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Abstract

Background: Islands have traditionally been the centre of evolutionary biological research, but the dynamics of
immigration and differentiation at continental islands have not been well studied. Therefore, we focused on the
Japanese archipelago, the continental islands located at the eastern end of the Eurasian continent. While the
Japanese archipelago is characterised by high biodiversity and rich freshwater habitats, the origin and formation
mechanisms of its freshwater organisms are not clear. In order to clarify the history of the planorbid gastropod
fauna, we conducted phylogenetic analysis, divergence time estimation, ancestral state reconstruction, and lineage
diversity estimations.

Results: Our analyses revealed the formation process of the planorbid fauna in the Japanese archipelago. Most
lineages in the Japanese archipelago have closely related lineages on the continent, and the divergence within the
Japanese lineages presumably occurred after the late Pliocene. In addition, each lineage is characterised by different
phylogeographical patterns, suggesting that immigration routes from the continent to the Japanese archipelago
differ among lineages. Furthermore, a regional lineage diversity plot showed that the present diversity in the
Japanese archipelago potentially reflects the differentiation of lineages within the islands after the development of
the Japanese archipelago.

Conclusions: Although additional taxon sampling and genetic analysis focused on each lineage are needed, our results
suggest that immigration from multiple routes just prior to the development of the Japanese archipelago and subsequent
diversification within the islands are major causes of the present-day diversity of the Japanese planorbid fauna.
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Background
Islands have long been treated as an excellent model
system of evolutionary biology, and critical evolutionary
mechanisms that generate species diversity such as adap-
tive radiation have been revealed by studying islands [1–
4]. In considering island biology, immigration is an im-
portant event. As in the case of oceanic islands where
the biota could not be established without dispersal, dis-
persal over the ocean or immigration through a land
bridge have a large influence on the current biodiversity

of continental islands [5–7]. On the other hand, speci-
ation and differentiation within an island also contribute
greatly to the diversification of the present fauna [8–14].
The importance of speciation and differentiation within
an island have been suggested based on molecular
phylogenetic research (e.g. [11, 15–17]). However, most
of the studies conducted to date have focused on terres-
trial organisms, and the origin of the biodiversity of
freshwater organisms on islands it is not well known.
We accordingly focused on the freshwater fauna of the

continental Japanese archipelago (including the Ryukyu
Islands). The Japanese archipelago, which includes con-
tinental islands located at the eastern end of the
Eurasian continent, is considered to be a global hotspot
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of biodiversity [18]. It is presumed to have formed
mainly from land masses that separated from the Eur-
asian continent about 15 Ma [19–23]. Then, following
the uplift of Fossa Magna after 6.0 Ma [24, 25] and the
expansion of the Okinawa Trough (2.0–3.0 Ma) [26–28],
the cleavage of the southern strait of the Japan Sea oc-
curred 1.7 Ma (Fig. 1) [29–32]. This event rendered the
Japanese archipelago a system of isolated islands. There
were frequent connections and disconnections with the
continent via land bridges due to sea level changes [22,
32–34]. This archipelago and its complex geography are
an attractive model system for biogeographical studies,
and a lot of research using molecular data has been pub-
lished in recent years (e.g. [16, 35–43]). However, fewer
biogeographical studies have been conducted using
freshwater organisms in the Japanese archipelago. Most
of these studies have focused on freshwater fishes. These
studies have revealed the geographical genetic structure
and clarified the formation mechanism of strictly fresh-
water fish within the Japanese archipelago [28, 44–52].
However, only a few studies have focused on the entire
Eastern Eurasian region (e.g. [53, 54]). There have been
several biogeographical studies focused on freshwater in-
sects (e.g. [55–58]) and crustaceans (e.g. [59–61]), but
information obtained from these investigations is still
limited. In the case of freshwater molluscs, one of the
most diverse animal groups in the freshwater system,
only a few phylogeographical studies have been con-
ducted (e.g. [62–65]). In summary, the biogeography of
freshwater organisms in the Japanese archipelago, in par-
ticular their origin and comprehensive formation mecha-
nisms, is still not well known.
We accordingly focused on investigating Planorbidae, a

