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Abstract

Background: Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding
sequences. Recent methodological developments have led to models explicitly accounting for the interplay between
mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of
these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may
often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic
changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to
similar conditions.

Results: Here, we introduce a codon-based differential selection model, which aims to detect and quantify the
fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions
experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as
the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a
Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences
from patients with known HLA genetic background. Our differential selection model detects and characterizes
differentially selected coding positions specifically associated with two different HLA alleles.

Conclusion: Our differential selection model is able to identify consistent molecular adaptations as a function of
repeated changes in the environment of the organism. These models can be applied to many other problems,
ranging from viral adaptation to evolution of life-history strategies in plants or animals.
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Background
Statistical models of molecular evolutionary processes
are now widely used to analyze the interplay between
mutation and selection. Often, these models are formu-
lated at the codon level, thus relying on the contrast be-
tween synonymous and non-synonymous substitutions
to leverage out an estimation of the strength of selection
acting at various levels (nucleotide, amino acids, codon
usage) of protein-coding sequences.
The first codon models, proposed independently by

Goldman and Yang [1] and Muse and Gaut [2], relied on a

simple aggregate parameter, ω = dN/dS, to capture the
overall strength of selection, globally over the protein-
coding sequence and over the phylogenetic tree. Subse-
quent elaborations on these original models allowed for
variation in dN/dS among sites [3, 4] or among lineages
[5], or both [6, 7], thus increasing the sensitivity and the
resolution of the detection of selective regimes. However,
all of these models still do not discriminate between alter-
native amino acids. Instead, they essentially put all non-
synonymous substitutions on the same level [8].
In this direction, Halpern and Bruno [9] and also

Thorne et al. [10] have proposed an alternative codon
modelling strategy, allowing for site- and amino acid-
specific selective effects. The model of Halpern and
Bruno also has a clear mechanistic interpretation, being
derived from first principles of population genetics.
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Specifically, the rate of substitution between codons is
seen as the product of the mutation rate and the fix-
ation probability. In turn, the fixation probability is
made explicitly dependent on the selection coefficient
of the mutation under consideration. Selection coeffi-
cients are obtained from an explicit fitness landscape,
in which the fitness of each amino acid is allowed to be
different at each coding site. Technically, the model
therefore invokes, at each coding site, a normalized vec-
tor of 20 amino acid fitness coefficients, collectively re-
ferred to as the site-specific fitness profile. In the
original version of Halpern and Bruno [9], site-specific
amino acid fitness profiles were empirically estimated
based on observed amino acid frequencies. Since then,
a statistically more sophisticated version of this model
was developed in a Bayesian framework by Rodrigue et
al. [8], using a non-parametric approach to integrate
over the uncertainty about site-specific selective fea-
tures (now seen as random-effects across sites), and to
capture the unknown law of amino acid fitness profiles
across sites. The importance of accounting for modula-
tion of selection across sites by introducing site-specific
amino acid fitness profiles was demonstrated by Bayes
factor computation and posterior-predictive tests [8].
Of note, more phenomenological variants of this modeling
approach, also with site-specific amino acid fitness contri-
butions but without the population-genetic justification of
Halpern and Bruno’s paradigm, have been explored [8–11].
This modeling approach, although fairly complex, still

leaves an important aspect of protein evolution aside, by
assuming that the fitness landscape is constant through
time. Yet, many ecological situations clearly suggest that
fitness landscapes undergo important fluctuations through
time [12]. Two alternative approaches are possible, to
relax this specific assumption. First, fluctuations of the fit-
ness landscape could be modelled as a purely latent effect
(e.g., Markov-modulated models) [13], thus without rely-
ing on any extra information about the environmental or
ecological drivers of the fluctuations. Secondly, in some
situations, empirical knowledge is available, in terms of
varying conditions across sampled genetic sequences. In
this context, it is, in principle, possible to explicitly model
condition-specific amino acid fitness modulations. The
present work is an attempt at modeling such effects.
A clear-cut example where robust empirical know-

ledge about varying selective environments is available
is the evolution of viral sequences as a function of the
genetic background represented by the hosts. For ex-
ample, the analysis of patterns of selection, using dN/
dS codon models in a phylogenetic maximum likeli-
hood framework, has shown the substantial role of fluc-
tuating selection in the emergence of new mutations
and the ability of HIV-1 to escape from immune system
[14, 15]. HIV-1 is capable of evading the CTL

(Cytotoxic T-Lymphocyte) response because of its rapid
rate of mutation in HLA-restricted epitopes, called es-
cape mutation. Escape mutation gives the virus the abil-
ity to adapt under different selective forces in different
individuals and in response to drugs [16], which makes
the design of a vaccine very difficult.
Therefore, understanding the evolution of HIV-1

within the human body, which is both rapid and under
strong selection, helps designing more effective vaccines
against HIV-1 and control its evolution. On the other
hand, the high rate of mutation of HIV-1 enables the
virus to produce genetically diverse population in each
host, called quasi-species [17], which makes it possible
for the virus to adapt to its host even within a single
round of infection. In this direction, the correlation be-
tween HLA alleles and HIV polymorphisms has been
paid a lot of attention in recent years, from population-
based studies [18–20] to studies taking phylogeny into
account [21, 22]. A method, called the Phylogeny De-
pendency Network, was introduced to analyze HLA-
mediated escape in HIV-1 [23]. This method accounts
for the phylogeny, the correlation between coding sites
and linkage disequilibrium between HLA alleles. On the
other hand, it only takes the information of the tips of
the phylogenetic tree into account. More fundamentally,
it does not rely on an explicit model of the underlying
molecular evolutionary processes. Another phylogenetic
model has been used by Tamuri et al. [24] to identify
host dependent selective constraints for viruses. These
authors specified different host-dependent substitution
rates along the phylogenetic tree, and used a maximum
likelihood approach, combined with a likelihood-ratio
test, to identify positions under differential selection be-
tween hosts. This method, first formulated directly at
the amino acid level, was then generalized to account for
the coding structure [25, 26].
Here, we introduce a codon model able to capture site-

and condition-specific amino acid fitness effects. In this
differential selection (DS) model, which is implemented in
a Bayesian inference framework, a site and branch hetero-
geneous selection factor is invoked to estimate the subs-
titution rate at the codon level of aligned HIV-1 sequence.
As the population-genetics of viral populations is complex
and difficult to model quantitatively, we explored two
alternative strategies for deriving the codon substitution
process, either using a phenomenological approach, or
using a mechanistic derivation as in Halpern and Bruno.
Our DS model was then used to investigate how the
fluctuating environment provided by the diversity of hu-
man HLA background affects HIV-1 sequence evolution.
We illustrate how our approach finds consistent patterns
of viral adaptation, in terms of how selection acts at spe-
cific positions, modulating amino acid preference as a
function of the HLA background.
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Methods
HIV-1 data
A dataset of 333 Gag sequences (443 codons) of HIV-1
subtype B from 41 HIV-infected individuals with
known HLA types was obtained from the Los Alamos
National Laboratory (LANL) HIV database (www.hiv.
lanl.gov). Each patient is represented by 8 sequences on
average. Information about the HLA types of the pa-
tients was also downloaded. About 35% of the se-
quences are from HLA B57+ patients (the dataset is
available in Additional file 1: Table S1). Recombinant
sequences were excluded from the study by choosing
an internal option in the LANL HIV databases to re-
move all known CRFs (Circulating Recombinant
Forms). The amino acid alignment of the sequences
provided by the source was downloaded, manually cor-
rected (misplaced amino acids were relocated and misa-
ligned regions were deleted) and used for back aligning
the DNA sequences at the codon level.

