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Abstract

Background: The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and
several binding proteins, which together control the temporal and spatial generation of the active serine protease
plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been
extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral
gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms
in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-
proteolytic members of this system are scarce.

Results: Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-
related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that
the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene
found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and
uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose
monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of
all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is
conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles
and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the
urokinase-type plasminogen activator receptor (UPAR)—and three-LU domain containing genes in
general—occurred later in evolution and was first detectable after coelacanths.

Conclusions: This study identifies several primitive orthologues of the mammalian plasminogen activation system.
These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of
several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important
enzyme system.
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Background

Plasminogen activation (PA) leads to the generation
of the broad spectrum serine protease plasmin,
which plays a primary role in fibrin surveillance and
in securing vascular patency in species with a circu-
latory system. Other extracellular matrix (ECM)
components are also targets for plasmin-mediated
proteolysis, either directly or indirectly through acti-
vation of e.g. metalloproteinases [1]. In mammals,
two main physiological plasminogen activators are
known: tissue-type plasminogen activator (tPA; with
the gene denoted PLAT) and urokinase plasminogen
activator (uPA; with the gene denoted PLAU), both
belonging to the serine-protease family. These activa-
tors have evolved different preferred compartments
for their plasminogen activation potential: tPA is be-
lieved to act primarily on polymerized fibrin matri-
ces resolving fibrin deposits in the vasculature, while
uPA focalizes plasminogen activation onto cell sur-
faces, such as activated macrophages and neutro-
phils, thus providing a cellular component for fibrin
surveillance in extravascular compartments and for
ECM remodeling [1-4]. The confinement of
uPA-mediated plasminogen activation to the pericel-
lular compartment is driven by expression of the
uPA receptor (uPAR; with the gene denoted PLAUR),
which is a glycolipid-anchored membrane receptor
[5] composed by three Ly6/uPAR or LU domains [6,
7]—all  participating in the assembly of a
high-affinity binding site for uPA [8-10]. uPAR in-
teracts weakly with the somatomedin-B (SMB) do-
main of the provisional matrix protein vitronectin
(VN) [11, 12], providing an additional layer to the
regulation of cell attachment and migration. This
process is under allosteric control by the
high-affinity binding of uPA [13, 15, 16]. The main
physiological inhibitor of tPA and uPA is a circulat-
ing serpin (serine protease inhibitor) termed plas-
minogen activator inhibitor-1 (PAI-1) [17]. The
PAI-1 inhibitory mechanism is common to other ser-
pins in which the exposed reactive center loop
(RCL) of the serpin is recognized as a substrate for
the target proteases. After proteolytic cleavage of the
RCL the serpin undergoes a large conformational
change, the so-called stressed-to-relaxed transition,
which inactivates the protease and leaves the RCL
no longer accessible [18]. Contrary to other serpins,
PAI-1 can spontaneously undergo the
stressed-to-relaxed transition, adopting a latent in-
active state (latency transition). Interestingly, the
binding of PAI-1 to its cofactor VN increases the
half-life of the active form of PAI-1 [18-20]. Due to
the importance of the plasminogen activation system
(PAS) in human health and disease, it has been
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extensively studied in mammals and been a popular
target for drug development [14, 21, 22]. Although
only a limited number of studies of this system exist
in other vertebrates [23-28], they have suggested
that the mechanisms for plasminogen activation and
inhibition are more complex than the one emerging
from merely reconciling observations made in
mammals.

Plasminogen and the serine proteases of the PAS are
believed to have emerged from a common ancestral gene
which further diverged into the present members of the
PLG-group and PA-group [29-36] (Fig. 1). The existence
of a number of protein domains shared by those extant
members prompted the development of several theories
about the evolutionary origin of these serine proteases
[31, 33-35, 37], which are summarized in Add-
itional file 1: Figure S1A and Figure S1B. Although there
is disagreement concerning the domain composition of
the common ancestor gene, it is generally accepted that
the current members arose as a consequence of
exon-shuffling events combined with gene duplications
[29, 31, 33, 34]. The main plasminogen activator inhibi-
tor PAI-1, also termed SERPINEL], is composed by a sin-
gle serpin domain and belongs to the V3 serpin group
with its close paralogues SERPINE2, SERPINE3 and
SERPINII1 [38-41]. However, the shutter region of PAI-1
exhibits an unique residue composition, which allows a
sequence based discrimination of PAI-1 from other re-
lated serpins [19, 26, 42]. Another feature of PAI-1 is its
binding to the somatomedin-B domain of VN [43],
which is comprised of SMB, an integrin binding motif,
and four Hemopexin-like (HX) repeats. Although the
presence of VN in several mammalian and avian species
was characterized in an earlier study [44], large scale
comparative studies on VN are lacking.

In addition to PAI-1, VN also interacts with uPAR,
which belongs to the Ly6/uPAR family [6]. This protein
domain family is characterized by the presence of at
least one LU domain with 10 conserved cysteine resi-
dues. These conserved residues are involved in the for-
mation of five disulphide bonds creating the
characteristic three-fingered fold found in the primordial
snake venom a-neurotoxins [6]. Mammalian uPAR pos-
sess three of those LU domains, which are all required
for its biological function [10, 16, 45]. While these disul-
fide bonds are absolutely essential for the correct protein
folding of the single LU domain proteins [45-47], the
first LU domain in uPAR unexpectedly lacks one of
these consensus disulfide bonds and only presents eight
cysteines [10, 48, 49]. This feature is shared among the
multi-LU-domain paralogues C4.4A, Haldisin, TEX101,
CD177, and PINLYP [48, 50-53]. However, information
on LU-containing genes in non-mammalian vertebrates
is very limited.
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Fig. 1 Phylogenetic relationship and protein domain composition of the human serine protease members of the plasminogen activation system and their
close paralogues. a PLG-group and b PLG activators group members. PLG (plasminogen), HGF (hepatocyte growth factor), MST-1 (macrophage stimulating
1), HABP2 (hyaluronan binding protein 2), LPA (lipoprotein a), HGFAC (hepatocyte growth factor activator), tPA (tissue-type plasminogen activator) and uPA
(urokinase-type plasminogen activator). (¥) Members of PAS in mammals. Domain composition: FN1 (fibronectin type 1), FN2 (fibronectin type 2), K
(kringle), EGF (epidermal growth factor), PAN (PAN/APPLE), T (trypsin). Phylogenetic tree derived from the human phylome from PhylomeDB [36]
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Previous comparative studies of the plasminogen acti-
vation system focused on the serine proteases, which are
believed to descend from a common ancestor gene by
gains and losses of protein domains. These studies were
performed in a limited number of chordate species and
the detection of transitional forms providing direct evi-
dence of their common origin remains elusive. Despite
the fact that due to the ongoing development of
next-generation sequencing (NGS) technologies the
number of genomes available in various sequence data-
bases is increasing, sequence data from several verte-
brate groups are still rather sparse.