group of small freshwater snails. Planorbidae is one of the
taxa with the highest species diversity of freshwater mol-
luscs in the Japanese archipelago [66]. Most species in the
Japanese archipelago are also found on the Eurasian con-
tinent (or closely related species are found) [66–69]. Be-
cause freshwater snails have a low active dispersal ability
and high passive dispersal ability [70], their geographical
genetic structure may have been strongly influenced by a
small number of long-range dispersal and diversification
events within the islands. Hence, by conducting biogeo-
graphical research over the entire Eastern Eurasia region
centred on the Japanese archipelago using planorbid
snails, we expect to address the origin and diversification
mechanisms of freshwater molluscs with few research
cases within the continental Japanese archipelago.

Methods
Species sampling
We sampled 205 individuals from 163 sites from the
Japanese archipelago, Russia, Vietnam, Mongolia, China,
Hong Kong, Taiwan, South Korea, Philippines, the United

States, Thailand, and Poland for analysis (Additional file 1
and Fig. 1). We used three Hygrophila species as outgroups,
referring to the prior researches of higher phylogenetic pos-
ition within Hygrophila [71, 72]. These samples including
outgroups were identified by morphological characteristics
using catalogues and lists of freshwater molluscs [66–69,
73]. However, the taxonomy of Planorbidae in East Asia is
not fully known, and this investigation is beyond the scope
of this research. Therefore, we limited the identification of
samples to the genus except for some morphologically clear
species. Furthermore, although species that have been hith-
erto identified as Gyraulus pulcher can be clearly distin-
guished based on their shell morphology [74, 75], the type
specimens have some taxonomical problems [Saito T and
Fukuda H, unpublished observations]. Hence, Gyraulus
pulcher was provisionally treated as Gyraulus “pulcher”.
Other Gyraulus species, except G. albus, G. biwaensis and
G. parvus were not indentified here. For another Palearctic
(mainly Russian) planorbids we used names of genus-group
taxa treated by Starobogatov et al. [67]. However, we
treated some subgenus instead of genus, because Starobo-
gatov et al. [67] treated Choanomphalus as a genus includ-
ing a number of taxa formerly treated as genera, but in
contrast, recent Planorbidae molecular phylogenies [76, 77]
showed that some subgenera were not closely related to
other subgenenera. These are such genera as Vitreoplanor-
bis and Pseudogyraulus first described as subgenera of the
genus Choanomphalus. In any case, all six genera (includ-
ing at least 9 species) that were recorded in Japan as native
were collected from the Japanese archipelago and these
genera were also collected from continental Asia except for
Camptoceras spp. from South and Southeast Asia. The
summarized information of taxon sampling is shown in
Table 1. The examined samples were deposited in Tohoku
University Museum and Okayama University. Detailed
information about the samples is listed in Additional file 1
and in Fig. 1.

Molecular methods
Total DNA was isolated from individual gastropods
using Nucleospin tissue (TaKaRa, Shiga Pref., Japan) ac-
cording to the manufacturer’s instructions. To conduct
the phylogenetic analyses of Planorbidae, we sequenced
fragments of the mitochondrial cytochrome c oxidase
subunit 1 (CO1), the mitochondrial large ribosomal
subunit (16S) and the nuclear Histone 3 (H3). The con-
ditions of the polymerase chain reaction (PCR) and
primers used are listed in Table 2. The PCR products
were purified using Exo-SAP-IT (Amersham Biosci-
ences, Little Chalfont, Buckinghamshire, UK). Sequen-
cing was performed using a BigDye™ Terminator Cycle
Sequencing Ready Reaction Kit (Applied Biosystems,
Foster City, CA, USA) and electrophoresed using an
ABI 3130xl sequencer (Applied Biosystems, Carlsbad,
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CA, USA). The obtained CO1, 16S and H3 sequences
have been deposited in the DDBJ/EMBL/GenBank data-
base (Additional file 1).