Phylogenetic tree estimation
Primarily for computational reasons, the method intro-
duced here assumes a fixed tree topology. However,
owing to the relatively short length of the coding se-
quences, the tree topology may not be known with high
confidence. In addition, there is the question of whether
the sequences corresponding to a given patient should
form a monophyletic group. This may not always be the
case, in particular because of tree reconstruction errors,
a problem which can be alleviated simply by constrain-
ing the monophyly of each patient during the tree recon-
struction. However, non-monophyly could also be real,
being caused by complicated multiple infection patterns
between individuals. In this case, constraining the mono-
phyly might result in mis-specification of the recon-
structed tree topology.
To check the robustness of our method to these po-

tential sources of error, we tested alternative methods
for reconstructing the phylogenetic tree and conducted
independent analyses under these alternative tree top-
ologies. Specifically, a first tree topology (T1) was ob-
tained directly from the LANL website. This tree was
estimated using the neighbor joining algorithm [27]. A
second tree (T2) was reconstructed using MrBayes
(version 3.2.6) [28, 29], under the GTR + Γ substitution
model and constraining the monophyly of the groups
corresponding to sequences belonging to a given pa-
tient. A third tree (T3) was estimated, still using
MrBayes, under the same substitution model, but with-
out imposing any constraint on the tree topology. In
MrBayes, we ran MCMC chain for 1,500,000 cycles
(the average standard deviation of split frequencies
reaches the value less than 0.05, and the Potential Scale
Reduction Factor (PSRF) [30], which should approach

1.0 as the two runs converge, was equal to 1.001 and
1.000 for the two chains).
In the case of tree T1 and T3, we observed 20 and 23

cases of non-monophyletic patients, respectively. In
both cases, we applied a greedy algorithm for excluding
the smallest possible set of sequences such that each
patient is then represented by a monophyletic group of
sequences. This was done using the following recursive
procedure: first, the number of sequences from each
host pending from each node was determined recur-
sively at each node, from the tips toward the root. Dur-
ing this recursive scan, wherever a group pending from
a given node was not monophyletic, the sequences be-
longing to the host with the smallest number of se-
quences pending from that node were flagged. Finally,
in a backward recursive scan of the tree, from root to
tips, the flagged sequences were removed from the
dataset. Application of this method leads to the elimin-
ation of 20 and 23 out of 333 sequences in the cases of
tree T1 and T3. Altogether, T1, T2 and T3 have re-
spectively 313, 333 and 310 tips (sequences). The RF
(Robinson-Foulds) distance [31] of these tree topologies
is shown in Table 1. The Newick format of all phylo-
genetic trees, which were used in downstream analyses,
is given in Additional file 2.
Finally, for the three topologies, the branches of the

phylogenetic tree were divided into 4 conditions accord-
ing to the host HLA types (see section Definition of the
amino acid selective effects.)

Model
Notations
We consider a coding sequence of length N (N being the
number of coding positions, or equivalently 3N is num-
ber of nucleotide sites). The number of conditions (e.g.,
HLA types) is defined by K. All the indices used in this
paper conform to the following conventions:

□ Codon positions (sites) i є [1, N]
□ Conditions k є [1, K]
□ Codon states c є [1, 61]
□ Nucleotide states n є [1, 4]
□Amino acid states a є [1, 19]

Table 1 RF (Robinson-Foulds) distances between tree T1, T2
and T3

T1 T2 T3

T1 0 233 220

T2 233 0 7

T3 220 7 0

RF is calculated using [51]
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Model of codon substitution
The rate of evolution by point substitution is the result
of a complex interplay between mutation, selection and
random drift. Drawing inspiration from previous devel-
opments in statistical molecular evolution [1, 2, 8, 9, 11],
we modeled this process at the codon level, as a multi-
plicative combination of mutation rates and selective ef-
fects (the latter implicitly including the contribution
from random drift).
The mutation process is assumed to be homogenous over

time and along the sequence. It is modelled as a Markovian
general time-reversible process, parameterized in terms of
the relative exchange rates (ρ) between nucleotides and the
stationary probability (equilibrium frequency) of the target
nucleotide (π). Thus, the rate of substitution from nucleo-
tide n1 to nucleotide n2 is equal to:

Qn1n2 ¼
1
Z
ρn1n2πn2

Where, Z is the normalization factor:

Z ¼
Xn2
n1

ρn1n2πn2

The set of relative exchangeabilities between nucleo-
tides is constrained to be symmetric:

ρn1n2 ¼ ρn2n1

for all n1,n2 є [1 ,4]
In addition, it is normalized:

Xn2
n1

ρn1n2 ¼ 1

The vector π of equilibrium frequencies is also with
the constraintX

n

πn ¼ 1

The selective forces, on the other hand, are both con-
dition- and position-specific. The modulations across
conditions and positions are mediated exclusively by the
encoded amino acid sequence. Accordingly, for each
position i and each condition k, we introduce an array of
20 non-negative fitness factors Fik ¼ ðFa

ikÞa ∈ ½1; 20�, one
for each amino acid. In the following, these 20-
dimensional vectors will be referred to as amino acid fit-
ness profiles. Thus, we have distinct fitness profiles
across positions, and for a given position, the fitness
profile over the 20 amino acids is further modulated
across conditions. How these fitness profiles are defined
in practice is explained in more detail below (section;
Definition of the amino acid selective effects).

Given a mutation matrix and a set of amino acid fit-
ness profiles, we considered two alternative approaches
for expressing substitution rates between codons as a
function of the fitness of the amino acids. The first is a
phenomenological approach, while the second is more
mechanistic in its inspiration.