To overcome these limitations, we performed a com-
prehensive survey of genes involved in PAS by combin-
ing transcriptome and genome data from 13 different
chordate groups [54—61] corresponding to 110 different
species (Fig. 2). In addition, we performed extensive
transcriptome sequencing in three vertebrate species be-
longing to groups with limited sequence information
(lungfishes, amphibians and turtles). Our work provides
the first large-scale comparative study of PAS members
and their close paralogues among chordates. We con-
firm the presence of plasminogen among all vertebrate
classes and tracked the origin of PAS to
jawed-vertebrates. Moreover, we report the identification
of ancestral forms of PAS members in lower vertebrates

with no human equivalent, providing new insights into
the development of this complex enzyme system.

Results

RNA-seq, de novo assembly and generation of protein
sequence database from public repositories

Around 617 and 327 million 150 bp paired-end reads
were generated from brain, kidney, liver and gonads
from African lungfish (Protopterus sp) and pond slider
turtle (Trachemys scripta), respectively, while 98 million
150 bp paired-end reads were sequenced from kidney
and liver from a cane toad (Rhinella marina). After the
initial data processing, de novo transcriptome assemblies
were performed using Trinity [62, 63]. Following filter-
ing, the transcriptomes were annotated with the Trino-
tate pipeline (https://trinotate.github.io; see Methods).
An overview of the annotation results is contained in
Table 1.

Additionally, 296 million reads from a catfish species
(Pangasius hypophthalmus) were sequenced and assem-
bled into 393,517 contigs providing 81,349 predicted
proteins for that species (data not shown). The total
pool of species examined was increased by using publicly
available RNA-seq reads (see Methods and Add-
itional file 2), assembled data from public RNA-seq data-
bases, two transcriptome assemblies previously
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Fig. 2 Phylogeny of the chordate main groups. Vertebrate groups as described in [54] from which new data was generated (*). Approximate
divergence dates are expressed in million years ago (mya) and were collected from [54-59]

Jawed-vertebrates

Vertebrates

performed by our group [64] and data derived from pub-
lic available transcriptome and genome assemblies (Add-
itional file 2).

Emergence of the PLG-group

In this study we focused on PLG and orthologues of the
PLG-related growth factors (Fig. 1), which have lost their
catalytic activity [20]. Primate genes encoding lipopro-
tein (a) (LPA) with a highly variable number of kringle
repeats [65-67] however, excluded from the
analysis.

After orthology assignment, our results show that in
lower chordates the only PLG-like proteases found
(Fig. 3) comprise no more than two to three kringle do-
mains attached to the trypsin-like domain (Additional
file 1: Figure S2). On the other hand, lampreys (cyclo-
stomes) present a PLG orthologue with a domain com-
position similar to that of their mammalian
counterparts. The appearance of this protease is coupled
with the emergence of the two plasminogen related
growth factors HGF (hepatocyte growth factor) and
MST-1 (macrophage stimulating 1), which already in
lampreys are predicted to have lost their catalytic activity
(Additional file 1: Figure S3). The presence of PLG, HGF
and MST-1 is conserved in the rest of the vertebrate

were,

groups examined (Fig. 3). However, a special feature is
found in two coelacanth species where the PLG ortholo-
gues have lost the PAN (PAN/APPLE) domain, two of
the three catalytic sites in the trypsin domain and poten-
tially the catalytic activity (Additional file 1: Figure S3).
A detailed examination revealed several gene duplica-
tions in vertebrates subsequent to their emergence in
lampreys. As seen in Fig. 3 and Fig. 4, teleosts present
two HGF genes, while coelacanths and birds have two
PLG copies, which in the case of coelacanths contain
only one kringle domain and no catalytic activity (Add-
itional file 1: Figure S3). Finally, phylogenetic analysis lo-
cate lamprey PLG at the root of the whole vertebrate
PLG-group while both lamprey PLG-related growth fac-
tors are positioned at the root of the HGF-MST-1 group
representing the ancestral forms of the jawed-vertebrate
orthologues (Fig. 4 and Additional file 3).

Emergence of the PLG activator group

According to previous phylogenetic studies of this gene
group, HABP2 (hyaluronan binding protein 2) split from
the main branch before the appearance of a common
uPA and tPA ancestral gene (Fig. 1). HABP2, also
termed factor seven-activating protein (FSAP), was first
implicated in coagulation, but later its ability to activate
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Table 1 Assembly metrics and transcriptome annotation of the
RNA-seq data generated

Raw assembly metrics

Feature Protopterus sp  Rhinella marina  Trachemys scripta

Trinity genes 1,241,097 289,963 972,365

Trinity transcripts 1,423,377 256,160 850,085

N50 362 bp 513bp 559 bp

Mapped reads 965% proper  “70% proper “65% proper
P129% single b10% single P159% single

“Completeness 83% 54% 81%

dAfter filtering

Feature Protopterus sp  Rhinella marina  Trachemys scripta
Trinity genes 395,129 110,639 464,338
Trinity transcripts 458,605 125,853 540,638
N50 794 bp 859 bp 745 bp
“Completeness 82% 54% 80%
Predicted peptides 143,312 50,831 133,635
SwissProt 69,155 36,468 77,940
Unirefo0 82,471 38,551 84,921
Pfam 55,446 27,460 55,196
SignalP 6449 2887 6686
TMHMM 16,366 6441 14,712
EggNOG 35,778 16,017 38,348
GO 97,438 34,074 70,948

“Both read pairs mapped to the same transcript

POne of the reads from the pair mapped to a different transcript
“‘Completeness by BUSCO analysis [98] against a set of core vertebrate
conserved genes

dFiltering performed by transcript length and expression level (see Methods)

uPA was reported as well [68]. Interestingly, HABP2 can
be inhibited by PAI-1 [69] and SERPINE2 [70].
Prompted by these observations, we performed an ex-
haustive search including all the members of the PLG
activators group to study the evolution of plasminogen
activation.

