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Abstract

Background: Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light
harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein
superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant
lineages, with a complex distribution pattern of subfamilies in the different algal lineages.

Results: Here, we demonstrate that the recently discovered “red lineage chlorophyll a/b-binding-like proteins”
(RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be
restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and
heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion
construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs.
Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins
also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly
repressed at high light intensities.

Conclusions: The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after
separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have
been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved
complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four
membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might
participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting
antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in
plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light
harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC
protein superfamily, either for one of the photosystems (PS | of red algae) or for both (diatoms). In their proposed
function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of
light-harvesting antennae in the red lineage.
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Background

Higher plants, algae and cyanobacteria absorb light
energy to drive oxygenic photosynthesis. Light harvest-
ing is the first step in the photosynthetic process and
is mediated by pigment-binding proteins forming light-
harvesting antenna systems. However, excess light can
be harmful and can lead to protein damage due to the
formation of reactive oxygen species (ROS), establish-
ing a strong evolutionary pressure on photosynthetic
organisms to develop potent photoprotective mecha-
nisms [1-3]. Both functions, light harvesting and pho-
toacclimation/photoprotection are mediated by members
of the extended light-harvesting complex (LHC) pro-
tein superfamily in photosynthetic eukaryotes [1,3-9].
The eukaryotic members of the extended LHC protein
superfamily have a common origin and evolved from
a cyanobacterial one-helix ancestor with a characteris-
tic chlorophyll-binding motif that is strongly conserved
across the entire extended LHC protein super family
[1,4-6,8,10,11]. Apart from LHC superfamily proteins also
other proteins are known to bind chlorophyll, examples
are the prochlorophyte Chl a/b binding proteins [12]
or the IsiA chlorophyll-binding protein in cyanobacte-
ria [13]. The chlorophyll binding motifs of these proteins
are non-homologous to motifs found in the LHC protein
super family [5,12].

Eukaryotic photosynthetic organisms evolved by the
uptake of an ancient cyanobacterium and the subse-
quent reduction of the endosymbiont to an organelle.
Soon after the evolution of primary plastids, photosyn-
thetic eukaryotes split into three lineages, chlorophytes
(green algae and land plants), rhodophytes (red algae)
and glaucophytes [14,15]. During this process, structure
and composition of the light-harvesting systems changed:
Phycobilisomes, the main light harvesting systems in
cyanobacteria, were lost in chlorophytes and their func-
tion was taken over by members of the extended LHC
protein superfamily. Rhodophytes and glaucophytes, how-
ever, retained phycobilisomes as a part of their light-
harvesting machineries [5,15].

Diatoms and cryptophytes (along with related algal
groups collectively termed “Chromista”) evolved via sec-
ondary endocytobiosis, the uptake of a eukaryotic alga
into a eukaryotic host cell [14-16], with the secondary
endosymbiont being phylogenetically related to recent red
algae [17]. Red algae and algae with secondary plastids of
red algal origin are therefore often collectively referred to
as the “red lineage” of photosynthetic eukaryotes, opposed
to the “green lineage” (chlorophytes and organisms with
secondary plastids of chlorophyte origin).

Interestingly, also secondary endocytobiosis led to
drastic changes in structure and function of the light-
harvesting systems in the red lineage. In cryptophytes,
phycobilins are present, however they are not organised
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in phycobilisomes, while diatoms exclusively use LHC
superfamily proteins for light harvesting [5,15].

Across all recent bacterial and eukaryotic photosyn-
thetic organisms, the extended LHC protein superfamily
consists of the LHC, LHC-like and PSBS protein fami-
lies. The LHC protein family in the red lineage is rep-
resented by LHCR proteins present in red algae (“R” for
Rhodophyta), chlorophyll (Chl) a/c-binding (CAC) pro-
teins present in algal groups with secondary plastids of
red algal origin, also called fucoxanthin CAC proteins
(FCPs) or LHCF (“F” for fucoxanthin) in diatoms and
brown algae, LI818, called also LHCX in diatoms, and a
less known clade, LHCZ, described for some algae with
complex plastids [4-6,8,9,18]. In the green lineage, the
LHC protein family is represented by Chl a/b-binding
(CAB) proteins and LI818, also called LHCSR in green
algae [4-6,9,19].