Phenomenological model (M1)
The phenomenological model is similar, in its general
form, to the models explored by Rodrigue et al. [8], or,
in a slightly different parameterization, to the models
considered in Robinson et al. [11]. Specifically, consider
a given position i along the sequence, and a given condi-
tion k along the tree. Consider also two codons, c1 and
c2, differing only at one position and with nucleotides n1
and n2 at that position. These two codons encode for
amino acids a1 to a2, respectively. Then, the rate of sub-
stitution between these two codons is given by:

Rik
c1c2 ¼ Qn1n2 �

ffiffiffiffiffiffiffi
Fik
a2

Fik
a1

vuut
Thus, according to this model, the rate of substitution

is proportional to the mutation rate, while being influ-
enced by the selection operating at the amino acid level,
through the fitness factors Fik

a : the substitution rate is
higher (resp. lower) than the neutral substitution rate if
the fitness of the final amino acid is greater (resp.
smaller) than the fitness of the initial amino acid. Note
that, if the two codons are synonymous, i.e. if a1 = a2,
then the substitution rate is simply equal to the muta-
tion rate defined by the nucleotide transition matrix Q.
Finally, the model considers only point substitutions,
and therefore, the substitution rate is assumed to be
equal to zero between codons differing at more than one
nucleotide position. Thus, altogether:

Rik
c1c2 ¼

Qn1n2 Synonymous

Qn1n2 �
ffiffiffiffiffiffiffi
Fik
a2

Fik
a1

vuut Non‐synonymous

0 c1and c2differ at more than one site

8><
>:

This formulation ensures that the average number of
synonymous substitutions per unit length is equal to 1.
Here, the selection factor modulates the rate of non-
synonymous substitution.

Mechanistic model (M2)
The second approach is inspired by a mechanistic argu-
ment based on first principles of population genetics, as
initially suggested by Halpern and Bruno [9]. Consider
again the substitution rate between codon c1 to c2 at site
i and condition k. First, we define a scaled selection
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coefficient (scaled by effective population size Ne), asso-
ciated with codon c2, seen as a mutant in the context of
a population in which the wild-type allele is c1. This
scaled selection coefficient is given by:

Sika1a2 ¼ 1n
Fik
a2

Fik
a1

 !

Then, the rate of substitution between codon c1 and c2
is given by the product of the mutation rate and the rela-
tive fixation probability P (i.e. relative to neutral). This fix-
ation probability is itself dependent on the scaled selection
coefficient. Using the classical diffusion approximation,
this relative fixation probability can be expressed as:

Pfix ¼
Sik

a1a2

1−e−s
ik
a1a2

So that the rate of substitution between codons is
given by

Rik
c1c2 ¼

Qn1n2 Synonymous

Qn1n2 �
Sika1a2

1−e−S
ik
a1a2

Non‐synonymous

0 c1 andc2 differ at more than one site

8><
>:

Again, we see that the rate of substitution is higher
(resp. lower) than the neutral substitution rate if the
non-synonymous mutation leads to an increase (resp. a
decrease) in the fitness of the sequence.

Definition of the amino acid selective effects
In principle, the amino acid fitness profiles associated with
each site and each condition, Fik

a , could be considered as
independent arrays, both across sites and across condi-
tions. However, most of the amino acid conservation (due
to purifying selection) observed along the sequence is in
fact condition-independent. Against this globally invariable
fitness background, the modulations of the fitness land-
scape induced by condition-dependent effects (such as the
HLA type of the host) are likely to be comparatively small.
In this context, considering amino acid selective effects as
totally independent random effects across conditions
would imply that the invariable background would be re-
estimated independently for each condition, potentially
resulting in a loss of statistical power. Therefore, as a more
powerful alternative, we explicitly defined amino acid se-
lection in terms of a log-additive superposition of a global
background and condition-dependent differential selective
effects, as follows. First, a baseline or global fitness profile
is defined for each position. That is, for position i, we de-
fine a 20-dimensional vector Gi

a

� �
, for a є [1, 20]. This vec-

tor is drawn from a uniform Dirichlet distribution
independently at each site. This baseline defines the fitness

landscape under condition 0, which is therefore taken as
our reference condition (black branches in Fig. 1).
Next, selection is modulated across conditions

through the use of condition-specific differential selec-
tion profiles. Thus, for position i in condition k, we de-
fine a 20-dimensional vector Dik

a

� �
, for a є [1, 20].

Unlike the baseline profiles, which are positive (and
sum to 1), those differential selection effects can be
positive or negative. A positive (resp. negative) coeffi-
cient means that the fitness of the corresponding
amino acid is increased (resp. decreased) in the target
condition, compared to the reference condition. The
differential selection profiles are drawn iid from a
Normal distribution of mean 0 and condition-specific
variance σk

2.
Altogether, the condition-specific fitness profiles are

constructed as follows:

Fi0
a ¼ Gi

a

Fi1
a ¼ Gi

ae
Di1

a

Fik
a ¼ Gi

ae
Di1

a þDik
að Þ

k ∈ 2; K½ �

Note that we have used a two-level system for introdu-
cing the differential effects (i.e. a different equation for
k = 1 and k > 1). This is motivated by the fact that we
need to discriminate both among branches that are
between hosts and within the same host, and among
hosts with differing HLA backgrounds. Thus, it reflects
the differential between within-host (Di1) and between-
host (Gi) selection regions, while representing specific
selective features more specifically associated to differing
HLA backgrounds (Dik)kє [2,K]. In the case of HIV-1, we

Fig. 1 Illustrative phylogenetic tree of HIV-1 Gag sequences. Different
colors along the tree show different selection regimes for the
corresponding sequences. Black branches for between-patients,
green for within-patients, red and blue for HLA-B57 and HLA-B35
categories, respectively. All tree topologies are such categorized
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consider 2 focal HLA backgrounds (B57+ and B35+),
against a default B57−/B35- background. Thus, we define
a total of 4 different conditions (K = 4), and the branches
of the tree are partitioned according to 4 different selec-
tion regimes (Fig. 1): first, we distinguished between the
branches connecting the host-specific groups of sequences
(between-patient condition) and the branches within each
host-specific group of sequences (within-patient condi-
tion). Among the latter set of branches, we further distin-
guished among patients according to their HLA-type:
either between HLA-B57+ and HLA-B57- patients, or be-
tween HLA-B35+ and HLA-B35- patients. The HLA-B57
type is known to be associated with the control of viremia
[32, 33] whereas HLA-B35 is known as the HLA related
to the fast progression of the disease [34, 35].
An important point should be emphasized concerning

the statistical formalization of the fitness landscape and of
its modulations across sites and across conditions. Concep-
tually, the arrays of global and condition-specific fitness ef-
fects should be considered, not as parameters, but as
random-effects across sites, which are integrated over a dis-
tribution (respectively, a Dirichlet and a Normal distribu-
tion for the global and differential effects). This integration
is done implicitly, through the MCMC sampling (see
below). As a result, the aim of the model introduced here is
not to achieve accurate and asymptotically consistent point
estimation of site- and condition-specific fitness effects: in
most cases, the information for inferring such fitness effects
will be limited. Instead, it is to draw inference based on the
complete posterior distribution. A more specific objective
is to single out those relatively few cases for which there is
sufficient information to infer, with high posterior probabil-
ity, the presence of a differential selective effect between
two conditions. One important desirable property of this
type of inference is to allow for a reasonably good control
of the fraction of false discoveries among those cases that
are selected based on a high posterior probability of a dif-
ferential effect. This is something which is investigated
through posterior predictive simulations (see below).