Our analysis showed that none of the six species be-
longing to the lower chordates seem to have an obvious
orthologue to the PLG activator group as their obtained
Blast reciprocal best hits (BRBH) displayed several pro-
tein domains not known to occur in their mammalian
counterparts (Table 2). Nonetheless, all of them are lo-
cated at the root of the PLG activators group (Fig. 4),
with 41% bootstrap support after 1000 replicates (Add-
itional file 3) confirming their close phylogenetic
relationship.

The earliest putative orthologue of the PLG activa-
tor group, resembling the mammalian equivalent tPA,
is the HABP2 gene found in lampreys, presenting an
extra fibronectin type 2 (FN2) domain in its
N-terminal region compared to their mammalian
counterpart (Additional file 1: Figure S2). From
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cartilaginous fish to birds the canonical forms of
HABP2 are found through all vertebrate clades, which
cluster together with the lamprey HABP2 in a mono-
phyletic group (Fig. 4). Non-tetrapod jawed verte-
brates display an additional gene resembling HABP2
(Fig. 3).

In the case of the hepatocyte growth factor activator
(HGFAC), the most primitive orthologue is present in
cartilaginous fish (elasmobranchs). Strikingly, HGFAC in
elasmobranchs displays twice as many epidermal growth
factor- (EGF), fibronectin-1 (FN1) and kringle domains
as compared to the mammalian HGFAC (Additional file 1:
Figure S2). Canonical HGFAC forms are found from tele-
osts throughout all the vertebrate clade, and the HGFAC
duplication, which led to the appearance of coagulation fac-
tor XII (FXII; Hageman factor) in mammals, took place be-
fore the emergence of lungfishes (Fig. 3). The HGFAC and
FXII precursor forms we detected form a monophyletic
group, which further branches into HGFAC and FXII
groups (Fig. 4).

With respect to tPA and uPA, they both first occur
in cartilaginous fish (Fig. 3). In jawed-vertebrates,
tPA possesses a domain composition identical to the
human equivalent, while the ancestral uPA in cartil-
aginous fish deviates from the canonical domain
composition (Additional file 1: Figure S2). It pos-
sesses an extra FN1 domain in the N-terminal part,
which in elasmobranchs interestingly displays an
integrin-binding motif (Fig. 5). Teleosts present two
uPA genes (a and b), as previously described [24].
However, the bichir Polypterus senegalus (a
non-teleost ray-finned fish) exhibits only one uPA
gene with a complete EGF domain in the N-terminal
part thus resembling mammalian uPAs (Fig. 5). In
the remaining jawed-vertebrates, uPA orthologues
display the canonical domain composition. Finally,
phylogenetic analyses confirm that all uPA and tPA
orthologues identified compose monophyletic groups
to their mammalian counterparts, with the exception
of the ancestral uPAs found in cartilaginous fishes
located at the root of both activators (Fig. 4).

Emergence of vitronectin, PAI-1 and related paralogues
Our results showed that cartilaginous fishes exhibit the
most ancient VN of all vertebrates displaying a SMB do-
main, an integrin binding region and the four
HX-domain repeats—thus resembling the composition
of the human orthologue. The presence of VN is con-
served in all the examined jawed vertebrate groups, with
the appearance of an extra gene copy (a and b) in tele-
osts (Additional file 1: Figure S4).

Although PAI-1 is the predominant PA inhibitor in
humans, its close paralogues SERPINE2 (glia-derived
nexin) [71] and SERPINI1 (neuroserpin) are indeed
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capable of inhibiting PA activity as well [72-74]. Based
on this reasoning, the orthologues of SERPINE2 and
SERPINI1 were included in the study. Furthermore,
SERPINE3 and SERPINB2 genes were also investigated,
as SERPINES is the only close paralogue of PAI-1 with-
out a known function, and plasminogen activator
inhibitor-2, placental type (PAI-2)—albeit distantly re-
lated to PAI-1—is believed to be a specific PA inhibitor
in human placental tissue [75].

Amongst the lower chordates, only urochordates
present BRBH to any of the five serpins investigated, in
particular to PAI-1 and SERPINI1. Notwithstanding this
putative relatedness, a more refined analysis revealed
that although they cluster together in an independent
group at the root of the serpin V3 members (Fig. 6 and
Additional file 4) they do not present an obvious similar-
ity with their vertebrate equivalents. Regarding verte-
brates, SERPINE2 is the only member of the V3 serpin
group found in cyclostomes (lamprey). PAI-1 appears for
the first time in cartilaginous fishes and is conserved in
the rest of jawed vertebrate clades.

In addition, all the jawed vertebrate groups exhibit
SERPINE3 and SERPINI1 orthologues, contrary to
PAI-2, which appeared for the first time in the common
ancestor of reptiles and mammals and represents the

latest appearing PA inhibitor (Fig. 3). All identified can-
didates form monophyletic groups with their mamma-
lian equivalents, except lamprey SERPINE2, which is
located at the root of the SERPINE1-SERPINE2 group in
jawed-vertebrates (Fig. 6).

Appearance of uPAR and three-LU domain containing
genes

In mammals, uPAR is the only known gene comprising
three consecutive LU domains. Additional multi-LU
genes known in this animal group are LYPD3/C4.4A
[10], LYPD5/Haldisin [50], TEX101, PINLYP—contain-
ing two LU domains, and CD177—containing four LU
domains [48]. Those mammalian multi-LU genes are lo-
cated in a small gene cluster [7, 50, 52] in close proxim-
ity to other non-LU genes such as ETHE1, XRCC1 and
PHLDB3. As the 3 LU-domain architechture of uPAR is
a prerequisite for the assembly of a high affinity uPA
binding cavity [8-10, 45], we included genes containing
three LU domains, as well as BRBH of human uPAR, in
the analysis of the different chordates species.

