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Abstract 

Background:  Co-infection of endosymbionts in the same host is ubiquitous, and the interactions of the most com-
mon symbiont Wolbachia with other symbionts, including Spiroplasma, in invertebrate organisms have received 
increasing attention. However, the interactions between Wolbachia and Arsenophonus, another widely distributed 
symbiont in nature, are poorly understood. We tested the co-infection of Wolbachia and Arsenophonus in different 
populations of Nilaparvata lugens and investigated whether co-infection affected the population size of the symbi-
onts in their host.

Results:  A significant difference was observed in the co-infection incidence of Wolbachia and Arsenophonus among 
5 populations of N. lugens from China, with nearly half of the individuals in the Zhenjiang population harbouring the 
two symbionts simultaneously, and the rate of occurrence was significantly higher than that of the other 4 popula-
tions. The Arsenophonus density in the superinfection line was significantly higher only in the Maanshan population 
compared with that of the single-infection line. Differences in the density of Wolbachia and Arsenophonus were found 
in all the tested double-infection lines, and the dominant symbiont species varied with the population only in the 
Nanjing population, with Arsenophonus the overall dominant symbiont.

Conclusions:  Wolbachia and Arsenophonus could coexist in N. lugens, and the co-infection incidence varied with the 
geographic populations. Antagonistic interactions were not observed between Arsenophonus and Wolbachia, and the 
latter was the dominant symbiont in most populations.
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Background
Symbiotic associations between prokaryotic and eukary-
otic organisms are ubiquitous in natural communities, 
and bacterial symbiosis has played a fundamental role 
in the evolution of eukaryotes, which range from para-
sitism to mutualism [2, 20, 32]. Many invertebrate hosts 
have been found to harbour multiple inherited symbi-
onts within a single host [21, 27, 30, 34, 40]. Other than 
co-infection of different symbiont species, co-infections 
with multiple strains of the same symbiont species have 
also been found [7, 28].

Wolbachia is an intracellular symbiont that infects 
between 20 and 76% of arthropod species [14, 38]. Wol-
bachia has been known to coinfect and interact with 
various symbionts in the same host, and the superin-
fections vary with the species of symbionts and are also 
affected by many other factors, including the species of 
insect host, environmental conditions, etc. [7, 8, 21, 28]. 
In Bemisia tabaci, Wolbachia was found to be present 
with Hamiltonella or Cardinium or both genera [8]. Co-
infection of Wolbachia and Cardinium was also found in 
Encarsia inaron [39], and superinfection with combina-
tion of Wolbachia and Spiroplasma occurs in Drosoph-
ila melanogaster, whereas an asymmetrical interaction 
occurs between Wolbachia and Spiroplasma in which the 
population of Wolbachia organisms is negatively affected 
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by Spiroplasma organisms while the population of Spiro-
plasma organisms is not influenced by Wolbachia organ-
isms [7]. The genus Arsenophonus is an emerging clade 
of symbiotic bacteria with a vast host distribution that 
includes parasitic wasps, triatomine bugs, psyllids, white-
flies, aphids, ticks, planthoppers, etc. [6, 8, 10, 24, 26, 35]. 
However, interactions among Arsenophonus and Wol-
bachia are poorly understood.

Brown planthopper Nilaparvata lugens Stål (Homop-
tera: Delphacidae) is a monophagous insect herbivore of 
rice that causes serious damage to rice crops. N. lugens 
has been known to harbour symbionts, including Wol-
bachia and Arsenophonus, and previous detection has 
shown that although Wolbachia and Arsenophonus were 
present in all 15 brown planthopper populations col-
lected from China and Southeast Asian countries, coex-
istence was not observed in the same individuals from 
Laos [26]. In this study, we investigated the co-infection 
of Wolbachia and Arsenophonus in different populations 
of N. lugens collected from 5 sites in China, and then we 
established a single-infected line (infected with only Wol-
bachia) and a double-infected line (infected with both 
Wolbachia and Arsenophonus). Subsequently, we exam-
ined Wolbachia and Arsenophonus titres in the double- 
and single-infected N. lugens to assess whether these two 
symbionts interacted mutually or competitively.

Methods
Field collection of Nilaparvata lugens
All geographic populations of brown planthopper were 
collected from rice paddies in different locations of 
China. The details of each population were listed in 
Table 1. The planthoppers were maintained on rice seed-
lings at a constant temperature of 27 (± 1) °C and a light 
period of 14:10 h light:dark.