The LHC-like protein family is divided into early
light-induced proteins (ELIPs), stress-enhanced proteins
(SEPs, also called light-harvesting-like (LIL) proteins),
one-helix proteins (OHPs, also called high light-induced
proteins HLIPs), and high light (HL) intensity-inducible
LHC-like 4 (LHL4) proteins [1,20]. While ELIPs and
LHL4 are found exclusively in the green lineage, SEPs
and OHPs are shared between red and green algae
[8,11,20]. Two types of OHPs can be distinguished: the
OHP1/HLIP-type present in cyanophages, cyanobacte-
ria and photosynthetic eukaryotes and the OHP2-type
restricted to eukaryotic organisms [8,11]. Members of
the PSBS protein family are present only in the green
lineage [5,11].

Proteins from the CAC, LHCR and CAB protein fami-
lies mainly fulfill a light harvesting function, while mem-
bers of the LHC-like, LI818/LHCX/LHCSR, PSBS and
LHLA4 families are mainly involved in photoprotection and
photoacclimation. It was proposed that these proteins play
a role in the regulation of Chl and tocopherol biosynthe-
sis, participate in the transient binding of released free
Chlorophylls, thus preventing the formation of ROS, and
act as a sink for excessive excitation energy in a process
called non-photochemical quenching (NPQ) [9,20].

Four novel sequences belonging to the extended LHC
protein superfamily were recently reported from the
red algae Galdieria sulphuraria and Griffithsia japon-
ica and from the two diatoms Phaeodactylum tricor-
nutum and Thalassiosira pseudonana [11]. Based on
sequence similarity (hidden Markov model analysis and
BLAST searches) and predicted secondary structure
(presence of three predicted transmembrane «-helices)
these sequences did not fall into any of the previously
described extended LHC protein superfamily groups but
formed a new group instead, termed red lineage CAB-
like proteins (RedCAPs) [11]. Here, we elucidate the tax-
onomic distribution, phylogeny, localisation, expression
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and potential function of these not yet characterised
RedCAPs.

Results and discussion

Taxonomic distribution of RedCAPs

To investigate the taxonomic distribution of RedCAP
sequences, we searched publicly available expressed
sequence tag (EST) and genomic databases and found
orthologs in Cryptophyta, Haptophyta, Heterokonto-
phyta (e.g. diatoms, brown algae and others) and
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Rhodophyta. No RedCAP sequences were found in organ-
isms of the green lineage of photosynthetic eukaryotes,
while genomes from organisms of the red lineage of pho-
tosynthetic eukaryotes were generally found to encode
RedCAPs (Table 1, Table S1, see Additional file 1). Thus,
the presence of RedCAPs is restricted to red algae and
photosynthetic Chromista with secondary plastids of red
algal origin (Table 1).

Interestingly, in contrast to members of the LHC and
LHC-like families, but similar to the PSBS family, almost

Table 1 Taxonomic distribution of RedCAP sequences in red algae with primary plastids and algae with secondary

plastids of red algal origin

Classification (class, species) Database [references] Gene model
Cryptophyceae

Guillardia theta JGI [65,66] Guith1:186670
Coccolithophyceae

Emiliania huxleyi JGI [68] Emihu1:310333

Isochrysis galbana GenBank EST [70] gi106825476
Pavlovophyceae

Diacronema lutheri GenBank EST [70] gi106858477
Phaeophyceae

Ectocarpus siliculosus

GenBank EST [21,70]

gi242173528

OrcAE [22,23] Esi0256_0036

Bacillariophyceae

Fragilariopsis cylindrus JGI [68] Fracy1:210193

Phaeodactylum tricornutum JGI[61,62] Phatr2:17326
Coscinodiscophyceaes

Thalassiosira pseudonana JGI [63,64] Thaps3:270215
Dictyochophyceae

Pseudochattonella farcimen GenBank EST [24,70] gi319967268
Pelagophyceae

Aureococcus anophagefferens JGI [25,68] Auran1:25646
Florideophyceae

Furcellaria lumbricalis GenBank EST [26,70] gi294363890

Gracilaria changii GenBank EST [70] gi120457728

Gracilaria tenuistipitata GenBank EST [70] gi327362708

Griffithsia japonica UniProt [75] Q7XZ09

Griffithsia okiensis GenBank EST [27,70] gi224829379
Cyanidiophyceae

Galdieria sulphuraria Michigan State University contig 9803

Galdieria database[72-74]