Priors
The topology (τ) of the tree is fixed. The parameters of
the model consist of branch lengths, lj (1 < j < 2N-3 where
N is the number of sequences), nucleotide exchangeabil-
ities ρ and nucleotide equilibrium frequencies π. The
priors that we used are as follows: on branch lengths: a
product of independent exponentials of mean λ; the
hyperparameter λ is from an exponential distribution of
mean 0.1; on relative exchangeability rate: a product of ex-
ponentials of mean 1; on mutational equilibrium fre-
quency: a uniform Dirichlet distribution. As mentioned
above, the site-specific fitness profiles (G) and differential
fitness effects (D) are random-effects, integrated over
Dirichlet and normal distributions, respectively.

MCMC
We used Markov chain Mont Carlo (MCMC) to sample
the parameters of the model from their joint posterior
distribution. We used a graphical model environment
previously introduced in [36], heavily relying on data
augmentation and parameter expansions methods, such
as described in particular in [37]. Briefly, a MCMC cycle
consists of an alternation between two steps: first, a
detailed substitution history at each coding site is Gibbs-
sampled, from the posterior distribution conditional on
the current parameter configuration. Second, conditional
on these augmented data, the parameters and the
random-effects across sites are updated through a large
series of Metropolis-Hastings moves, cycling over all pa-
rameters or random variables of the model.
For the nucleotide equilibrium frequencies π and the glo-

bal fitness profiles G, which are under the constraint that
they should sum to 1, we used constrained move as ex-
plained in [36]. Branch lengths l and exchangeabilities ρ,
which are positive real numbers, were updated using multi-
plicative moves [36]. Convergence of several key parame-
ters and key sufficient statistics was monitored first by
plotting their summary statistics as a function of number of
iterations (points) for two independent runs; and second by
using the tracecomp program (from the Phylobayes suite
[38]) to compare the samples obtained under independent
runs. Tracecomp gives an estimate of the discrepancy be-
tween the two runs, as well as the effective sample size, for
several key parameters and statistics of interest. In the
present case, the minimum effective size was greater than
300 and the discrepancy less than 0.2 for most statistics.
After exclusion of the burn-in, posterior estimates were es-
timated by averaging over the remaining of the MCMC
chain (approximately 1500 points for the empirical ana-
lyses, 1000 points for the simulations). As an additional
control of the reproducibility of the MCMC analysis, we
also checked that the posterior mean differential selection
factors for all amino acids at all sites, as well as the associ-
ated posterior probabilities of a positive effect, were consist-
ent between two independent runs (posterior probability
correlation coefficient R2 > 83% in all cases, see Additional
file 3: Figure S1 and Additional file 4: Figure S2).

Simulations
Simulations were conducted using a modified version
of the posterior predictive formalism [39, 40]. In all
cases, parameter configurations were drawn from the
posterior distribution under the 4-condition model
fitted on the HIV dataset. Then, in a first series of
simulations, the differential selection effects across
differential conditions were set to 0, while the global se-
lection profiles were left unchanged, thus giving empir-
ically calibrated simulation replicates under the null
hypothesis of no differential effect across conditions.
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These simulations were conducted to estimate the rate
of false positives.
In a second series of simulations, we implemented a

sparse distribution of differential selection effects across
sites, with various fractions (f = 0.5, 0.1 and 0.05) of sites
with non-zero effects. Sites with non-zero effects were
chosen uniformly at random, independently for condi-
tions 2 (HLA B57+) and 3 (HLA B35+), and were
endowed with differential condition effects independ-
ently drawn from a reflected gamma distribution of
mean 1 and shape parameter 2. This second series of
simulations was conducted to evaluate the precision and
sensitivity of the method. In both cases, the phenomeno-
logical (M1) and the mechanistic (M2) models were in-
vestigated, and simulations were conducted based on 10
parameter configurations sampled from the posterior
distribution (10 points regularly spaced from the MCMC
run), yielding a total of 10 replicates per condition.
For all simulations, the full model (with K = 4 condi-

tions) was then applied to these simulated data. For a
given pair of condition (e.g., HLAB57+ versus HLAB57-
), and for several α levels, the number of positions in-
ferred to be under differential selection with posterior
probability greater than 1-α was determined. In the con-
text of the first series of simulations (no differential se-
lection simulated), dividing this number by the total
number of positions times the number of amino acids
gives the rate of false positives, which was tabulated for
several values of α. For the second series of simulations
(with differential selection simulated), the discoveries
made at a given threshold were compared with the true
differential selection values, and the precision (fraction
of true discoveries over all discoveries) and the sensitiv-
ity (fraction of true discoveries over all differentially se-
lected sites) were determined as a function of the
significance threshold. A discovery is deemed true if the
true differential selection effect is non-zero and of the
same sign as the inferred differential selection effect.

Results
Simulation analyses
The properties of the model were first investigated
through simulations. Since the main application of the
model introduced here is to identify positions for which
specific amino acids are under differential condition-
dependent selection pressure, the simulation analyses
were more specifically designed to evaluate the rate of
false positives of the method, as well as its precision and
sensitivity. In order to ensure that the conclusions of the
simulations are relevant to the empirical situations con-
sidered here, simulations were calibrated against param-
eter estimates obtained from the empirical analyses on
the HIV dataset. This was done using a modified version
of the posterior predictive formalism [39, 40].

A first series of 10 replicates were produced under the
null model assuming no differential selection effect across
conditions — thus, considering a constant fitness land-
scape over the whole phylogenetic tree. The model with
K = 4 conditions was then applied to these simulated data.
For a given pair of condition (e.g., HLAB57+ versus
HLAB57-), and for different α levels, the number of posi-
tions inferred to be under differential selection with pos-
terior probability greater than 1-α was determined, giving
us an estimate of the false positive rate as a function of
the stringency of the selection. As can be seen from Table
2, for reasonable posterior probability thresholds, the rate

Table 2 False Positive Rates (FPR) for different conditions and
posterior probability thresholds under model M1 and M2

M1 M2

Threshold Mean number of FP FPR Mean number of FP FPR

Condition 1 (within-patients)

>0.55 1843.7 20.8 1845.8 20.8

>0.60 1112.7 12.6 1166.8 13.2

>0.65 684.9 7.7 737.8 8.3

>0.70 316.9 3.6 334.5 3.8

>0.75 173.1 2.0 181.8 2.1

>0.80 81.8 0.9 86.5 1.0

>0.85 26.0 0.3 31.7 0.4

>0.90 7.1 0.1 4.6 0.1

>0.95 0.75 0.01 0.1 0.0

Condition 2 (HLA-B57+)