Investigation of Wolbachia and Arsenophonus infection
To compare the co-infection of Wolbachia and Arseno-
phonus among different geographic populations of N. 
lugens, approximately 80 (64–88) adults were randomly 
collected from each population for a diagnostic PCR 

analysis. Extraction of DNA was the same as previously 
described, and only DNA samples with a ratio of OD260/
OD280 ranging from 1.6 to 1.9 were used for the PCR 
detection [18]. The presence of Wolbachia and Arseno-
phonus was checked as previously described (Wolbachia: 
[41], Arsenophonus [31]).

Preparation of single‑infected (Wolbachia) line 
and double‑infected line (Wolbachia and Arsenophonus)
Geographic populations were set up as mass bred lines. 
The single-infected (Wolbachia) line and double-infected 
lines (Wolbachia and Arsenophonus) were developed 
from each geographic population of N. lugens. To mini-
mize variation in the genetic background within popu-
lations, a pair of newly emerged female and male adults 
was randomly selected from the same population.

To ensure that only the single infection or the double 
infection was being considered, at first, newly emerged 
brown planthoppers from each line were screened for 
the presence of all the known symbionts in planthoppers, 
which consisted of Wolbachia, Arsenophonus, Cardinium 
hertigii, Acinetobacter, Chryseobaterium, Serratia and 
Arthrobacter as previously described (Wolbachia: [41], 
Arsenophonus [31]; Cardinium: [23]; Acinetobacter: [33]; 
Chryseobaterium: [1]; Serratia: [43]; Arthrobacter: [15]). 
Then female and male parents and their offspring that 
were only infected with Wolbachia or only infected with 
Wolbachia and Arsenophonus were kept for subsequent 
experiments.

Analysis of Wolbachia and Arsenophonus density
In order to measure the density of Wolbachia and Arse-
nophonus, the real-time quantitative PCR was performed 
with an ABI StepOne Real-Time PCR System (Applied 
Biosystems Inc, Foster City, CA, USA). For each line, a 
total of 10 female and male adults was collected as one 
sample, and the DNA was extracted with a Wizard® 
Genomic DNA Purification Kit (Promega, USA). The 
primers of Wolbachia and Arsenophonus for the reac-
tion were as follows: (Wsp-F) 5′-ATG​TAA​CTC​CAG​
AAA​TCA​AACTC-3′, (Wsp-R) 5′-GAT​ACC​AGC​ATC​
ATC​CTT​AGC-3′; (ARS16S-F) 5′-TTC​GGT​CGG​AAC​
TCA​AAG​G-3′ (ARS16S-R) 5′-TCT​GAG​TTC​CGC​TTC​
CCA​TC-3′. The 20 µL quantitative PCR (qPCR) reac-
tion system included 10 µL SYBR® Premix Ex Taq (Tli 
RNaseH Plus) (2X) (Takara, Japan), 0.4 µL forward and 
0.4 µL reverse primers, 0.4 µL ROX Reference Dye, 2 µL 
DNA and 6.8 µL ddH2O. The RT-PCR program were as 
follows: 95 °C for 30 s, followed by 40 cycles of 95 °C for 
5 s and 60 °C for 31 s, and then 95 °C for 15 s, 60 °C for 
1 min, and a final step at 95 °C for 15 s. A standard curve 
using real-time fluorescent quantitative PCR of the Wol-
bachia wsp gene or the Arsenophonus ARS16S rDNA 

Table 1  Information for  the  different geographic 
populations of brown planthopper

Abbreviations Collection 
site

Longitude Latitude Collection 
time

NN Nanning 108° 33′ 22° 84′ 2014.6

MS Maanshan 118° 37′ 31° 70′ 2012.8

NJ Nanjing 118° 46′ 32° 03′ 2005.8

ZJ Zhenjiang 119° 55′ 32° 00′ 2012.8

NT Nantong 120° 86′ 32° 01′ 2013.8
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gene was performed to determine accurate Wolbachia 
or Arsenophonus gene copy numbers as described pre-
viously [42].  For each sample, there was three technical 
replicates, and for each line, there was three biological 
replicates.

Statistics
The infection incidence of Arsenophonus and Wolbachia 
among different populations were compared using 
the Chi-square test, and the density of Arsenophonus 
between the double-infected line and single-infected 
line were compared using Student’s t test, the density of 
Wolbachia among different populations were tested by 
ANOVAs. IBM Statistics (SPSS 19.0) software was used 
for these statistical analyses.