As a general finding, we were unable to identify any
three-LU domain-containing genes from cartilaginous
fishes to coelacanths. The closest resemblance to the do-
main composition of uPAR comprised two-LU domain
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branches indicate lower chordates (grey), cartilaginous fishes (violet), ray-finned fishes (blue), coelacanths and lungfish (orange), amphibians (light
green), lizards and snakes (dark green), turtles (turquoise), crocodilians (brown) and birds (red). Position of the non-canonical or first appeared
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Hageman factor). The unrooted tree with bootstrap values is provided in Additional file 3

PLG-2

Activators best hits
in lower chordates

HABP2

- Cephalochordates
Urochordates

Lampreys

Cartilaginous
.. fishes

Ray-finned fishes

Coelacanths

f Lungfish

Birds

Table 2 Reciprocal best hits (BRBH) to human PLG activator group members in lower chordates

Animal group

Species

BRBH

Protein domain types

Cephalochordates

Urochordates

Branchiostoma belcheri

Branchiostoma floridae
Assymetron lucayanum
Ciona intestinalis

Oikopleura dioica

tPA

HABP2
HGFAC
HABP2
HABP2
HABP2

SRCR, Kringle, LDLRA, PAN, Trypsin?
SRCR, Kringle, LDLRA, PAN, Trypsin
SRCR, Kringle, LDLRA, Trypsin®
SRCR, Kringle, LDLRA, PAN, Trypsin
FN2, PAN, Kringle, Trypsin

Kringle, Trypsin

“indicates Trypsin domain predicted to be non-functional. SRCR (scavenger receptor cysteine-rich domain), LDLRA (Low-density lipoprotein (LDL) receptor class A),

FN2 (fibronectin type 2 domain)
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MKL--1-LTLALACA-LISGLESKFS|---------cueunn-
MKL--1-VIIAFSSL-FITGLESIFHKHH--------------
uPA-like_anolis_carolinensis MKSL | - -VISAMLS- VLVPTRASSHHWL TSHKLGSK
uPA-like_gekko_japonicus MKWLF - - VTS | LLSALLLADLASARRWEKPHKQASK
uPA-like_protobothrops_mucrosquamatus MNPPA- - | LFVMLSAL | TQGAAST YHWQRQQKL SSK
uPA-like_thamnophis_sirtalis MNPLA- - VLFVMLSAF | AEMAASTYLWARKQQ- - - - - - - - - - - -
uPA-like_chelonia_mydas MKLL I --11SVTLGAL-VTSLDSAVTRQQRHKLSSK
uPA-like_chrysemis_picta MKLF |- -1 ISVMLGAL-VTSLESALTRQQRHILSSK
uPA-like_pelodiscus_sinensis MKLLI--VISLTLGAL-VTSLESAVTWQQQYKLSSK
uPA-like_trachemys_scripta MKLF I -- 1 ISVVLGAL - VTSLESALTRQQRH I LSSK
uPA-like_alligator_mississippiensis MKSLV- - | | SVMLGML - VTGLDSVWNRQKL YNSPSK
uPA-like_alligator_sinensis MKSLV- - | VSVMLGML - VTGLDSWWNRQKL YNSPSK
uPA-like_caiman_crocodilus MKSLV- -1 ISVMLSML - VTGLDSFWNRQKL YNSPSK
uPA-like_crocodilus_porosus MKSLA- - | ISVMLGML - VTGLDSVWWNRQKL YDLPSK
uPA-like_gavialis_gangeticus MKSLA- - | | SVMLGML - VTGLDSWWRQKL YDLPSK
UPA-like_anas_plalyrhynChoS = - s s s e e e e e e e e e e
uPA_homo_sapiens

(fibronectin type 1), EGF (epidermal growth factor)

MNFLLLLVTFSLFSF----TLEA-------------c-cc-----

-------------------------- sNELHavPsNeDCLNGG TCV SITRTESNIIHECNCPKKF GGQHCE| DK

Fig. 5 Multiple sequence alignment of the N-terminal region of selected vertebrate uPAs. uPA (urokinase-type plasminogen activator), FN1

----------------------- KSRSKSKAGCVCLNGGTCLQY - - YFSSEKCRCPRHFKGDHCE|I ET
TVCKAQRR- - PFPSESHDKPGVLCLNGGSSLSS- LSGRHLLCLCAEGF SGSRCE[TDT
--------------- NSRTGACDCLNGGSCVRHEYFPTYSYCLCPKGF SGRHCETDT
- -RTKKTGCHCLNGGTCRSH | Y-HQWQSC I CPKGY IGQACE|IDT
- - - EETKAGCTCLNGGMCQRSPFHAGALRCSCPQGYSGEQCE(IDT
- - TDKSNGCTCLNGGTCQPSQFYTG | LRCACPTGYSGEKCE|IDT
- - - TSNSEDCVCLNGGSCL YRRTHRRPYRCACPTGYDGQHCERDM
---PNNTEECTCLHGGTCLHYGTYRRFHRCVCPVGYTGKHCE|IDL
- - -KYEHKGCNCLNGGTC I TYHLF SRMKRCVCPEGYSGDHCE|IDN
- -KYGHQDCKCLHGGTC I SYQLFSRVKRCLCPPGYSGDHCE|I DA
- - -KYDHKGCGCLNGGTCLTYGLFSQIKSCVCPEGFDGDHCE|IDV
---KYDYKGCDCLNGGSCL | YGLFSQIKTCLCPEGYEGDHCE|IDV
- --KSGYQDCNCVNGGTC I SYQLFSQINRCLCPKGYSGQHCE(IDT
- - KSGHQDCNCVNGGTC I SYQLF SR INRCLCPKGYSGQHCE|IDT
- - KPRHQDCNCLNGGTC I SYQLF SR INRCLCPKEYTGQHCE|I DF
- - KSGHQDCNCVNGGTC I SYQLF SR INRCLCPKGYSGQHCE(IDT
- -KLGHKDCNCLNGGTC I SYLLFSG | SRCSCPNRYSGNHCE|IDS
- -KLGHKDCNCLNGGTC I SYLLFSG | SRCSCPNGYSGNHCE|IDS
- -KLGHKDCNCLNGGTC I SYLLFSG | SRCSCPNGYTGNHCELDS
- - -KLRHKDCNCLNGGTC I SYTLFSR I SHCSCPNGYRGNHCE|IDS
- -KLRHKDCNCLNGGTC ISYTLFSR | SRCSCPNGYRGNHCE|IDS
---------- DCHCLNGGTCVTYYLFSRINRCLCPEGYGGLHCE|IDD