>0.55 1004.1 11.3 957 10.8

>0.60 456.3 5.15 471 5.3

>0.65 229 2.58 237.1 2.7

>0.70 88.9 1 78.7 0.9

>0.75 31.3 0.3 27.3 0.3

>0.80 12.9 0.15 8.4 0.1

>0.85 3.8 0.04 1.6 0.02

>0.90 0.4 0 0.05 0

>0.95 0 0 0 0

Condition 3 (HLA-B35+)

>0.55 1245.1 14 1226.5 13.8

>0.60 632.4 7.1 683 7.7

>0.65 345.6 3.9 385.3 4.3

>0.70 141.4 1.6 148.1 1.7

>0.75 58.6 0.7 64.4 0.73

>0.80 25.3 0.3 23.1 0.3

>0.85 7.7 0.1 6.5 0.07

>0.90 1.2 0.01 0.9 0.01

>0.95 0 0 0 0
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of false positive is low, on average, reaching 5% for 1-
α = 0.65, and lower than 1% for 1-α > 0.8.
This simulation experiment illustrates a point about

the Bayesian approach used here: using Normal distribu-
tion centered on 0 enforces shrinkage of the differential
fitness effects across positions towards 0 (i.e. the model
is centered on the null hypothesis representing an ab-
sence of selective difference between conditions). One
important consequence of this choice is that, in the ab-
sence of a sufficiently strong empirical signal able to
counteract this prior, the method will typically not infer
high posterior probability support for differential select-
ive effects. Note that these simulations, which have been
calibrated against the empirical dataset of interest, can
also be used to obtain a rough estimate of the fraction of
false discoveries, by comparing, for a given threshold,
the total number of discoveries (d) on the real dataset
with the mean number of false positives (d0) under the
simulations. An estimate of the fraction of false discover-
ies is then given by d0/d (see below).
A second series of simulations was conducted, assum-

ing the presence of modulations of the fitness landscape
across conditions, with various fractions of sites under
non-zero differential selection effects. For a given pair of
condition (e.g., HLAB57+ versus HLAB57-), and for a
given α level, the set of discoveries at level α (i.e. the set
of all positions/amino acid pairs such that the posterior
probability of a differential selection effect between the
two conditions is greater than 1-α) was determined. A
discovery was then deemed to be false if the true select-
ive effect for that amino acid at that position is either 0
or of the opposite direction. The precision and sensitivity
were tabulated as a function of 1-α (Tables 3 and 4, for
condition 2 and 3, respectively).
As we see in Tables 3 and 4, for a given posterior

probability threshold, the precision decreases when the

proportion of differentially selected sites (f ) decreases.
This reflects the fact that the number of true positives is
directly proportional to the proportion of sites with
differential selection effects, while the number of false
positives remains stable. Overall, the power of the
method is relatively low. Under a precision of 0.9 (10%
of false discoveries), the sensitivity (or recall) is between
1 and 0.1%, depending on the model and the exact simu-
lation condition (i.e. less than 1% of the differentially
selected positions are detected).

Analyses of HIV empirical data
We applied our DS model to a dataset of HIV coding
sequences (encoding the Gag protein) obtained from 41
patients. We used this dataset for two reasons. First, it
contains multiple sequences for each patient, thus pro-
viding empirical information about within-host evolution
of viral genetic sequences. Second, the HLA type of the
patients is known, and therefore, it is possible to correl-
ate the amino acid patterns observed in viral sequences
with the HLA type of the host.
Accordingly, in this study, we partitioned the phylo-

genetic tree relating the viral sequences into different
categories. A global reference selection profile was esti-
mated by our method. This reference fitness landscapes,
which captures the baseline site-specific amino acid
preferences in the form of site-specific vectors of 20 fit-
ness factors (one for each amino acid), can be visualized
using a graphical logo representation [41] and compared
with the reference HIV-1 sequence (HXB2, the first 60
coding positions are shown in Fig. 2). The selection
profile inferred with our method is highly similar to the
reference sequence (the fittest amino acid corresponds
to the amino acid of the reference sequence at 86% of
the coding positions). In some cases, compared to the
reference sequence, the fitness profile suggests a distinct

Table 3 Precision (prec) and sensitivity (sens) as a function of the proportion of differentially selected sites (f) in condition 2, under
model M1 and M2

Threshold M1 M2

f = 0.5 f = 0.1 f = 0.05 f = 0.5 f = 0.1 f = 0.05

Prec Sens Prec Sens Prec Sens Prec Sens Prec Sens Prec Sens

>0.50 26.7 53.5 4.7 47.0 2.8 56.4 2.5 49.7 5.3 53.0 25.5 51.1

>0.55 39.1 9.0 7.7 7.6 4.7 9.3 4.0 8.4 8.3 8.4 37.5 8.5

>0.60 47.0 6.1 10.0 4.9 6.3 6.0 5.6 5.4 10.9 5.3 45.2 5.2

>0.65 55.2 4.3 14.1 3.5 9.0 4.4 8.2 3.8 14.3 3.4 52.8 3.4

>0.70 67.0 2.9 21.9 2.4 15.8 3.2 12.1 2.1 21.3 1.8 63.8 1.9

>0.75 78.7 2.0 34.4 1.8 25.7 2.5 23.3 1.4 33.0 1.1 78.2 1.1

>0.80 84.1 1.5 50.8 1.4 35.2 1.8 33.0 0.7 44.8 0.6 86.5 0.7

>0.85 91.2 1.1 66.2 1.0 49.0 1.2 41.4 0.3 73.7 0.3 92.7 0.3

>0.90 93.5 0.8 81.7 0.7 68.3 0.6 33.3 0.1 90.9 0.1 100 0.1

>0.95 96.0 0.4 93.3 0.3 86.7 0.3 0.0 0.0 100 0.01 100 0.03
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but biochemically similar dominant amino acid (e.g.,
position 15, K instead of R), or several equally fit amino
acids at one position (e.g., position 30, K and R). This
corresponds to the actual sequence variation observed in
our empirical alignment. Altogether, this global reference
selection profile illustrates that HIV evolution occurs on
a background characterized by strong purifying selec-
tion, allowing for a very limited set of amino acid
sequences for the viral protein.
Against this background fitness landscape, our model

then estimates differential selection profiles between
each pair of conditions: first, between within-host and
between-host (Figs. 3-b and 4-b), and second, among
within-host sequences, between HLA-B57- and HLA-
B57+ sequences (Fig. 3-c), or between HLA-B35- and
HLA-B35+ sequences (Fig. 4-c). The logos represented
on Figs. 3 and 4 indicate whether the fitness of any
particular amino acid is inferred to be increased (above
the line) or decreased (below the line) with posterior
probability >0.80, at a given position, between the two
conditions being compared. These figures only give
point estimates for the differential effects. In practice,
the posterior probability support associated to these

estimates is most often low, at about 0.5 (Fig. 5), except
for a small subset of positions for which stronger
evidence for a differential selection effect is inferred by
the model. These more clear-cut cases represent our
findings, which are given in Table 5 for the two model
settings. In the following, we report the findings for two
thresholds, at 0.80 and 0.90. We will refer to the corre-
sponding discoveries as weakly and strongly supported
findings, respectively.
By far, we observe in Table 5 that the largest number

of differentially selected amino acid variants is found
when comparing the within- and between-patient condi-
tions, with more than 280 findings under both models.
On the other hand, the corresponding profiles suggest
that this is mostly due to a global difference intact the
intensity of selection (or a global difference in statistical
power), rather than to specific selective differences be-
tween the two conditions (see Discussion).
The differences between alternative HLA backgrounds,

on the contrary, seem to be more specific. Comparing
the number of findings reported in Table 5 under condi-
tions 2 and 3 with the mean number of false positives in
simulation experiments under the null model with no