Phylogenetic analyses
There was no gap in the alignment of CO1 and H3
except for a 15-bp insertion (this region was removed)

Fig. 1 Map of the sample-collection sites. Colours and bars indicate areas where the samples were collected. A paleogeographic map in the
lower left box shows geological history of the Japanese archipelago [32]. A sea passage between the continent and archipelago appeared in the
southern part of the Japan Sea at 1.7 Ma, and the land bodies of the Japanese archipelago was separated completely from the continent

Saito et al. BMC Evolutionary Biology          (2018) 18:164 Page 3 of 13



and a 9-bp deletion of a few planorbid species in the
CO1 sequences. These sequences were aligned with
MUSCLE v3.8 [78]. To eliminate uncertainty of the 16S
alignment, trimAl 1.2 [79] was used to select regions of
the aligned sequences for analysis (Additional file 2).
The phylogenetic trees were obtained using Bayesian in-
ference (BI), maximum likelihood (ML), and
neighbour-joining (NJ) methods. Prior to the BI and ML
analyses, we used the program Kakusan4–4.0.2011.05.28
[80] to select the appropriate models of sequence evolu-
tion (Table 3). Based on these models, ML analysis was
performed using RaxML [81] and Phylogears2,
v2.2.2012.02.13 [82] software referring to recommended
in the manual. For the ML analyses, we assessed nodal
support by performing bootstrap analyses with 1000 repli-
cations. The BI analysis was performed using MrBayes
v3.1.2 [83], with two simultaneous runs. Each run con-
sisted of four simultaneous chains for eight million gener-
ations and sampling of trees every 100 generations. We
discarded the first 8001 trees as burn-in after examining
convergence and effective sample size (ESS) using Tracer

v. 1.6 [84]; the remaining samples were used to estimate
phylogeny. Then, the topologies of each single-locus tree
(Additional files 3, 4, 5) were examined. There were no
major inconsistencies among the analysed sequences in
supported tree topology of three loci, with the proviso that
the H3 tree had low resolution. Accordingly, phylogenies
using the combined locus were estimated. The same pro-
tocols as in single-locus analysis were used in the
combined-locus analysis. The selected model is also listed
in Table 3. The ML analysis was performed with 1000 rep-
lications of the bootstrap analyses. The two simultaneous
runs in the BI analysis consisted of four simultaneous
chains for 18,000,000 generations and sampling of trees
every 1000 generations. We discarded the first 3101 trees
as burn-in after checking by Tracer v. 1.6, and the
remaining samples were used to estimate phylogeny.

Divergence time estimation and ancestral state
reconstruction
We estimated divergence time and conducted ancestral
state reconstruction simultaneously using BEAST2 v.

Table 1 Summarized information of taxon sampling in this study. In addition to these genera and species, we collected 10 related
genera (at least including 10 species) and outgroups species

Genus Nos. of species in Japan Sampled nos. of species
in this study from Japan

Reference Sampled nos. of species
in this study from Japan

Camptoceras 1 1 Habe (1990) [107] Not sampled

Culmenella 1 1 Habe (1990) [107] Russia

Ferrissia 1 or 2 1 or 2 Saito et al. (2018) [108] Russia, Taiwan, Hong Kong,
Vietnam

Gyraulus Unclear (At least 4) 4 or more (Geographically
covered sampling)

Mori (1938) [109], Habe
(1990) [107]

All 11 countries and regions.

Helicorbis 1 1 Habe (1990) [107] Russia, Mongolia, South Korea,
Taiwan, Hong Kong

Polypylis 1 or 2 1 or 2 Masuda and Uchiyama
(2004) [66]

Russia, South Korea, Taiwan,
Hong Kong, Vietnam

Total: 6 genera
(only native)

Total: at least 9 species
(only native)

Total: 6 genera and at least
9 species

Table 2 Information on primers and PCR conditions used in this study

Primer Direction Sequence5’-3’ PCR condition Reference

CO1

LCO1490 Forward GGTCAACAATCATAAAGATATTGG 94 °C 4 min, (94 °C 30 s, 48 °C 30 s,
72 °C 90 s) × 34, 72 °C 2 min

Folmer et al. [110], PCR condition
was slightly modified.

HCO2198 Reverse TAAACTTCAGGGTGACCAAAAAATCA

16S

16Sar-L Forward CGCCTGTTTATCAAAAACAT 94 °C 4 min, (94 °C 30 s, 40 °C 30 s,
72 °C 60 s) × 34, 72 °C 5 min

Palmubi et al. [111], PCR condition
was slightly modified.