Bangiophyceae

Pyropia yezoensis GenBank EST [28,70] gi8590586
Porphyridiophyceae

Porphyridium purpureum GenBank EST [29,70] gi317790494
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all identified RedCAPs are encoded by single-copy genes.
The only possible exceptions are the haptophyte Emilia-
nia huxleyi which possesses an additional, possibly degen-
erated RedCAP sequence (Table S1, see Additional file 1)
and the red alga Cyanidioschyzon merolae, which appar-
ently does not possess a RedCAP gene, possibly due to its
overall highly reduced genome [30].

Unique phylogenetic position of RedCAPs within the
extended LHC protein superfamily

First we analysed RedCAP sequences in order to resolve
their phylogenetic position among the three- and four-
helix protein families of the extended LHC protein super-
family. We used the conserved Chl-binding motif present
in helices I and III and obtained a sequence alignment that
consists of 51 amino acid positions (26 and 25 amino acid
positions from helices I and III, respectively (see Addi-
tional file 2)), 45 out of the 51 amino acid positions are
not fixed and polymorph in more than one taxon and
hereby contribute to the phylogenetic information in the
analysis.

Alignments of RedCAP amino acid sequences with
three-helix members from the extended LHC protein
superfamily present in the red (FCP/LHCF, LHCR or
LHCX) and green (CAB, LHCSR, ELIP and LHL4) algal
lineages confirmed their distinct primary and secondary
structure (Figure S1 (A) and (B), see Additional file 3).
In all three-helix members of the LHC protein superfam-
ily investigated so far only helices I and III are conserved
while helix II shows much lower sequence conservation;
in contrast to this, sequence conservation also occurred
in the second helix of RedCAPs from different organ-
isms (Figure S1 (C), see Additional file 3). This conserved
region also included residues that might be involved in
pigment binding (Figure S2, see Additional file 4). Pigment
binding depends on the three dimensional folding of the
actual protein (which again depends on the presence of
pigments) and the protein/lipid surrounding of the folded
protein; so it is difficult to predict. Overall, there were
fewer potential pigment binding sites in RedCAPs than
in LHCs, which might indicate that RedCAPs are possi-
bly less chlorophyll loaded than LHCs and possibly fulfill
a different function.

The alignment was also used to build a phylogenetic tree
(Figure S3, see Additional file 5), the RedCAP sequences
clearly clustered together and formed a well-defined,
monophyletic clade within the extended LHC protein
superfamily. This pattern was also observed in an anal-
ysis of the extended LHC protein superfamily based on
the first Chl-binding helix including one- and two-helix
LHC-like proteins (not shown). Therefore, not only the
differences in the second transmembrane helix, but also
the ones in helices I and III placed RedCAPs into a clade
distinct to that of LHCs.
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In a phylogenetic analysis of all currently available Red-
CAP sequences (RedCAPs from 13 taxa, alignment of 146
positions, see Additional file 6), the expected species tree
with red algae and algae with complex plastids as sis-
ter groups was recovered to some detail (Figure 1). This
implies that the evolution of RedCAPs apparently did not
involve the emergence of paralogous gene copies (as it
is commonly observed in LHCs) and that no horizontal
gene transfer events could be detected within algae with
secondary plastids of the red lineage.

Based on primary sequence similarities, conservation
patterns (Figure S1, see Additional file 3) and phyloge-
netic analyses (Figure S3, see Additional file 5), RedCAPs
formed a distinct family within the extended LHC protein
superfamily that was neither more closely related to other
three-helix families, like LHC, LHC-like or LHL4, nor to
the four-helix PSBS family.