Table 4 Precision (prec) and sensitivity (sens) as a function of the proportion of differentially selected sites (f) in condition 3, under
model M1 and M2

Threshold M1 M2

f = 0.5 f = 0.1 f = 0.05 f = 0.5 f = 0.1 f = 0.05

Prec Sens Prec Sens Prec Sens Prec Sens Prec Sens Prec Sens

>0.50 26.6 53.2 5.2 51.6 2.5 49.8 2.7 54.3 5.1 51.0 26.1 52.2

>0.55 40.2 12.0 8.3 10.7 4.0 10.2 4.4 11.7 8.3 10.8 37.2 10.9

>0.60 47.2 8.3 10.7 7.6 5.5 7.4 5.7 7.9 10.5 7.6 44.1 7.4

>0.65 54.1 6.2 13.6 5.5 7.5 5.6 6.7 5.1 13.5 5.4 49.5 5.0

>0.70 64.7 3.9 21.4 3.7 11.9 3.6 9.9 2.9 21.4 3.3 60.2 2.9

>0.75 75.6 3.0 32.1 2.9 18.1 2.6 14.3 1.8 34.4 2.5 70.7 1.9

>0.80 83.5 2.4 44.4 2.3 27.5 2.1 22.7 1.2 50.3 1.8 80.8 1.2

>0.85 90.7 1.8 61.6 1.8 46.4 1.8 38.2 0.8 67.1 1.1 88.7 0.7

>0.90 93.7 1.4 77.3 1.3 64.1 1.3 66.7 0.4 79.4 0.6 97.1 0.4

>0.95 96.8 1.0 89.2 0.8 89.1 0.9 100 0.1 100 0.2 98.3 0.1

Fig. 2 Comparison of global selection profile estimated by DS model (bottom) with HIV reference sequence HXB2 (top). The first 60 amino acids
are shown. The reference logo was made using Weblogo [52]
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differential selection and for the same threshold (Table
2) gives a rough estimate of the fraction of false discov-
eries. Thus, for a threshold of 0.9, the fraction of false
discoveries is approximately 20% in condition 1 and 9%
in condition 3 under model M1, whereas model M2
does not seem to lead to a significant enrichment com-
pared to the expected number of false positives. There-
fore, in the following, we consider only model M1.
The findings under model M1 are listed in more de-

tails (position, amino acid, lower and upper 95% credible
intervals and posterior probability support) in Tables 6
and 7 for B57+ and B35+ conditions, respectively. For
each finding, the direction of the effect (whether the fit-
ness is increased or decreased between the two conditions
being tested) is indicated, together with the posterior
probability that the effect is >0 or <0 (depending on the
direction of the effect). Among our findings, there are
some known mutations identified in association with

specific HLAs. Two important HIV-1 escape mutations
defined in B57+ patients are T242 N and A163X in epi-
topes TW10 [42, 43] and KF11 [44, 45], respectively. X at
position 163 is mostly P and N. The logos of the corre-
sponding regions are shown in Fig. 3. The selection factors
estimated at these positions are in agreement with these
previously known escape mutations.
Intriguingly, the T/N escape variant at position 242

(TW10 epitope) is not recovered by the mechanistic
model (M2), suggesting that the phenomenological
model is more adequate to predict differential selection
patterns. This confirms our simulation studies, proving
that the phenomenological model has a greater detection
power. Also of interest, our method does not infer that
T is preferred in a B57- environment, whereas N is fa-
vored in a B57+ background. Instead, it suggests that
both amino acids are acceptable in a B57- environment,
but that N becomes the only one favored in B57+

Fig. 3 Global and differential selection profiles (for HLA-B57). (a) Global selection profile (G). (b) Differential selection profile contrasting between-
and within-patient selection. (c) Differential selection profile for HLA-B57+ versus HLA-B57-. The posterior probability (pp) of an increased fitness
for N and a decreased fitness for T at position 242 (TW10 epitope), in HLA-B57+ compared to HLA-B57-, is 0.93 and 0.87, respectively. At position
163 (KF11 epitope), the fitness of N is increased with a pp. of 0.77. The logos are filtered for pp. below 0.05. Heights are proportional to posterior
mean differential selective effects
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patients. A similar pattern is observed for the A163X
escape mutation, with posterior probability = 0.77. One
known mutation for B35+ individuals is E260D in NY10
epitope [46]. Our method detects this mutation to be
under condition-specific selection with posterior prob-
ability of 0.81 (Fig. 4).

Robustness to the choice of the tree topology
The method relies on a fixed tree topology. However, in
practice, the tree is reconstructed with errors. To test the
robustness of the inference, we conducted the analysis
under three alternative tree topologies, under the M1
model). We refer to these trees as tree T1, T2 and T3 (see
methods). The set of differentially selected positions were
found to be very similar for all trees (Table 8), suggesting

that the exact details of the tree topology are not so im-
portant in the present context.
By comparing the number of positions declared signifi-

cant for each threshold (shown in Table 8), we see that
for B57+ condition, the number of findings is very close
in different tree topologies (15, 12 and 18 under poster-
ior probability >0.80, and 2, 2 and 3 under posterior
probability >0.90). We also summarized the common
positions between the three topologies as a Venn dia-
gram in Fig. 6. There is only one position in T1 which is
not recovered by T2 or T3. The majority of positions
(10) were found by all trees. None of the discrepancies
between analyses under differing topologies belong to
the positions previously known to correspond to viral es-
cape mutants. Altogether, the relatively small number of
sequences that had to be removed, combined with the
relative robustness of our result to the choice of the tree
topologies despite their distances (specially between tree
T1 and tree T2 and T3, see Table 1), suggests that the
problems of multiple infection patterns, or tree recon-
struction errors, have a globally marginal impact on our
analysis.