16Sbr-H Reverse CCGGTCTGAACTCAGATCACGT

H3

H3PulF Forward GGAGGCAAGGCCCCACGTAARCA 94 °C 3 min, (94 °C 15 s, 57 °C 30 s,
72 °C 40 s) × 40, 72 °C 1 min

Uit de Weerd and Gittenberger [112].

H3PulR Reverse TTGGCGTGGATGGCGCACARG
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2.4.4 [85] with same dataset with the following settings:
tree prior = Yule process; ngen = 20,000,000; samplefreq
= 1000; clock models = uncorrelated lognormal relaxed
clock. Substitution models of each partition were set as
follows: CO1 = GTR + Γ + I, 16S = GTR + Γ, H3 = GTR
+ Γ. These models were selected using Kakusan4–
4.0.2011.05.28 [80] from available evolutionary models
in BEAST2 v. 2.4.4 [85]. In addition, the CO1 model was
chosen from models in which the molecular clock rate
was considered by Wilke, Schultheiß & Albrecht [86].
This molecular clock rate is an average clock rate among
the lineages of Protostomia. This rate is also very close
to the reliable clock rate obtained by fossil-based calibra-
tion in freshwater molluscus [87]. A molecular clock rate
(uniform prior) ranging from 0.0125–0.0206 (substitu-
tions per site and My) was proposed for the COI gene
for different Protostomia groups referring to the substi-
tution models GTR + Γ + I (see [86]). The geographical
region for the ancestral state reconstruction was deter-
mined as follows: Palearctic = I, Oriental = II, Nearctic =
III, Japanese Archipelago = IV. In our analysis, six
BEAST2 runs were conducted with same settings and
combined using LogCombiner v. 2.4.4 (BEAST package).
Finally, maximum clade credibility files were annotated in
TreeAnnotator v. 2.4.4 (BEAST package; burn-in = 10%)
summarizing the entire posterior distribution and ances-
tral state probability including a total of 108,005 trees after
log and tree files were checked with Tracer v. 1.6 [84].

Estimating lineage diversity at internal nodes
To measure lineage diversity at internal nodes in the
Japanese archipelago, we conducted three steps of ana-
lyses developed by Mahler et al. [88]. In step 1, we esti-
mated the geographical location probabilities of each
node in the tree using a Bayesian ancestral state recon-
struction that we analysed using BEAST2 v. 2.4.4 [85]
(see Section “Divergence time estimation and ancestral
state reconstruction”). In step 2, we summed the loca-
tion probabilities estimated for each region at all earlier
nodes, obtaining lineage richness estimates for each re-
gion at each time. In step 3, we calculated the product

by element of the vector of regional lineage richness at
the focal time (from step 2) and the vector of location
probabilities from the focal node (from step 1) to obtain
the lineage diversity at the focal node. This final sum is
the weighted mean of the estimated lineage diversities at
each region at each time of our focal node. In addition,
to clarify the mechanism of lineage diversification in the
Japanese archipelago, we identified branches that oc-
curred within the Japanese archipelago. We did not
process nodes with location probabilities less than 0.70.

Results
Phylogenetic relationships
For the molecular phylogenetic analyses, the ESS values
visualized in Tracer v. 1.6 were higher than 200. The in-
ferred Bayesian phylogenetic relationships are shown in
Fig. 2. All three estimated trees (BI, ML, and NJ) re-
sulted in nearly identical topologies. The planorbid spe-
cies from the Japanese archipelago included nine major
clades, which we refer to as “A” to “I.” The monophyly
of the nine clades was almost fully supported by all three
methods. Seven of those nine clades consisted of Japa-
nese samples and Eurasian samples, and the remaining
two clades (C and I) consisted only of samples from the
Japanese archipelago.
Clades A and B were composed of only Gyraulus spp.

