholar
Brennan PLR, Prum RO. Mechanisms and evidence of genital coevolution: the roles of natural selection, mate choice, and sexual conflict. Cold Spring Harb Perspect Biol. 2015;7(7):1–21.
Article
Google Scholar
Eberhard WG. Sexual selection and animal genitalia. Harvard University Press; 1985.
Burt WH. Bacula of North American mammals. Misc Publ Museum Zool Univ Michigan. 2017;113(113):1–108.
Google Scholar
Ramm SA, Stockley P. Integrating perspectives on rodent sperm competition. In: Naguib M, Mitani JC, Simmons LW, Barrett L, Healy S, editors. Advances in the study of behavior. Elsevier Inc; 2016. p. 443–501.
Google Scholar
Patterson BD, Thaeler CS Jr. The mammalian baculum: hypotheses on the nature of bacular variability. J Mammal. 1982;63(1):1–15.
Article
Google Scholar
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD. The baculum was gained and lost multiple times during mammalian evolution. Integr Comp Biol. 2016;56(4):644–56.
Article
PubMed
PubMed Central
Google Scholar
Stockley P. The baculum. Curr Biol. 2012;22(24):1032–3.
Article
CAS
Google Scholar
Long CA, Frank T. Morphometric variation and function in the baculum, with comments on correlation of parts. J Mammal. 1968;49(1):32–43.
Article
Google Scholar
Dixson AF. Baculum length and copulatory behavior in primates. Am J Primatol. 1987;13(1):51–60.
Article
CAS
PubMed
Google Scholar
Rodriguez E, Weiss DA, Yang JH, Menshenina J, Ferretti M, Cunha TJ, et al. New insights on the morphology of adult mouse penis. Biol Reprod. 2011;85(6):1216–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long CA. Gross morphology of the penis in seven species of the mustelidae. Mammalia. 1969;33(1):145–60.
Article
Google Scholar
Dewsbury DA. Copulatory behavior as courtship communication. Ethology. 1988;79(3):218–34.
Article
Google Scholar
De Catanzaro D. Duration of mating relates to fertility in mice. Physiol Behav. 1991;50(2):393–5.
Article
Google Scholar
Leckie PA, Watson JG, Chaykin S. An improved method for the artificial insemination of the mouse (Mus musculus). Biol Reprod. 1973;9:420–5.
Article
CAS
PubMed
Google Scholar
Ramm SAA. Sexual selection and genital evolution in mammals: a phylogenetic analysis of baculum length. Am Nat. 2007;169(3):360–9.
Article
PubMed
Google Scholar
Brindle M, Opie C. Postcopulatory sexual selection influences baculum evolution in primates and carnivores. Proc R Soc B Biol Sci. 2016;283(20161736).
Lemaître JF, Ramm SA, Jennings N, Stockley P. Genital morphology linked to social status in the bank vole (Myodes glareolus). Behav Ecol Sociobiol. 2012;66(1):97–105.
Article
Google Scholar
Stockley P, Ramm SA, Sherborne AL, Thom MDF, Paterson S, Hurst JL. Baculum morphology predicts reproductive success of male house mice under sexual selection. BMC Biol. 2013;11(1):66.
Article
PubMed
PubMed Central
Google Scholar
Dean MD. Genetic disruption of the copulatory plug in mice leads to severely reduced fertility. PLoS Genet. 2013;9(1):1–7.
Article
CAS
Google Scholar
Lough-Stevens M, Ghione CR, Urness M, Hobbs A, Sweeney CM, Dean MD. Male-derived copulatory plugs enhance implantation success in female Mus musculus. Biol Reprod. 2020;2020(104):684–94.
Google Scholar
Sutter A, Simmons LW, Lindholm AK, Firman RC. Function of copulatory plugs in house mice: mating behavior and paternity outcomes of rival males. Behav Ecol. 2016;27(1):185–95.
Article
Google Scholar
Sutter A, Lindholm AK. The copulatory plug delays ejaculation by rival males and affects sperm competition outcome in house mice. J Evol Biol. 2016;29(8):1617–30.
Article
CAS
PubMed
Google Scholar
Stockley P, Franco C, Claydon AJ, Davidson A, Hammond DE, Brownridge PJ, et al. Revealing mechanisms of mating plug function under sexual selection. Proc Natl Acad Sci U S A. 2020;117(44):27465–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mangels R, Tsung K, Kwan K, Dean MD. Copulatory plugs inhibit the reproductive success of rival males. J Evol Biol. 2016;29(11):2289–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
André GI, Firman RC, Simmons LW. Phenotypic plasticity in genitalia: baculum shape responds to sperm competition risk in house mice. Proc R Soc B Biol Sci. 2018;285(1882).
Simmons LW, Firman RC. Experimental evidence for the evolution of the mammalian baculum by sexual selection. Evolution (N Y). 2014;68(1):276–83.
Google Scholar
Ramm SA, Khoo L, Stockley P. Sexual selection and the rodent baculum: an intraspecific study in the house mouse (Mus musculus domesticus). Genetica. 2010;138(1):129–37.
Article
PubMed
Google Scholar
Firman RC, Simmons LW. The frequency of multiple paternity predicts variation in testes size among island populations of house mice. J Evol Biol. 2008;21(6):1524–33.