Complex evolutionary history of RedCAP genes
Evolutionary studies indicate that all LHC superfam-
ily members have a common origin and arose from
an cyanobacterial one-helix HLIP-like protein ancestor
[4-6,8-11,15]. The HLIP/OHP1-like sequences were likely
at the origin of the nuclear-encoded OHP1, OHP2 and
SEP in the green or OHP2 and SEP in the red algal lineage
(the monophyletic group of OHP2 sequences might also
originate from degenerated SEP sequences) [11]. In the
green lineage, the ancestral HLIP/OHP1-like sequences
were lost, whereas in the red lineage HLIP/OHP1-like
sequences can be found, encoded either on the plastid or
the nuclear genomes (Figure 2, Table S2, see Additional
file 7).

Remarkably, all LHC protein superfamily members with
more than one transmembrane helix containing chloro-
phyll binding motifs were exclusively found in eukary-
otic photosynthetic organisms and are encoded on the
nuclear genomes, which implies that they evolved after
the endosymbiotic gene transfer from the cyanobacterial
genome to the nuclear genomes of the ancestors of chloro-
phytes, rhodophytes and glaucophytes (it is noteworthy
that a fusion protein with two predicted TM helices was
reported in a strain of the cyanobacterium Synechococ-
cus [31], this protein is not related to the two helix SEPs
[11] and so far has not been found in any eukaryote). The
ancestor of LHCR/CAB or ELIPs and RedCAPs in green
or red algae, respectively, evolved by independent, inter-
nal gene duplication, likely from different SEP groups after
the initial gene transfer [11].

After secondary endocytobiosis, LHCR genes were
transferred to the nucleus of the secondary host cell and
gave rise to LHCF and CAC genes in Heterokontophyta
and Cryptophyta, respectively [18]. Similarly, RedCAP
and SEP genes were transferred to the host nucleus in Het-
erokontophyta and Cryptophyta (Figure 2, Table S2, see
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Figure 1 Phylogenetic relationships of RedCAPs. Thirteen available full-length sequences from red algae and algae with secondary plastids of
red algal origin, with an aligned 146 amino acid positions, thereof 99 phylogenetically informative, were analysed. A Maximum likelihood tree was
inferred under the CpRev + G model. Bootstrap values for Neighbor-joining (10,000 replicates) and Maximum likelihood analysis (100 replicates) as

well as posterior probabilities (one million generation, 25% burn-in) are given. Accession numbers of analysed sequences are listed in Table S1, see
Additional file 1, for sequence alignment see Additional file 6.
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Figure 2 Proposed evolutionary history of RedCAP, LHC and LHC-like genes. RedCAPs evolved in red algae after primary endocytobiosis and
their genes can be found in the nuclear genome of almost all red algae investigated so far. During secondary endocytobiosis, when a red alga was
taken up by another eukaryotic host, the RedCAP gene was transferred to the nucleus of the host cell and was lost from the nuclear genome of the
former endosymbiont. Similarly, different nuclear encoded LHC variants evolved in organisms with primary plastids and were transferred to the
nucleus of the secondary host during the evolution of secondary plastids. Interestingly, in diatoms, HLIP/OHP1-like genes (plastid encoded in red
algae) as well as OHP2 genes (nucleus encoded in red algae) have been transferred to the nucleus of the secondary host cell. This is in contrast to
the situation in the cryptophyte Guillardia theta, in which HLIP/OHP1-like is plastid encoded, and OHP2 is nucleomorph encoded. Table S2 (see
Additional file 7) contains detailed genome/gene information.
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Additional file 7). Comparing the location of HLIP/OHP1-
like and OHP2 genes a striking difference between Het-
erokontophyta and Cryptophyta became apparent; while
in Heterokontophyta, HLIP/OHP1-like and OHP2 genes
have been transferred to the nuclear genomes and sub-
sequently got lost from the secondary endosymbiont
genome (which does not persist any more), HLIP/OHP1-
like and OHP2 sequences were not transferred to the
nucleus in cryptophytes, instead they can still be found on
the plastid or nucleomorph genomes, respectively (with
the notable exception of the non-photosynthetic Cryp-
tomonas paramecium which lost the plastid and nucle-
omorph encoded HLIP/OHPI1-like and OHP2 genes)
(Figure 2, Table S2, see Additional file 7).