and these two clades were sister groups. The samples in
clade A were collected from Palearctic, Oriental, and the
Japanese archipelago. Although there were some supported
monophyletic subclades, which tend to be united with sam-
ples in nearby regions, the phylogenetic relationships of
inner clade A were not sufficiently resolved because many
branches had low support values. The samples in clade B
were collected from Palearctic regions and the Japanese ar-
chipelago. Clade B was subdivided into two subclades. One
subclade was composed of mainly Palearctic samples (with
the exception of one sample from the Japanese archipel-
ago), and it was strongly supported. Another subclade con-
sisted of both samples from the Japanese archipelago and
the Palearctic region, but it was not sufficiently supported
by BI (Bayesian posterior probabilities (BI) = 0.85). Clade C

Table 3 Information of models of sequence evolution for maximum likelihood and Bayesian analysis

Alignment Model of sequencing evolution: BI Model of sequencing evolution: ML

For single tree

CO1 (Codon Position 1/2/3) GTR + Γ/ F81 + Γ/ GTR + Γ GTR + Γ / GTR + Γ / GTR + Γ

16S GTR + Γ GTR + Γ

H3 (Codon Position 1/2/3) SYM + Γ/SYM + Γ/SYM + Γ GTR + Γ / GTR + Γ/ GTR + Γ

For combined tree

CO1 (Codon Position 1/2/3) GTR + Γ/ F81 + Γ/ GTR + Γ GTR + Γ / GTR + Γ/ GTR + Γ

16S GTR + Γ GTR + Γ

H3 (Codon Position 1/2/3) SYM + Γ + I/SYM + Γ/SYM + Γ GTR + Γ/ GTR + Γ/ GTR + Γ
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included only G. “pulcher” from the Japanese archipelago.
This clade was a sister to the supported clade of European
Anisus and Bathyomphalus, but it not sufficiently sup-
ported and its sister group was unclear. Clade D consisted
of monophyletic G. soritai from the Japanese archipelago

and Vitreoplanorbis hyaliniiformis from Palearctic. This
clade was a sister to the monophyletic Planorbis planorbis.
This monophyly was supported by the BI and ML methods
(BI = 1.00, ML bootstrap value (BV) = 75). Clade E was
composed of Helicorbis spp. from the Japanese archipelago

Fig. 2 The Bayesian phylogenetic tree inferred from a combined dataset of mtDNA and nDNA sequences (CO1, 16S, and H3; 1375 bp). Radix sp.,
Physella acuta, and Acroloxus sp. are the outgroups chosen for the tree root. Each number and colour at the terminal branch of the tree indicates
the sample number, species name and collected region (Fig. 1 and Additional file 1). Numbers at the branch nodes represent BPP, MLBV, and NJ.
On the right side, the vertical bars indicate nominal clades

Saito et al. BMC Evolutionary Biology          (2018) 18:164 Page 6 of 13



and Palearctic and Oriental regions, and clade F was com-
posed of Polypylis spp. from the Japanese archipelago and
Palearctic and Oriental regions. These clades included some
regionally supported subclades. Clade G consisted of Ferris-
sia spp. from the Japanese archipelago and Palearctic and
Oriental regions and F. nipponica from the Japanese archi-
pelago. Continental Ferrissia sp., Japanese F. nipponica, and
Ferrissia sp. from Oriental regions and the Japanese archi-
pelago created a well-supported monophyly. In addition,
Continental Ferrissia sp. and Japanese F. nipponica were
also a monophyly. Clade H consisted of Continental Cul-
menella sp. and Japanese Cu. prashadi, which were a
strongly supported monophyly. Finally, Camptoceras hirasei
was a strongly supported monophyly (clade I), and these
two lineages exhibited a sister relationship.

Divergence time estimation and ancestral state
reconstruction
For the molecular clock analyses, the ESS values visual-
ized in Tracer v. 1.6 were considerably higher than 200.
The inferred Bayesian phylogenetic relationships using
BEAST2 appear in Fig. 3 and Table 4. The tree topology
was nearly consistent with that obtained in the MrBayes
and RaxML analyses (Fig. 2). In particular, the major
nine clades (clades A through I) were enough supported
(BPP > = 0.97) again, and the samples included in these
clades were completely consistent with other phylogeny.
In most cases, divergence first occurred between the

lineages of the Asian continent and those of the Japanese
Archipelago, and then divergence occurred within the
lineages of the Japanese archipelago. The mean diver-
gence times of the lineages of Asian continent and those
of the Japanese Archipelago were early to middle Pleisto-
cene (e.g. nodes 1, 9, 14 and 19). In contrast, divergence
of the lineages within the Japanese Archipelago occurred
after middle Pleistocene (e.g. nodes 8, 13, 18 and 20).
These results of the dominant nodes are listed in Table
4. Other all results are listed in Additional file 6.