proteins, which may in fact be homologs of the corre-
sponding 2-LU domain proteins found in the human
genome. One exception is the genome of the teleost
Lates calcarifer, which actually contains one three-LU
domain gene as the best hit to human uPAR. Lungfish
and most of the tetrapods species inspected possess
more than one gene encoding a three-LU domain pro-
tein, with the exceptions of mammals, which possess
only a single uPAR gene, and birds where a bona fide
three-LU domain gene is absent (Fig. 3). Phylogenetic
analysis showed all the identified candidates genes en-
coding a three-LU domain protein cluster close to
LYPD3 (which in mammals correspond to the closest
paralogue to uPAR), but in a separate monophyletic
group. The group containing a three-LU domain signa-
ture further branches into separate groups defined by
variations in the cysteines patterns of their LU domains
or the presence of a long stretch at the end of the third
LU domain (Fig. 7, Table 3, Additional file 5 and Add-
itional file 6). We also provide evidence that uPAR-like
genes—identified in tetrapods and lungfish—all are lo-
cated in close proximity to at least one of the genes
present in the mammalian uPAR conserved gene cluster
in those species where a genome assembly is available
(Table 3). This provides strong evidence and support of
their common evolutionary origin.

Discussion

PLG group orthologues (PLG and PLG-related growth
factors)

A recent study reported a gene from the nematode
Caenorhabditis elegans presenting both protease and
growth factor-like activities [76] and being homolo-
gous to members of the PLG-group. This gene dis-
plays major differences in its domain composition
compared to vertebrate PLG and is involved in axon

regeneration. Notwithstanding these notable differ-
ences, it is believed to be a true PLG homologue ar-
guing that the common ancestor of the PLG group
may already present both functions [76]. Previous
work also reported that two-kringle containing prote-
ases with PLG-like activity constitute PLG ortholo-
gues in cephalochordates. This proposition aligns well
with our present data. Our identification of a
three-kringle domain containing protease in urochor-
dates, the lower chordate closest to vertebrates,
supports previous evolutionary theories regarding
the ancestral forms of the PLG group in chordates
[31, 34, 35, 37, 77-79]. As no PLG-related growth fac-
tor orthologues were identified in lower chordates, further
functional characterizations of their PLG-like proteins are
needed to clarify whether they possess dual activities
as proteases and growth factors like the scenario pro-
posed for Caenorhabditis elegans. Nonetheless, the ca-
nonical forms of both PLG and PLG-related growth
factors appeared as distinct ancestors in all verte-
brates. Interestingly, HGF in lampreys seems to be
more similar to lamprey MST-1 than to the others
HGF from jawed vertebrates (Fig. 4, Additional file 1:
Figure S3 and Additional file 3) prompting the ques-
tion whether HGF activity actually was present in the
vertebrate ancestor or first appeared in jawed verte-
brates. In two animal groups (coelacanths and birds)
additional PLG-like genes appeared to lack some of
the catalytic residues (Additional file 1: Figure S3)
and may therefore represent a new potential class of
PLG-related growth factors in those vertebrate
groups.

Emergence and diversification of PLG activators group
After examination of the different species belonging to the
lower chordates, our results confirm that at this stage no
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orthologues resembling any member of the mammalian
PLG activators family exists in this animal group (Table 2),
thus corroborating observations from an earlier study [33].
Based on our analysis, we propose lamprey HABP2 as the
most primitive member of the PLG activators group and as
the sole representative of this gene group in lampreys. This
is in contradiction to an earlier study that reported contigs
encoding a trypsin domain resembling HGFAC in the gen-
ome of the sea lamprey in the Trace database archive [37].
Upon reexamination of the genome and transcriptome of
several lamprey species (Additional file 2), we failed to con-
firm the existence of such an orthologue. A closer examin-
ation of the current accession of the contig in question
(GL484904) from the UCSC genome browser reveals a 92%
identity with the trypsin domain of lamprey HABP2.

Accordingly, it clusters in the HABP2 group with lamprey
HABP2 in the phylogenetic tree provided in Fig. 4. The
presence of an extra FN2 domain in lamprey HABP2 (Add-
itional file 1: Figure S2), yielding a domain composition
half-way between HABP2 and HGFAC, suggests that this
form may correspond to a common ancestor of
jawed-vertebrate HABP2 and HGFAC. Such hybrid proper-
ties are well aligned to the model of evolution as hypothe-
sized previously [34, 35]. Moreover, all jawed-vertebrates
seem to have HGFAC (Fig. 3 and Fig. 4), which duplicated
before the lungfish-tetrapods split giving rise to FXII in tet-
rapods, but being lost in the avian clade as previously re-
ported [37, 80].

Although an earlier study reported the presence of
contigs resembling tPA in the genome of the sea
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lamprey (no accession was provided) [37], we failed to
identify such an orthologue in the lamprey species we
analyzed (Additional file 1: Figure S1). The closest pos-
sible candidate to tPA in lamprey would be a protease
with two kringle domains, which by sequence similarity
could correspond to a paralogue of lamprey HABP2
(HABP2-like-2) (Fig. 4 and Additional file 3). Phylogen-
etic analysis does cluster this candidate closer to lamprey
PLG (Fig. 4). It would therefore appear that a primordial
tPA gene is first detectable in cartilaginous fish and that
it has been conserved in the entire jawed-vertebrate group
(Fig. 4). In the case of uPA, origin and diversification also
follow the model of evolution of modular serine proteases
proposed previously [34]; it appears the first time in cartil-
aginous fish with an extra FN1 domain (and is thus more
similar to tPA than the mammalian counterparts). During
vertebrate cladogenesis that FN1 domain was lost (Fig. 8).

Further diversification of uPA occurred within ray-finned
fishes, where the loss of two cysteines in the EGF domain
occurred before the teleost-gars split and hence before the
duplication of the uPA gene (Fig. 5). This duplication oc-
curred in teleosts and led to the subsequent loss of the EGF
domain in one of the gene copies (Fig. 8) [24]. A canonical
uPA structure is conserved from coelacanths to birds (Fig.
5 and 8).