Article
CAS
PubMed
Google Scholar
Manser A, König B, Lindholm AK. Polyandry blocks gene drive in a wild house mouse population. Nat Commun. 2020;11(1).
Eberhard WG. Static allometry and animal genitalia. Evolution (N Y). 2009;63(1):48–66.
Google Scholar
André GI, Firman RC, Simmons LW. The coevolution of male and female genitalia in a mammal: a quantitative genetic insight. Evolution (N Y). 2020;74(7):1558–67.
Google Scholar
Sutter A, Lindholm AK. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics? BMC Evol Biol. 2016;16(1):1–15.
Article
CAS
Google Scholar
Sutter A, Lindholm AK. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice. Proc R Soc B Biol Sci. 1811;2015(282):1–8.
Google Scholar
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol. 2016;31(4):315–26.
Article
PubMed
Google Scholar
Morita T, Kubota H, Murata K, Nozaki M, Delarbre C, Willison K, et al. Evolution of the mouse t haplotype: recent and worldwide introgression to Mus musculus. Proc Natl Acad Sci U S A. 1992;89(15):6851–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olds-Clarke P. The nonprogressive motility of sperm from mice with a t haplotype. Am Soc Androl. 1983;(4):136–43.
André GI, Firman RC, Simmons LW. Baculum shape and paternity success in house mice: evidence for genital coevolution. Philos Trans R Soc B Biol Sci. 2020;375(20200150).
Dean MD, Ardlie KG, Nachman MW. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol Ecol. 2006;15(13):4141–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manser A, Lindholm AK, König B, Bagheri HC. Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution (N Y). 2011;65(9):2435–47.
Google Scholar
Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol. 2011;65(1):47–55.
Article
PubMed
Google Scholar
Zöllner S, Pritchard JK. Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet. 2007;80(4):605–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olds-Clarke P. Models for male infertility: the t haplotypes. Rev Reprod. 1997;2(3):157–64.
Article
CAS
PubMed
Google Scholar
Schultz NG, Ingels J, Hillhouse A, Wardwell K, Chang PL, Cheverud JM, et al. The genetic basis of baculum size and shape variation in mice. Genes Genomes Genetics. 2016;6(5):1141–51.
CAS
PubMed
PubMed Central
Google Scholar
Brennan PLR, Orbach DN. Copulatory behavior and its relationship to genital morphology. 1st ed. Vol. 52, Advances in the Study of Behavior. Elsevier Inc.; 2020. 65–122 p.
Friesen CR, Uhrig EJ, Squire MK, Mason RT, Brennan PLR. Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia. Proc R Soc B Biol Sci. 2013;281(1774).
Hotzy C, Polak M, Rönn JL, Arnqvist G. Phenotypic engineering unveils the function of genital morphology. Curr Biol. 2012;22(23):2258–61.
Article
CAS
PubMed
Google Scholar
Eberhard WG. Female control: Sexual selection by cryptic female choice. Princeton University Press; 1996.
Fisher RA. The genetical theory of natural selection. Oxford: The Clarendon Press; 1930.
Book
Google Scholar
Holland B, Rice WR. Perspective: chase-away sexual selection: antagonistic seduction versus resistance. Evolution (N Y). 1998;52(1):1.
Google Scholar
van Valen L. A new evolutionary law. In: Evolutionary Theory. 1973. p. 1–30.
Stockley P, Preston BT. Sperm competition and diversity in rodent copulatory behaviour. J Evol Biol. 2004;17(5):1048–57.
Article
CAS
PubMed
Google Scholar
Brassey CA, Behnsen J, Gardiner JD. Postcopulatory sexual selection and the evolution of shape complexity in the carnivoran baculum. Proc R Soc B Biol Sci. 1936;2020(287):20201883.
Google Scholar
Weatherhead PJ, Robertson RJ. Offspring quality and the polygyny threshold: “The sexy son hypothesis.” Am Nat. 1979;113(2):201–8.
Article
Google Scholar
Brain PF, Homady MH, Mainardi M. Preputial glands, dominance and aggressiveness, in mice. Bolletino di Zool. 1983;50(3–4):173–87.
Article
Google Scholar
Sutter A, Lindholm AK. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr Zool. 2016;62(6):675–85.
Article
PubMed
PubMed Central
Google Scholar
Rugh R. The mouse: its reproduction and development. Minneapolis: Burgess Publishing Company; 1968.
Google Scholar
Firman RC, Simmons LW. Experimental evolution of sperm quality via postcopulatory sexual selection in house mice. Evolution (N Y). 2010;64(5):1245–56.
Google Scholar
Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol. 2012;3(1):129–37.
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods; 2012. p. 671–5.
Rohlf FJ. The tps series of software. Hystrix. 2015;26(1):1–4.
Google Scholar
Zelditch ML, Swiderski DL, Sheets HD, Fink WL. Geometric morphometrics for biologists. Elsevier Inc.; 2004.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9(2):378–400.
Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Google Scholar
RStudio Team. RStudio: Integrated Development for R. Boston, MA URL: RStudio, Inc.; 2015.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
Google Scholar
Mazerolle MJ. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). 2019.
Barton K. MuMIn: Multi-model inference. 2019.