Lineage diversity
The estimated lineage diversity in the Japanese archipel-
ago seems to have manifested around 3.0 Ma and diver-
sified after 1.7 Ma (Fig. 4).

Discussion
Our phylogeny clearly showed that planorbid snails in
the Japanese archipelago do not have a single origin be-
cause samples from the Japanese archipelago constitute
several monophyletic groups with continental samples at
the nominal genus or species level. These clades have dif-
ferent biogeographical patterns, and they appear to be
roughly divided into four types: northern clades (Figs. 2
and 3; clades B, D, and H), southern clades (Figs. 2 and 3;
clades E and G), widely distributed clades (Figs. 2 and 3;

clades A and F), and the endemic Japanese archipelago
clades (Figs. 2 and 3; clades C and I). The northern clades
consist of samples from the Japanese archipelago and the
Palearctic. These samples from the Palearctic were col-
lected in the northern part of the region, and these clades
were located mainly in high-latitude areas. In contrast, the
southern clade was composed of samples from the Japa-
nese archipelago and Oriental and South Korea. This
clade also seems to be distributed in mainly low-latitude
areas in eastern Eurasia. On the other hand, widely dis-
tributed clades included samples from a wide range of
eastern Eurasia. In these clades, regional subclades tend to
be formed. Finally, the clades found only in the Japa-
nese archipelago did not have closely related sister
group in our analyses. However, Camptoceras spp. from
the continent were not collected in this research,
although this lineage is clearly distinguished by its shell
morphology [89]. As a result, clade I is not discussed in
this study. On the contrary, our phylogeny indicates
that clade C may be an endemic lineage, although
further investigation is needed.
These biogeographical patterns may be related to the

origins of the planorbid populations in the Japanese ar-
chipelago. Japanese populations included northern
clades and southern clades. The former originated on
the northern Eurasian continent, and the latter origi-
nated on the southern Eurasia continent. The geological
history of the Japanese archipelago supports this hypoth-
esis. The Japanese archipelago was often connected with
the Eurasian continent via a land or ice bridge [22, 32].
The following three conjunctions are known to be major
routes with the continent: the south route via the Ryu-
kyu archipelago, the north route via Sakhalin and the
Kuril archipelago, and another route via the Korean Pen-
insula [22]. The Japanese population in the northern
clade may have been established via immigration from
the northern route, and likewise the Japanese population
in the southern clade may have originated from the
southern route. Furthermore, perhaps the Japanese
population in widely distributed clades may be derived
from the Korean Peninsula route. These biogeographical
patterns have been noted from fossil records or compar-
isons of animal fauna between the Japanese archipelago
and the continent (e.g. [90–94]) and, more recently, mo-
lecular phylogenetic studies of various taxa have pro-
vided certain evidence for this possibility (e.g. [28, 39,
41–43, 95]). We estimated the ancestral regional state at
each branch that splits into Japanese and continental lin-
eages, but our results were not necessarily clear. The an-
cestral regional state at the branches of clades B and E
was estimated to be region I (Palearctic) and IV (the Jap-
anese archipelago) with a relatively high probability
(>.90). In addition, immigration from the Japanese archi-
pelago to the continent was estimated in some branches
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Fig. 3 Maximum clade credibility tree generated by the BEAST2 analysis from the mtDNA and nDNA sequences (CO1, 16S, and H3; 1375 bp). The
outgroups are not shown. On the right side, sample numbers and nominal clades are listed. Colour indicates the region of the collected samples or an
estimation of region according to ancestral state reconstruction. The branches with a low location probability (< 0.70) and a high location probability
(0.90) are shown using a striped pattern and a grid pattern, respectively. Node bars indicate 95% CI of the divergence time, and pink node bars
indicate branches within the Japanese archipelago. The numbers or marks on the left side of each node indicate BPP. The BPP and node bars are only
shown for the relatively supported (BPP > 0.90) nodes. The numbers on the right side of the nodes are the nominal clade number. In the lower part of
the graph is the geologic time scale
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within some major clades. Although these results appear
to fluctuate depending on taxon sampling or regional
classification, immigration from the Japanese archipelago
to the continent may have occurred. Although immigra-
tion from the Japanese archipelago to the continent has
often not been taken into consideration in the past, its
importance has begun to be pointed out in recent years
[28, 96], consistent with our analysis.
We have addressed the question as to when planorbid