Serpin V3 group and VN

Serpins comprise a large group of more than 6000
proteins identified in eukaryotes, prokaryotes and ar-
chaea [38-42]. Comparative analysis of serpins from
non-vertebrate model organisms might provide some
clues to the origin and ancestry of vertebrate serpin
genes. Recently, a novel serpin has been described in
the invertebrate Branchiostoma japonicum [81].
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Table 3 Cysteine patterns of the different three-LU domain predicted proteins found in non-mammalian vertebrates

Animal group Species “uPAR BRBH bOther three-LU

Ray-finned fishes Lates calcarifer 10-10-10° No

Lungfish “Protopterus sp' 10-10-10 10-10-10
Nanorana parkerii 10-10-11¢ No
Xenopus tropicalis 10-10-11¢ No

Amphibians Xenopus laevis® 8-10-10-long® 10-10-10¢ and 10-10-11¢
“Ambystoma mexicanum’ 8-8-10 8-10-10-long, 10-10-1 and 10-10-11
Tylototriton wenxianensiss’ 10-10 8-10-10-long, 10-10-11 and 10-10-11
Anolis carolinensis 8-10-10° 8-10-10-long®

Lizards & Snakes “Gekko japonicus 8-10-10° No
“Protobothrops mucrosquamatus 8-10-10¢ No
“Python bivittatus 8-10-10 8-10-10-long and 10-8-10

Turtles “Trachemys scripraf 8-10-10 No

Crocodilians Alligator mississippiensis 8-10-109 8-10-10-long and 10-8-10

“Best hit to human uPAR
POther predicted peptides with three LU (Ly6/uPAR) domains
“Species with intact EGF in uPA

dGene located in the same scaffold as at least one of ETHE1, XRCC1, PHLDB, LYPD3 or LYPD5

€Gene not located in the same scaffold as ETHE1, XRCC1, PHLDB, LYPD3 or LYPD5

fGenome assembly not available for that species

9Predicted protein obtained after merged two overlapping contigs from two different databases (see Additional file 2)

While serpins from amphioxus are closely related to
clade I of the group V3 serpins, our analyses did not
provide evidence for serpin in the closest group to
PAI-1 (V3 group, E clade). Among those five serpins
that we focused on in this study, lampreys only
present SERPINE2. According to our phylogenetic
analysis and previous studies [38], SERPINI1 and
SERPINE3 split from the main branch before the
emergence of PAI-1 and SERPINE2 (Fig. 6) suggest-
ing that the common ancestor of vertebrates con-
tained SERPINI1 and SERPINE3. Interestingly, the
SERPINE2 identified in the sea lamprey may repre-
sent a direct ancestor of SERPINE2 and PAI-1 in
jawed vertebrates (Fig. 6). In accordance, the appear-
ance of PAI-1 is coupled to the emergence of its
predominant target proteases (tPA and uPA) as well
as its cofactor VN (Fig. 3); and we recently reported
that PAI-1 from a cartilaginous fish (Squalus
acanthias) is not only able to inhibit uPA but also
to bind to VN [26] confirming that already this
primitive PAI-1 is functional. Interestingly, the shut-
ter and VN-binding regions in crocodilians and bird
PAI-1 are not as conserved as in other vertebrate
groups (Additional file 1: Figure S5), which might
suggest that in those animal groups, PAI-1 genes are
might be under a different selective pressure.

The 37-loops of human uPA and tPA are enriched in
positively charged residues, which are known to be import-
ant for the interaction with PAI-1 [82, 83]. In chicken, these
residues are deleted in the uPA 37-loop and human PAI-1
is accordingly unable to inhibit uPA from this species [23].

Further verifying the functional importance of this deletion
is the observation that by “humanizing” the 37-loop only,
chicken uPA became sensitive to human PAI-1 [23]. It was
therefore hypothesized that inhibition of uPA in chicken
(and probably birds) followed a different molecular mech-
anism or that avian PAI-1 targets a different protease than
uPA [23]. Notably, all avian uPAs studied so far are defi-
cient of the basic residues in their 37-loops (Additional file
1: Figure S6). In conclusion, a pair-wise functional compari-
son of avian uPA and PAI-1 is required to clarify the func-
tional role of PAI-1 in birds.

Emergence of uPAR-like and 3-LU domain containing
genes

In contrast to mammals, in which the only
three-LU-domain protein present is uPAR, our data
demonstrates the presence of several three-LU-domain
containing genes in non-mammalian tetrapods. Remark-
ably, birds seem to have lost all three-LU-domain con-
taining proteins. Although one gene comprising three
consecutive LU domains is present in the ray-finned fish
Lates calcarifer, it does not cluster together with any of
the other three LU domain proteins (Fig. 7). Another pe-
culiarity of this particular gene is that its second and
third LU domains are almost identical (90% identity)
and it is absent from all other teleost species investigated
where only two-LU domain containing genes are found.
We hypothesize that the extra LU domain arose as re-
cent intra species domain duplication. Importantly, our
RNA-seq data confirms the presence of uPAR-like genes
with three LU domains in the lungfish, which clusters in
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the larger phylogenetic group of three-LU domain genes
(Fig. 7). Accordingly, the two uPAR-like genes identified
in lungfish represent the most primitive orthologue to
mammalian uPAR—confining the evolutionary origin of
the uPAR lineage to the common ancestor of lungfishes
and tetrapods. Aligned with this proposition, the se-
quence alignment in Fig. 5 shows that lungfish uPA has
a traditional EGF domain with a B-hairpin sharing some,
but not all elements involved in uPAR binding in mam-
mals [84]. Along with sequence similarity, domain com-
position and phylogenetic analysis, the homology of all
the three-LU-domain containing genes with mammalian
uPAR is confirmed by syntenic analysis in those species
where a genome assembly is available (Table 3). In coela-
canths a two-LU domain gene corresponds to the BRBH
to human uPAR and this gene is located in synteny with
the ETHEI and XRCC1 genes as well. Based on this ob-
servation we hypothesize that a single domain duplica-
tion gave rise to a three-LU-domain containing gene