Results
Co‑infection of Wolbachia and Arsenophonus varies 
with the population of Nilaparvata lugens
The symbionts Wolbachia and Arsenophonus were 
detected in all the 5 populations of N. lugens from China 
(Fig.  1). Compared to Wolbachia infection, Arsenopho-
nus infection was more common in N. lugens, with the 
infection incidence of Arsenophonus ranging from 88.9 to 
100%. In the MS and NJ populations, all the tested indi-
viduals were infected with Arsenophonus, and the infec-
tion incidence was significantly higher than that in the 
NT population (88.9%) ( χ2

4
 = 17.196, P = 0.002, Fig. 1).

In all 5 tested populations, Wolbachia infection always 
coexisted with Arsenophonus infection, and the co-infec-
tion incidence of Wolbachia and Arsenophonus was the 
equivalent to the incidence of Wolbachia infection. The 
co-infection incidence in the ZJ population was 50%, 
which was the highest value among the 5 populations, 

whereas the co-infection incidence in the MS and NJ 
populations was rare at only 2.3% and 1.5%, respectively, 
while this value in the NN and NT populations was 
15.5% and 25%, respectively, and a significant difference 
was observed among populations ( χ2

4
 = 75.457, P < 0.001, 

Fig. 1).

Coexistence of Wolbachia does not negatively affect 
the density of Arsenophonus in most populations 
of Nilaparvata lugens
When Arsenophonus coexisted with Wolbachia in N. 
lugens, Arsenophonus density between the double-
infected line and single-infected line varied based on the 
population (Fig.  2). In double-infected lines established 
from the NN, NJ, ZJ and NT populations, the Arsenopho-
nus density was not significantly different from that in the 
single-infected lines (NN: t = 0.813, df = 4, P = 0.462; NJ: 
t = 0.661, df = 4, P = 0.545; ZJ: t = 1.61, df = 4, P = 0.183; 
NT: t = 0.803, df = 4, P = 0.467), whereas in double-
infected lines established from the MS population, the 
Arsenophonus density was significantly higher than that 
in single-infected line (MS: t = 5.66, df = 4, P = 0.005).

Dominance of Wolbachia and Arsenophonus varies 
with the population of Nilaparvata lugens
The Wolbachia density in the double-infection lines var-
ied with the population (Fig.  3). In the line established 
from the ZJ population, the Wolbachia density was sig-
nificantly higher than that in the lines from the MS, NJ, 
and NT populations (F4,14 = 8.832, P = 0.003).

The relative ratio of Wolbachia and Arsenophonus 
quantity in the double-infected lines of N. lugens also 

Fig. 1  Co-infection incidences of the symbiont Arsenophonus and 
Wolbachia in 5 populations of N. lugens. A refers to all infections of 
Arsenophonus including single and double infections, and AW refers 
to double infections of Arsenophonus and Wolbachia. NN, MS, NJ, 
ZJ and NT refer to the Nanning, Maanshan, Nanjing, Zhenjiang and 
Nantong populations from China, respectively

Fig. 2  Comparison of Arsenophonus density in the double-infected 
and single-infected lines of N. lugens. A: single-infected line of 
Arsenophonus; and AW: double-infected line of Arsenophonus and 
Wolbachia. For each population, 60 adults including 30 females 
and 30 males were used for the analysis, and they divided into 
three biological replicates with 10 females and 10 males in each 
replicate. Significant differences between the double-infected and 
single-infected lines are marked by asterisks (**P < 0.01)
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varied with the geographic population (Fig.  4). In the 
double-infected lines from the NN, ZJ and NT popula-
tions, the ratio of Wolbachia quantity was nearly 100% 
while that of Arsenophonus quantity was all less than 
0.4%; however, in the line from the NJ population, Arse-
nophonus was the dominant symbiont and its ratio was 
91.7%, and in the double-infected line from the MS pop-
ulation, the ratio of Arsenophonus quantity was 8.3%.

Discussion
When different symbionts are simultaneously present 
within the same host, interactions between them will 
take place, which might affect the dynamics of the micro-
bial population. The interaction of the common endo-
symbiont Wolbachia with other symbionts has received 

increasing attention. An asymmetrical interaction has 
been found between Wolbachia and Spiroplasma [7]. 
Our aim in this study was to test whether interactions 
between Wolbachia and another popular symbiont, Arse-
nophonus, in the same host could affect the titre of the 
symbionts. We established 5 double-infected lines from 
different natural populations of N. lugens, and they were 
stable co-infections.