fauna in the Japanese archipelago were established. Our
analysis suggests that the divergence time within major
clades except for clade I was around the late Pliocene to
the early Pleistocene. In particular, the estimated mean
divergence time was concentrated between 2.0 and
2.5 Ma. In these clades, it is not easy to decide which
branch emigrated from the continent to the Japanese ar-
chipelago. However, our analysis suggests that the foun-
dation of the Japanese population occurred around 2.0–
2.5 Ma, and this time scale may result from the develop-
ment of the Japanese archipelago. The land bodies that
formed the Japanese archipelago first separated from the
continent 15 Ma [19–23]. During this event, the land
bodies of the Japanese archipelago still partially con-
nected with the Asian continent. A sea passage was de-
veloped in the southern part of the Japan Sea at 1.7 Ma

[29–32], and the land bodies of the Japanese archipelago
was separated completely from the continents (Fig. 1).
This dramatic geological event occurred 1.7 Ma [29–32].
The planorbid fauna present in the Japanese archipelago
today appear to be strongly influenced by the immigra-
tions that occurred before Japan became an “island.”
However, the estimated divergence time of a lot of the
branches between the Japanese archipelago and the con-
tinent (e.g., nodes 6, 11, and 17) post-dates this period.
These biogeographical patterns are likely to have been
formed via immigration through the several connections
from the continent after the Japanese archipelago had
been established in its present-day location. Actually,
since 1.7 Ma the Japanese archipelago has been some-
times connected with the continent [22, 32–34]. In
addition, incidental long-range dispersal of freshwater
snails due to birds, wind, ocean current, and desalination
of the ocean should also be considered. In particular,
dispersal by birds (i.e., snails attached to birds or eaten
by birds) has been shown to be possible experimentally
[97–100]. In fact, our phylogeny also indicated that gene
flow of both regions could occur when the Japanese ar-
chipelago and the continent were temporally connected.
Despite the influence from the continent noted above,

our results suggest that diversification of the Japanese

Table 4 Detailed results of divergence time estimation and ancestral state reconstruction. Significant figure was decided to be three
digits except for BPP. See also Additional file 6

Node No. Divergence Time BPP Estimated regional state at each node Lineage
DiversityMean (95% CI; Lower, Upper) I II III IV