RedCAPs are targeted to the complex plastids of diatoms
All identified RedCAPs in algae with secondary plastids
were nuclear-encoded and include an N-terminal bipartite
pre-sequence, consisting of a signal and a transit pep-
tide domain and a conserved “ASAFAP”-motif located at
the interface between both domains, which is required
for import through the four membranes surrounding such
plastids [32,33]. This suggests a plastid location of Red-
CAPs (Figure 3A). To verify the predicted location exper-
imentally, we fused the full-length RedCAP sequence to
the green fluorescent protein (GFP) gene (Figure 3B)
and expressed it in the diatom Phaeodactylum tricornu-
tum. Analysis of the GFP signal by confocal fluorescence
microscopy revealed that this signal co-localised with the
red Chl autofluorescence (Figure 3C, Figure S4, see Addi-
tional file 8), thus confirming a plastid localisation of
RedCAP in diatoms.

Similarly, also the nucleus encoded OHP2 of P. tricor-
nutum was reported to be targeted to the plastid [33] (the
construct name in the cited study is PtHlip2:GFP).

This shows that gene transfers from the nucleus of the
secondary endosymbiont to the nucleus of the secondary
host cell were accompanied by acquisition of targeting
pre-sequences that are suitable to re-target the gene prod-
uct to its original location. This process is not trivial,
since plastid targeting pre-sequences of red algae show
completely different features than plastid targeting pre-
sequences of diatoms [34], and pre-sequence acquisition
is considered to be a crucial step in the evolutionary
reduction of organellar genomes [35].

RedCAPs show a unique expression pattern under light
stress conditions

We investigated the expression of the P. tricornutum Red-
CAP gene and compared it to the expression of selected
members of the LHC and LHC-like families. Cells were
pre-adapted to low light (LL) at 16 h of daily illumination.
With the onset of the dark period, cells were either kept
in the same condition (LL) or transferred to continuous
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darkness (D) or moderate hight light (ML) for one regu-
lar 16 h illumination period. Transcript levels of selected
genes were assayed in 3 h intervals throughout the follow-
ing 33 h (Figure 4 and Table S3, see Additional file 9). In
the LL condition (the regular culture condition), LHCF2
transcript levels were significantly down-regulated in the
dark period and significantly up-regulated in the light
period compared to the transcript level at the onset of
darkness. This is consistent with previous reports of light
dependent diurnal transcript regulation for this gene [36].
Following a similar pattern, also transcript levels of Red-
CAP and OHP1-like 1 were significantly up-regulated
during the light period and down-regulated (no significant
difference compared to the transcript level at the onset of
darkness) during darkness. A similar expression pattern of
RedCAP upon a shift from D to LL was recently reported
[37]. In the D condition (no illumination) the amounts
of LHCF2 and RedCAP transcripts were significantly
down-regulated, although a transient up-regulation of the
transcript level was measured at the time when the light
was previously switched on, this effect was also observed
(however, not statistically significant) for LHCF2 (Figure 4
and Table S3, see Additional file 9). In the ML condition
(illumination with moderate hight light throughout the
16 h light period), RedCAP and LHCF?2 transcripts were
down-regulated compared to the transcript level at the
onset of darkness, independent of the light or dark phase
(Figure 4A, Figure S5 see Additional file 10). Thus, we can
conclude that RedCAP and LHCF2 show a diurnal regula-
tion of the gene expression at LL, which is not maintained
in D or under ML illumination. This is in agreement with
previous studies showing diurnal regulation of LHCF2
genes [36,38] and with the clustering of the P, tricornutum
RedCAP gene with LHCF and LHCF-like genes in a hier-
archical clustering analysis of diatom ESTs obtained from
a range of different environmental conditions [39].
LHCFs were reported to be transcriptionally repressed
in response to high light (HL) in the diatom P. tricornu-
tum [40], while LHCX are induced by HL in P, tricornutum
[40,41] and other diatoms [38,42,43] confirming their role
in photoprotection [44]. The OHPs and SEPs were shown
to accumulate in response to HL in Arabidopsis thaliana
[20] but nothing is known about their expression and
function in diatoms. To investigate whether RedCAP is
induced in response to HL, we exposed LL-pre-adapted
P tricornutum cells to HL for 2 h and transferred them
back to LL for recovery for additional 4 h. The control
cultures were kept at LL for the same amount of time.
The transcript levels of RedCAP, LHCF2, OHP1-like 2,
OHP2 and SEPX were significantly down-regulated after
the onset of HL illumination (Figure 4B, and Table S3,
see Additional file 9). The observed expression patterns
of LHCF2 and RedCAP during a LL to HL shift were
similar to the ones reported by Nymark et al. [37,40].