Previous studies have shown that the brown planthop-
per population from Laos was extensively infected by 
Wolbachia or Arsenophonus and the two bacteria may 
be exclusive in each host individual [26]. We found that 
Arsenophonus and Wolbachia could coexist in the same 
individual of brown planthopper in all the tested popu-
lations from China and differences among populations 
might result from differences in population resources.

The double-infection incidence of Wolbachia and Arse-
nophonus in brown planthopper varied with the geo-
graphical populations in China. In the ZJ population, the 
double-infection incidence was the highest, with half of 
the individuals simultaneously harbouring Wolbachia 
and Arsenophonus, whereas in the NJ and MS popula-
tions, less than 3% were infected with the two symbionts. 
The variance in double infection has been found in small 
brown planthopper, with a significantly higher co-infec-
tion incidence of Wolbachia and Serratia observed in 
the buprofezin-resistant strain compared with that of the 
buprofezin-susceptible strain [18].

Interactions between coexisting symbionts may affect 
infection densities because the symbionts may compete 
for available resources and space in the host body or they 
may share the resources and habitats by regulating their 
own exploitation to avoid damaging the whole symbi-
otic system [3, 12, 16, 29]. In pea aphids, the density of 
the primary symbiont Buchnera aphidicola is depressed 
when the insect is co-infected with Serratia symbiot-
ica [16] or Rickettsia [29]. An antagonistic interaction 
between Hamiltonella and Cardinium has also been 
found in Bemisia tabaci, and the density of Cardinium 
increased across time and led to a decrease of Hamil-
tonella density [40]. Asymmetrical interactions have been 
found between the reproductive parasites Spiroplasma 
and Wolbachia in Drosophila melanogaster in which the 
population of Wolbachia organisms was affected by Spi-
roplasma while the population of Spiroplasma was not 
affected by Wolbachia [7]. Other than the interaction 
between different species of symbionts, interactions are 
also observed between different strains of the same sym-
biont. When multiple Wolbachia strains were observed 
in the same host, the density of each strain was specifi-
cally regulated [13, 17], which limited the segregation of 
symbionts through inefficient transmission by maintain-
ing a sufficiently high density of each symbiont [4].
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In our study, we found that in brown planthopper, co-
infection with Wolbachia did not negatively affect eh 
Arsenophonus population and did not lead to lower net 
bacterial densities. In addition, the relative ratio of Wol-
bachia and Arsenophonus quantity in the double-infected 
lines of N. lugens varied with the geographic population. 
In the double-infected lines from the NN, ZJ, NT and 
MS populations, Wolbachia was the dominant symbiont, 
whereas in the double-infected line from the NJ popula-
tion, Arsenophonus was the dominant symbiont and had 
a significantly higher density than that of Wolbachia. The 
difference in Arsenophonus density among lines might be 
related to the period of maintenance in the lab because 
the NJ population has been maintained for more than 
14  years before investigation, which is at least 7  years 
longer than the other populations. This longer period of 
maintenance may possibly benefit the accumulation of 
Arsenophonus.

Wolbachia can provide protection against environmen-
tal stress, including RNA viruses and insecticides [11, 18, 
19, 36], and this genus also confers certain fitness ben-
efits to their hosts [22, 37]; however, Wolbachia can also 
have deleterious effects on the life history of their hosts 
[5, 9]. Arsenophonus was also found to provide protection 
against environmental stress, such as protection against 
the entomopathogenic fungi Metarhizium anisopliae 
[44], although it also induced negative effects on their 
hosts, such as decreasing the chemical insecticide (imi-
dachloprid) resistance of rice brown planthopper [25]. 
Co-infection of Wolbachia and Arsenophonus is stable 
in brown planthopper, which raises the question of how 
these genera evolve and the effect that they have on the 
phenotype of their host.

Conclusions
Interactions of Wolbachia, the most common symbiont, 
with Arsenophonus, another widely distributed symbi-
ont in nature has not been reported previously. Present 
study indicated that Wolbachia and Arsenophonus could 
coexist in N. lugens, and the co-infection incidence var-
ied with the geographic populations. Antagonistic inter-
actions were not observed between Arsenophonus and 
Wolbachia, and Wolbachia was the dominant symbiont 
in most populations.
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