1 2.73 (1.73, 3.92) 1.00 0.259 0.0229 0 0.718 5.84

2 1.47 (0.889, 2.15) 0.98 0.00110 0.00110 0 0.998 13.2

3 1.32 (0.692, 2.06) 1.00 0.970 0 0 0.0302 19.8

4 2.01 (1.13, 2.95) 1.00 0.931 0.000100 0 0.0680 16.5

5 1.25 (0.623, 2.00) 0.99 0.869 0.000300 0.000200 0.130 20.4

6 0.639 (0.200, 1.13) 1.00 0.891 0 0 0.109 32.3

7 1.21 (0.398, 2.23) 0.99 0.0448 0.00680 0 0.949 17.5

8 0.500 (0.195, 0.857) 0.99 0.0186 0.000100 0 0.981 58.0

9 1.06 (0.435, 1.81) 1.00 0.687 0.00100 0 0.312 22.6

10 1.13 (0.561, 1.79) 1.00 0.0160 0.0447 0 0.939 18.6

11 0.431 (0.0971, 0.829) 1.00 0.0471 0.00140 0 0.952 65.9

12 0.647 (0.264, 1.12) 1.00 0.000300 0.931 0 0.0691 9.63

13 0.786 (0.293, 1.37) 1.00 0.0192 0.00130 0 0.980 34.3

14 2.82 (1.60, 4.38) 1.00 0.622 0.00560 0.000100 0.372 9.12

15 1.68 (0.825, 2.76) 0.99 0.0389 0.131 0.000100 0.830 8.50

16 2.52 (1.28, 4.10) 1.00 0.0777 0.167 0.000300 0.755 4.44

17 0.590 (0.0970, 1.28) 1.00 0.00480 0.316 0 0.680 36.3

18 0.319 (0.0443, 0.711) 1.00 0.0113 0.000400 0 0.988 89.7

19 1.53 (0.690, 2.60) 1.00 0.526 0.00570 0 0.468 15.7

20 0.0977 (0.00180, 0.272) 1.00 0.000800 0.000100 0 0.999 121
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planorbid lineages within the islands may be the main
cause of their present-day diversity (Fig. 4). Although the
time in this figure only use the mean estimated divergence
time in BEAST2, our results suggest that differentiation
within the island may have played a key role in lineage di-
versification despite the high passive dispersal ability of
freshwater snails [70] and the frequent connection be-
tween the island and the continent. Such diversification
within the island is caused by various mechanisms [2–4],
but it is difficult to identify the mechanism based on our
results. Nevertheless, some regional clades in our phyl-
ogeny suggest that geographical structure within the Japa-
nese archipelago contributed to the diversification.
The time of the immigration and diversification estimated

based our analyses is clearly more recent than that estimated
by phylogeography of most freshwater fishes in Japan. Most
divergence times within the Japanese archipelago of widely
distributed strictly freshwater fish species are estimated to
precede 1.7 Ma (e.g. [44, 47, 48, 50, 51, 53, 101]). As a con-
sequence, the colonization from the continent occurred
earlier. This difference between freshwater snails and fishes
may be derived from differences in their ability and mode of
dispersal. As noted above, freshwater snails have low active
and high passive dispersal potential [70]. On the other hand,
fish have strong active dispersal potential within well-con-
nected river and wetland systems [102, 103], but have

limited dispersal potential within vicariant water systems
[104–106]. Additional taxon sampling and detailed analyses
of population genetics are required to clarify the diversifica-
tion mechanisms and biogeographic history of planorbids.
However, our study shows that diversification occurred after
the separation of the islands from the continent, an event
that was crucial for creating the diversity of freshwater or-
ganisms in the Japanese archipelago today.

Conclusions
Our results have shown that most of the planorbid line-
ages in the Japanese archipelago have closely related
groups on the continent. In each lineage, different bio-
geographical patterns were detected via phylogenetic
analysis. In addition, the branches between the Japanese
archipelago populations and the continental populations
date back to 1.7 Ma before the Japanese archipelago
formed as an “archipelago.” On the other hand, our ana-
lysis showed that the present diversity of Japanese pla-
norbid lineages is mainly the result of differentiation
within the Japanese archipelago. Although additional
taxon sampling and genetic analysis focused on each
lineage are necessary, our study shows that diversifica-
tion within the islands is more crucial to creating the
present diversity than the diversity that existed when the
islands were not separated from the continent.

Fig. 4 The lineage diversity plot using the method of Mahler [88]. The vertical axis indicates lineage diversity, and the horizontal axis indicates
time. The pie chart shows the ancestral regional state in each node in ancestral state reconstruction analysis (Fig. 3). The colour indicates region.
The circles with pink outline showed nodes that have a high probability Japanese ancestral state. The dotted pink line indicates the time that the
Japanese archipelago formed as an archipelago by the cleavage of the south strait of the Japan Sea (1.7 Ma) [29–32]
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Additional file 3: The Bayesian phylogenetic tree inferred from
mtocondorial CO1. Each number and colour at the terminal branch of
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represent BPP, MLBV, and NJ. On the right side, the vertical bars indicate
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Additional file 4: The Bayesian phylogenetic tree inferred from 16S.
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Additional file 6: Detailed information of divergence time estimation,
ancestral state reconstruction, and lineage diversity estimation. See also
Table 4. (XLSX 56 kb)
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