after the coelacanth-lungfish split. Later in evolution, in
the lungfish-tetrapod common ancestor, that gene dupli-
cated and subsequently one copy lost a pair of cysteines
in the first LU-domain, presumably engaged in the for-
mation of a disulfide bond. Subsequent to the acquisi-
tion of the 8-10-10 pattern in uPAR-like proteins,
another gene duplication occurred leading to a gene
copy possessing an extra stretch in the C-terminal part
at the end of the third domain (Fig. 7, Table 3 and Add-
itional file 6). All three-LU-domain containing genes en-
code proteins which are predicted to be tethered to the
cell membranes via a C-terminal glycolipid anchor as is
the case for human uPAR [5], since they all possess the
required C-terminal signal sequence for adding a
glycosyl-phosphatidylinositol moiety. The only exception
being the genes encoding three-LU-domain proteins
with a 10-8-10 cysteine pattern (Additional file 6). Intri-
guingly, we were wunable to identify any
three-LU-domain containing genes in any of the
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analyzed avian genomes or transcriptomes. Pertaining to
this observation, previous studies reported several spe-
cific gene losses (including uPAR, LYPD3 and XRCC1)
in the avian lineage as a consequence of chromosomal
rearrangements and the split of different chromosomes
into microsomes [85]. Subsequent studies discovered
that many of those gene losses in birds were enriched in
conserved syntenic blocks [86, 87]. However, uPAR was
not among those. Accordingly, we did identify several
genes located in the uPAR gene cluster in different avian
transcriptomes and genomes, but neither uPAR nor any
other three-LU-domain containing genes. After careful
scrutinizing the genome of the bird Pseudopodoces
humilis, we identified several of the genes generally clus-
tering with uPAR ie. ETHE1, XRCC1, LYPD3 and
PHLDB3 in the same scaffold (NW_005087786.1). Based
on this evidence, we conclude that loss of uPAR, along
with additional uPAR-like genes, occurred as a conse-
quence of chromosomal rearrangements in the avian
lineage. This is particular interesting since the
growth-factor-like domain of chicken uPA contains all
the known structural requirements for maintenance of a
fully functional receptor-binding capability [84, 88].

Conclusions

In this study we reexamined the molecular evolution of
the plasminogen activation system genes through a com-
bination of exhaustive mining of sequence databases and
the generation of novel data by transcriptome sequen-
cing. By sequence similarity, phylogenetic- and synteny
analysis, we identified orthologues of the plasminogen
activation system and related paralogues. Focusing on
the serine protease members, we tracked their origin
and diversification during the chordate clade and identi-
fied for the first time several ancestral forms which gave
rise to the mammalian plasminogen activation system.
These ancestral forms provide evidence for the
step-by-step model of evolution by protein domain gains
and losses established in earlier studies [34, 37, 78]. In
addition, we have shown that after the appearance of all
the PLG and PLG activators group members several
gene duplications occurred, emphasizing the appearance
of new members in this gene group previously unknown
such as the additional copy of HABP2 and the appear-
ance of a new class of PLG-related growth factor.

Our transcriptome data showed that lungfish presents
the most primitive orthologue of mammalian FXII,
pushing the evolutionary origin of that member of the
contact phase of coagulation prior to the water-to-land
transition during vertebrate evolution. We report that
the origin of the uPAR lineage emerged before the ap-
pearance of tetrapods and that this was mirrored by the
appearance of an uPA sequence compatible with recep-
tor binding, as deducted from studies on mammals [84].
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Notably, this phylogenetic comparison also reveals that
plasminogen activation by uPA predates the evolution of
a receptor-driven focalization of uPA-mediated plas-
minogen activation on cell surfaces. It is, nevertheless,
still possible that a less efficient cell-surface associated
plasminogen activation by uPA might occur in species
lacking uPAR as the lysine-binding sites in plasminogen
and the inhibitory properties of «,-antiplasmin would
favor a surface associated state of active plasmin [52].

Therefore, although biochemical characterization of
these variants is pending to further clarify the functional
implications of our findings, we believe that the present
study contributes substantially to shed light onto the
evolution of the plasminogen activation system and pro-
vides a necessary evolutionary update for this proteolytic
enzyme system.

Methods

Library preparation and RNA-seq for R.marina, T.scripta
and Protopterus sp

All animals were obtained from commercial suppliers in
Denmark. T. scripta were euthanized by an injection of
pentobarbital (200 mg/kg), whereas Protopterus sp and
R. marina were euthanized by submergence in water
containing MS-222 (2 g/l). Euthanasia for scientific pur-
poses, such as the harvest of tissue for in vitro studies,
does not require permits from the animal care inspector-
ate. After dissecting, samples from brain, kidney, liver
and gonads were collected from T. scripta and Proto-
pterus sp, liver and kidney from R. marina and
snap-frozen at — 70 degrees Celsius. Total RNA was ex-
tracted using mirVana miRNA Isolation Kit (Ambion)
and depleted for rRNA using Ribo-Zero rRNA removal
kit (Epicentre) according to manufacturer’s instructions.
Sequencing libraries were prepared using ScriptSeq v2
RNA-Seq Library Preparation Kit (Epicentre) for
strand-specific, multiplexed libraries and selected for an
insert size of 300bp. Paired-end RNA-seq was per-
formed on Illumina HiSeq 2000 to a read length of 150
bp. The raw reads generated in this study are deposited
in the ENA database under study accession PRJEB21481.