Sturm et al. BMC Evolutionary Biology 2013, 13:159
http://www.biomedcentral.com/1471-2148/13/159

Page 7 of 14

o1 05 10 15 20

o1 05 10 15 20

BOLD:
UNDERLINED: estimated transit peptide domain
ITALIC: mature protein

lower case:artificial sequence

Chlorophyl

DIC

Chlorophyll

/]

A Signal ~ ASAFAP  Transit
peptide motif peptide
I
Phaeodactylum  ----- MAPLRTTFALLLSLVIEEENFNIVONVARKQTS
Fragi larJ. opsis ----- MAPFRSLITIFVSLSAEINIFIWNKQOATSLKPS
Thalassiosira ------- MKTAALVTLALAGEX)NFNISTSRVSVSRT
Aureococcus AALLSTENSYNRWNPASKVAPATV
Ectocarpus MKAVFALCAAMVAGAQAFVPTEMVNYJEARVASPASAS
Emiliania MFPVNJFNAAPAVRPVVTT
Diacronema SARGKVLAL2NWHNYNCHAAAYAPAAR
Guillardia MLRSILVLSACAFNNNGNISASPSLSLRS
B

PtRedCAPfull:GFP MAPLRTTFALLLSLVSASAFAPVQONVARKQTSVSAFKID. .

signal peptide predicted by SignalP’s hidden Markov models

GREY: conserved motif at signal peptide cleavage site
BLACKE enhanced green fluorescent protein

Figure 3 Localisation of the RedCAP protein in complex plastids of diatoms. (A) Bipartite plastid targeting sequences in photosynthetic
Chromista. The conserved “ASAFAP"-motif [32,33] at the interface between signal and transit peptides is marked. (B) Sequence of the
Phaeodactylum tricornutum RedCAP full length GFP fusion construct. (C) Expression of the full-length RedCAP:GFP fusion constructs in
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The transcript level change of LHCF2 during a shift from
LL to HL also seems to be reflected by a change of its
protein amount [45]. For RedCAP and LHCF2, after 4 h
of recovery the transcript level remained low, while for
OHP1-like 2 and OHP2, the transcript level after 4 h of
recovery was closer to the initial transcript level. In con-
trast, the transcript level for OHP1-like 1 was transiently
up-regulated during the first 30 min of HL exposure and
decreased below the level present in LL-kept culture dur-
ing recovery (Figure 4B). The different expression patterns
of OHP1-like 2, OHP2 and SEPX genes as compared to

A. thaliana orthologs [20] suggest that in diatoms, these
proteins might perform other functions than photopro-
tection. A similar down-regulation of HLIP/OHP1 and
OHP2 transcripts in response to HL was also reported for
the Cryptophyte Guillardia theta [46].