Fig. 4 Global (a) and differential selection profiles, contrasting within
and between patients (b) and HLA-B35+ versus HLA-B35- (c). In c,
the posterior probability (pp) of fitness shift from D to E at position
260 is 0.81. The logos are filtered for pp. less than 0.05. Heights are
proportional to posterior mean differential selective effects

Fig. 5 Posterior probability frequency plots of differential selection
effects across all amino acid-positions; phenomenological (M1) vs
mechanistic (M2). Posterior probability of the majority of amino acid-
position lies between 0.5–0.6

Table 5 Number of differentially selected amino acid-positions
with posterior probability >0.80 and >0.90, in different conditions
under model M1 and M2

Threshold Model Within-patient B57+ patients B35+ patients

>0.80 M1 281 15 48

>0.80 M2 286 5 30

>0.90 M1 54 2 13

>0.90 M2 56 0 1
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Discussion
Here, we have introduced a hierarchical Bayesian method
for detecting adaptive patterns in protein-coding se-
quences as a function of known selective backgrounds.
Compared with previously introduced methods [23, 24],
our approach has several additional features. The ap-
proach of Carlson et al. [23], relying on a Bayesian net-
work representation, is formulated at the codon level. In
addition, it can accommodate epistatic effects (see intro-
duction). Nevertheless, it is focused on the terminal
branches of the phylogeny and therefore ignores poten-
tially relevant empirical information from the deeper parts
of the phylogenetic tree. The approach of Tamuri et al.
[24–26], in contrast, fully integrates the empirical signal
over the entire tree, and is thus much more similar, in
spirit, to the present method. The main difference is in
the statistical framework used to deal with site-specific ef-
fects (empirical Bayes versus maximum-likelihood estima-
tion). The fact that our method integrates the empirical
signal about more ancient codon substitutions opens in-
teresting possibilities, in particular, for comparing short-
term (within-host) and long-term (between-host) adaptive
patterns. As it stands, however, the selection profiles ob-
tained for between- and within-host are not yet so assur-
ing: the within-host differential selection profiles obtained
through our method (Figs. 3-b and 4-b) seem to partially
reproduce the condition-independent amino acid fitness
profiles (Figs. 3-a and 4-a). The reasons for such a redun-
dant output are not totally clear. Deleterious mutations
segregating within-host, but purified away in the long-

term (and therefore absent from the deeper branches of
the phylogeny connecting host-specific clusters) are an
important difference between within- and between-host
conditions. However, such segregating polymorphisms
would be expected to result in an opposite pattern, leading
to artefactual high selection coefficients in the within-host
condition for unfit amino acids that are not observed in
the between-host selection profiles. One alternative ex-
planation for the observed redundancy would be that the
law of condition-independent selection profiles across
sites is not correctly captured by a Dirichlet distribution.
Possibly for that reason, the remaining part of the
condition-independent selective effects may be captured
by the differential selection profile of the within-host con-
dition. Ultimately, more sophisticated hierarchical Bayes-
ian settings could be used, such as non-parametric priors
[8]. The combination of condition- and site-specific effects
is computationally challenging, and further algorithmic
work is therefore needed in this direction to fully accom-
modate arbitrary distributions of random-effects across
positions and conditions.
The distribution of differential selective effects across

sites and conditions may also need additional statistical
and computational developments in the long term. Here,
we have used Normal distributions centered on 0 to
model differential selective effects. Doing this leads to
efficient soft shrinkage toward 0. However, this approach
does not implement sparsity. All amino acids, at all posi-
tions and under all conditions, have non-zero differential
selective effects with a posterior probability of one.

Table 6 List of differentially selected amino acids for B57+ hosts with posterior probability > 0.80

Position Amino acid Posterior probability Median Lower Upper Fitness

242 N 0.93 1.36 -0.37 3.07 Increased

248 G 0.91 -1.20 -2.82 0.45 Decreased

30 Q 0.89 1.09 -0.69 2.92 Increased

242 T 0.87 -0.95 -2.55 0.78 Decreased

30 K 0.87 -0.96 -2.49 0.69 Decreased

357 A 0.86 0.94 -0.73 2.86 Increased

15 R 0.86 0.72 -1.01 2.41 Increased

118 A 0.85 -0.93 -2.69 0.79 Decreased

239 S 0.85 1.02 -0.95 2.64 Increased

137 L 0.82 -0.86 -2.55 0.93 Decreased

326 S 0.81 0.79 -1.28 2.46 Increased

357 G 0.81 -0.78 -2.55 0.97 Decreased

280 T 0.80 0.83 -0.79 2.43 Increased

12 E 0.80 0.71 -0.96 2.43 Increased

248 E 0.80 0.66 -0.97 2.42 Increased

223 I 0.80 -0.70 -2.28 1.02 Decreased

The amino acid-positions are sorted according to the posterior probability score. Median, lower and upper 95% credible intervals and the direction of the effect
on fitness (increased or decrease) are indicated
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Table 7 List of differentially selected amino acids for B35+ hosts with posterior probability >0.80