Data processing and de novo transcriptome assembly

Possible remaining rRNA and mitochondrial reads were
removed from the raw data by keeping the non-mapping
reads from comparison the LSU_Ref and SSU_Ref Silva
databases version 119 [89] and the mitochondrial ge-
nomes for these species using Bowtie2 and FastQScreen
version v0.4.4 [90] with default parameters. Trimmo-
matic version 0.32 [91] was used to remove adapter se-
quences and trimming low quality bases using the
parameters —phred33 ILLUMINACLIP: Scriptseqv2_a-
dapters:2:30:10 LEADING: 3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:50. Trimmed paired-end reads
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were combined for each species and assembled using
Trinity software [62, 63] version 2.0.6 with default
parameters except —max_memory 15G -CPU 20 -
SS_lib_type FR -min_kmer_cov 2 —-KMER_SIZE 25
—min_contig_length 200 —normalize_reads. Assembly
metrics were obtained wusing the Trinity_stats.pl
script from the Trinity software package. Reads were
mapped back to the transcripts using the script bowtie_-
PE_separate_then_join.pl from Trinity software 2.1.1.
Bowtie [92] was run with the parameters —p 20 —all —best
—strata —m 300. The mapping percentage was calculated
with the script SAM_nameSorted_to_uniq_count_stats.pl
and the abundance of each transcript and gene was calcu-
lated using the align_and_estimate_abundance.pl script,
both from Trinity software 2.0.6. From the latter, default
settings were used except the options —est_method
RSEM -aln_method bowtie —trinity_mode —prep_re-
ference —SS_lib_type FR using RSEM version 1.2.19
[93] to calculate the expression. We removed tran-
scripts with zero fragments per kilo base per million
reads (FPKM), transcripts per million (TPM), and
IsoPct (percentage of the reads that align to each iso-
form over the reads that aligned to all the gene iso-
forms). A second filter was performed to remove
transcripts shorter than 300bp. Predicted proteins
were obtained using TransDecoder (https://transdeco-
der.github.io) with options —-m 60 —S and annotated
with Trinotate version 2.0 (https://trinotate.github.io)
using SwissProt, Uniref90 and Pfam databases with
the compatible Trinotate SQLite boilerplate. In
addition, blast [94], hmmer [95], SignalP [96] and
TMHMM [97] were used with recommended default
settings. Completeness was assessed using BUSCO
v1.1b1 [98] with the vertebrate dataset and the —trans
option.

Retrieval and analysis of data from public resources

In the case of the stingray Leucoraja erinacea the public
RNA-seq reads were processed and assembled as de-
scribed above. Regarding the three lamprey species, pub-
lic RNA-seq reads (see Additional file 2 for details
regarding species and accession numbers) were trimmed
with Trimmomatic version 0.32 [91] applying default pa-
rameters. Trinity version 2.1.1 version was used for all
the species except for Petromyzon marinus where the
total reads were normalized prior to assembly. Previ-
ously assembled transcriptomes and complete protein
datasets were downloaded from different sources
(Additional file 2). The predicted sequences longer
than 60 amino acids from de novo assembled and
downloaded transcriptomes were extracted using
TransDecoder with default parameters and protein
sequence redundancy was removed at 90% identity
with cdhit [99].
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Orthology identification

Blast reciprocal best hits (BRBH) between the human
proteins and the chordate dataset were performed using
blastp ncbi-blast-2.2.30+ [94] with an e-value of 1e-03 as
cutoff. Further paralogues were investigated performing
a similar approach but using as query the orthologues
previously identifed for each species against their protein
database and excluding self-hits from the results.
Orthology assignment was refined by examining the pro-
tein domain composition of the hits using hmmscan
[95] with an e-value of 1e-02.

Full-length sequence of lungfish uPA was generated
after sequencing the open reading frame obtained from
two overlapping contigs (primers pairs in Additional file 1:
Table S2). The PCR products were cleaned using
ExoSAP-IT cleaning kit (Affymetrix) following manufac-
turer’s instructions and sequenced on an ABI 3730xl
sequencer.

Generation of phylogenetic trees

Sequences were aligned with muscle [100] using default
parameters. Alignments were trimmed with trimAl [101]
with the option -automated1. In all cases, RaXML [102]
was run with the predicted best model and the parame-
ters raxmlHPC-PTHREADS -f a -x 12,345 -N 1000 -T
60 -p 12345. The best model was predicted using the op-
tion RaXML AUTO and running PROTTEST version
3.4.2 [103] with the parameters -S 0 -all-distributions -F
-AIC -BIC -tc 0.5 -threads 25. If the models predicted
for both methods disagreed, the model with the lowest
Akaine information criterion (AIC) according to Prottest
without invariant sites was selected. Accordingly, the
model JTT +G was selected in all the trees. Finally,
phylogenetic trees were visualized using iTOL [104].
The complete protein sequences used for the phylogen-
etic tree are provided in Additional file 7, Additional file 8
and Additional file 9.

Additional files

Additional file 1: Table S1. Number of paired-end reads during the dif-
ferent filtering steps. Table S2. Primers used for sequencing uPA lungfish.
Figure S1A. Diagram depicting the four principal theories about the evo-
lution of plasminogen activation system. Figure S1B. Diagram depicting
the four principal 488 theories about the evolution of plasminogen acti-
vation system. Figure S2: Protein domain composition of the serine pro-
tease member of the plasminogen activation system without canonical
domain composition. Figure S3. Multiple sequence alignment of the
catalytic triad from selected trypsin domains. Figure S4. Multiple align-
ment of the vitronectin N-terminal region in selected species of different
vertebrate groups. Figure S5A-C. Multiple sequence alignment of se-
lected PAI-1 orthologues. Figure S6. Multiple alignment of the 37-loop
region of the trypsin domain of the uPA identified. (PDF 1998 kb)

Additional file 2: Accession numbers for Public RNA-seq reads, previ-

ously assembled transcriptomes and complete protein datasets were
downloaded from different sources. (XLSX 65 kb)
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Additional file 3: Unrooted maximum-likelihood phylogenetic tree with
bootstrap values of the PLG and the PLG-activator group members iden-
tified in chordate species analysed. (TXT 47 kb)

Additional file 4: Unrooted maximum-likelihood phylogenetic tree with
bootstrap values of serpin V3 members and PA1-2 orthologues identified
in chordate species analysed. (TXT 23 kb)

Additional file 5: Unrooted maximum-likelihood phylogenetic tree with
bootstrap values of uPAR-like genes and closely paralogues identified in
chordate species analysed. (TXT 13 kb)

Additional file 6: Annotated fasta files of the three-LU domain proteins
found. (DOCX 29 kb)

Additional file 7: Protein sequences of the PLG and the PLG-activator
groups used to build the phylogenetic tree in Additional file 3. (TXT 415 kb)

Additional file 8: Protein sequences of the serpin V3 members and
PAI-2 orthologues used to build the phylogenetic tree in Additional
file 4. (TXT 136 kb)

Additional file 9: Protein sequences of the uPAR-like genes and closely
paralogues used to build the phylogenetic tree in Additional file 5. (TXT 48 kb)
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