Position Amino acid Posterior probability Median Lower Upper Fitness

46 L 0.97 1.69 -0.05 3.44 Increased

34 L 0.96 1.52 -0.31 3.19 Increased

252 H 0.96 1.59 -0.18 3.28 Increased

111 S 0.93 -1.15 -2.72 0.49 Decreased

127 Q 0.93 -1.11 -2.74 0.48 Decreased

376 V 0.93 1.16 -0.49 2.68 Increased

312 D 0.92 1.23 -0.55 3.06 Increased

137 M 0.92 1.26 -0.47 3.22 Increased

252 N 0.92 -1.05 -2.60 0.48 Decreased

30 K 0.92 -1.05 -2.44 0.52 Decreased

248 A 0.91 1.25 -0.41 3.07 Increased

310 T 0.91 1.25 -0.54 2.97 Increased

441 H 0.89 0.95 -0.43 2.46 Increased

46 V 0.89 -1.06 -2.74 0.52 Decreased

67 A 0.89 1.09 -0.66 2.82 Increased

111 C 0.88 1.08 -0.75 2.76 Increased

375 V 0.88 -0.85 -2.48 0.72 Decreased

255 V 0.88 1.08 -0.79 2.61 Increased

441 Y 0.87 -0.92 -2.37 0.53 Decreased

405 I 0.86 0.94 -0.72 2.51 Increased

15 Q 0.86 0.94 -0.77 2.84 Increased

138 L 0.86 -0.90 -2.41 0.76 Decreased

376 I 0.85 -0.81 -2.26 0.67 Decreased

127 T 0.85 1.01 -0.86 2.83 Increased

69 Q 0.84 -0.79 -2.37 0.78 Decreased

81 A 0.84 0.94 -0.74 2.65 Increased

176 A 0.84 0.86 -0.88 2.86 Increased

280 T 0.83 0.96 -0.86 2.40 Increased

348 S 0.83 0.97 -0.90 2.87 Increased

61 I 0.83 0.77 -1.14 2.61 Increased

81 T 0.83 -0.82 -2.41 0.85 Decreased

268 M 0.82 0.81 -0.81 2.45 Increased

280 A 0.82 -0.82 -2.41 0.85 Decreased

388 K 0.82 0.74 -0.90 2.37 Increased

389 P 0.82 0.81 -0.81 2.45 Increased

397 R 0.82 0.72 -1.00 2.53 Increased

95 R 0.82 0.77 -0.83 2.39 Increased

68 I 0.81 0.87 -1.14 2.67 Increased

215 L 0.81 -0.73 -2.19 0.70 Decreased

118 T 0.81 0.70 -0.95 2.33 Increased

260 D 0.81 0.75 -1.00 2.48 Increased

54 A 0.81 0.75 -0.96 2.52 Increased
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Ultimately, sparse differential selection profiles (with
only a small number of positions and amino acids dis-
playing significant non-null differential selective effects)
could be obtained through the use a spike-and-slab mix-
ture model [47]. In this context, estimating the propor-
tion of non-null effects, as well as the effect size
distribution directly on the empirical data would have
several advantages, including an increased power, more
accurate quantification of the effect sizes, as well as a
more direct control of the rate of false discovery. In
addition, this hierarchical model would allow for testing
the null hypothesis that the gene has no differentially se-
lected positions, by simply comparing the full model
with the one constrained so as to have a null proportion
of differential effects.
As suggested by our simulation experiments, model-

ling differential selection effects as random variables,
with a distribution centered on 0, ensures good regular-
ity properties of the approach. On the other hand, the
power of the approach appears to be rather low. Further
development of the current approach, along the lines
just suggested, combined with a more systematic com-
parison with the currently existing alternatives [23–26],
will have to be conducted, in order to establish whether
this low power is a specific weakness of the present
method (in particular because of the lack of sparsity of
the model), or more fundamentally an inherent limita-
tion of the problem of detecting weak effects across a
large number of coding sites and for all possible amino
acids.
Two alternative models of the rate of change between

codons were considered in this study: one purely phe-
nomenological [8, 11], and another one that has a better
mechanistic justification, based on first principles of

population genetics. When applied to HIV sequences,
the mechanistic model does not seem to lead to better
results, compared to the phenomenological approach. In
particular, it fails to detect known HLA-restricted escape
mutations. The mechanistic model, however, makes sev-
eral assumptions that are clearly not warranted in the
present context: low-mutation approximation, and more
fundamentally, a mutation-fixation paradigm [9, 48],
which amounts to ignoring clonal interference. In sharp
contrast, viral sequences evolve under a very high muta-
tion rate, leading to strong clonal interference. Another
consequence of the very high mutation rate is that segre-
gating deleterious polymorphisms are expected to be
present at a substantial frequency, something which is
not correctly captured by the mutation-selection model:
fundamentally, this model is meant to be applied to
inter-specific data. Here in contrast, a meta-population
model would be more adequate. The theoretical and
computational developments in this direction still ap-
pear to be challenging.
Our method does not take into account epistatic inter-

actions between positions. Yet, those interactions seem

Table 7 List of differentially selected amino acids for B35+ hosts with posterior probability >0.80 (Continued)

93 A 0.80 0.73 -1.04 2.44 Increased

28 K 0.80 -0.66 -2.46 1.06 Decreased

58 K 0.80 0.69 -1.31 2.34 Increased

The amino acid-positions are sorted according to the posterior probability score. Median, lower and upper 95% credible intervals and the direction of the effect
on fitness (increased or decrease) are indicated

Table 8 Number of differentially selected amino acid-positions
with posterior probability >0.80 and >0.90 obtained by M1-DS
model using tree T1, T2 and T3

Threshold Tree topology B57+ patients B35+ patients

>0.80 T1 15 48

>0.80 T2 12 51

>0.80 T3 18 48

>0.90 T1 2 13

>0.90 T2 2 10

>0.90 T3 3 12

Fig. 6 Venn diagram of positions found with posterior probability
>0.80, using tree T1 (NJ topology), T2 (MrBayes topology with
constraint) and T3 (MrBayes topology without constraint). 10 positions
are shared by three topologies
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to play an important role in HIV evolution, in particular
concerning escape mutations. Most escape mutations
cause a viral fitness cost which leads to decreased repli-
cation of the virus [42]. Position 242 is under the stron-
gest selection pressure from the immune system which
corresponds to the ability of B57+ hosts to control the
disease. T242 N mutation in B57+ individuals reverts in
viruses transmitted to a HLA-mismatched host [43],
which confirms that the mutation has a strong fitness
cost for the virus in terms of replication capacity [49].
This fitness cost might be compensated for, to some ex-
tent, by mutations at other positions, mostly around the
escape mutation. In sequences with T242 N mutation,
the compensatory mutations H219Q, I223V, M228I/V,
G248A and N252H has been identified [42, 43]. It has
been reported that these mutations are significantly
more frequent in HLA-B57+ patients with a progressing
disease compared to HLA-B57+ non-progressors [42].
Here, we did not see significant differences for final
amino acids (Q, V, I/V, A and H) between B57+ and
B57- patients at those suppressing positions (their pos-
terior probability is less than 0.70), although initial
amino acids are strongly unfavored (posterior probability
=0.80, 0.91, 0.77 for I, G and N at positions 223, 248 and
252, respectively). There may be two reasons for that;
first, our model takes each site into account independ-
ently and codon co-variation is not considered. Sec-
ondly, contrary to escape mutations which revert in the
HLA mismatch host, compensatory mutations do not
tend to revert after transmission to HLA mismatch indi-
viduals [43]. For example, H219Q, the associated muta-
tion to T242 N, is reported to be maintained after
transmission from B57+ to B57- hosts. So, this mutation
might be stable and spread in the population. As it
stands, explicitly implementing epistatic effects in the
context of the present modeling framework appears to
be challenging, although not impossible [50].

Conclusions
We proposed a phylogenetic differential selection model,
which is able to find adaptive patterns in coding se-
quences influenced by selective environments. Applying
the model to HIV-1 Gag sequences, leads to the detec-
tion of a few amino acid-positions that are differentially
selected under different host HLA types, as HIV escapes
from immune system through its fast evolution. The
model is thus able to find known HLA-restricted muta-
tions, as well as some new mutations, to be under differ-
ential selection. The power of our model is that it is
capable of detecting both positive and negative selection
pressure on each amino acid at each position under each
environmental condition.
This DS model can be used in other situations in which

differential selective effects are suspected, as a function of

known predictors, for viruses (e.g., finding adaptive pat-
terns of HIV sequences under the selection pressure of im-
mune system or antiviral therapy provides an insight of the
direction of HIV-1 evolution in different hosts with differ-
ent genetic characteristics), or in other species (e.g., conver-
gent adaptations of multiple lineages of plants, or animals,
to specific environmental conditions (Parto S, Lartillot N:
Molecular adaptation in Rubisco: discriminating between
convergent evolution and positive selection using mechan-
istic and classical codon models, in preparation).
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