It was recently demonstrated that RedCAP is associ-
ated to photosystem I (PS I), together with LHCR and
some LHCEF, both in centric and in pennate diatoms
[47,48]. Other studies using different isolation proce-
dures [45,49] have reported RedCAPs in the “whole pool”
of LHCF complexes which is shared between PS I and
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Figure 4 Expression of RedCAP and selected members from LHC and LHC-like protein families in diatoms. (A) Cells of P. tricornutum
preadapted to LL (45 pmol photons - m~2 - s~ 1) with illumination from 8 am to 12 midnight were either kept at LL conditions or transferred to D (no
s~1 throughout the illumination period) for 33 h and samples were collected every 3 h. Dark and light
periods are indicated by grey or white bars, respectively, at the bottom of the expression data. (B) Cells of P. tricornutum preadapted to LL for 6 h
(the first 6 h of the regular illumination period) were either kept at LL for additional 6 h or exposed to HL (1,500 to 2,000 wmol photons - m=2.s71
for 2 h and transferred back to LL for recovery (recov) for 4 h, samples were taken at the times indicated (relative to the transfer into HL). Relative
transcript levels were calculated with help of the Relative Expression Software Tool REST [102] using the first sample of each light condition as a
calibrator and 18 S rDNA as an endogenous control. The colour code indicates relative gene expression values as indicated by the scale bar on the
right. Shown expression levels are average from four independent experiments, grey stars in the coloured boxes mark significant changes
compared to the first sample as indicated by the statistical randomisation tests by REST [102].
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photosystem II (PS II) [45]. These findings might be
explained by either 1) loose binding of RedCAP at the
periphery of PS I, although no exact location has been pro-
posed by the recent mapping of the diatom PS I [48], or
by 2) loose binding of RedCAP to the periphery of LHCF
complexes that are associated to both photosystems. Con-
sidering the diurnal and light dependent regulation of the
RedCAP transcript levels (our results and [37]), RedCAP
appears not to be light stress-induced and therefore is
obviously not involved in HL photoprotection. Instead,
RedCAP is a fast responding gene during a shift from pro-
longed D to LL [37] but not during a shift from HL to
LL (this study). RedCAP was also found under low blue
and red light conditions in amounts similar to other LHC
related proteins (LHCF, LHCR and LHCX) [50]. Inter-
estingly, LHCF2, which shows a similar light-dependent
expression as RedCAP, was recently proposed to be more
closely associated with PS I than with PS II and to bind
fucoxanthin pigments that change the light absorption
properties of the LHCF antenna (i.e. absorption is shifted
towards blue wavelengths) [45]. We therefore hypothesise
that RedCAPs might be involved in the light-dependent
structural and/or functional reorganisation of the light-
harvesting antenna of PS I and/or PS II in response to

D/LL shifts (including water induced changes in light
quality) as diatoms regularly experience in their natural
habitats, i.e. the water column, mudflats or sea-ice packs
[51-53]. The recent report by Nymark et al. [37] shows a
deep light-dependent reorganisation of the diatom pho-
tosynthetic apparatus during dark-light shift conditions.
This also includes components of the carbon metabolism
[54] and requires a fine tuning between light (inten-
sity and quality), the photosynthetic activity and gene
regulations [41,55,56].

Conclusions

Based on the expression pattern of RedCAP transcripts
that resembles that of LHCF2 and differs from LHC-like
family members as well as based on their localisation
in the thylakoid membrane with an association at the
periphery of LHCF complexes associated to PS I and
PS 11 [45,47-49], we propose that RedCAPs act as antenna-
associated proteins in diatoms and related algae. There
are striking differences in the regulation of photosynthe-
sis between plants and diatoms [51,57], especially in the
structural organisation of the light harvesting antenna
systems [58,59]. The orphan phylogenetic position of
RedCAPs together with an expression pattern similar to
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LHCEF2 transcripts promote this group as an interesting
candidate to explain these differences.

Major shifts in the functional organisation of the dif-
ferent light harvesting systems occured in early algal evo-
lution [8,9]. Remarkably, in plants as well as in diatoms,
phycobilisomes as antenna proteins have been conver-
gently evolutionary replaced by members of the extended
LHC protein superfamily. Accompanying this process, in
green algae and plants, the PSBS and LHC-like protein
families increased the diversity of subfamilies within the
extended LHC protein superfamily [11]. Our study shows,
that also in red algae and algae with secondary plastids
of red algal origin the extended LHC protein superfamily
diversified, among others, by the evolution of the RedCAP
family.

Considering the global significance of diatoms and other
algae with secondary plastids of the red lineage in the
contemporary oceans [52] and the extraordinary photo-
synthetic efficiency and the high productivity of these
organisms [51-53,60], elucidating the exact functional role
of RedCAPs constitutes an important task for future
studies.

Methods

Sequence search and annotation

The Phaeodactylum tricornutum v2.0 [61,62], Thalas-
siosira pseudonana v3.0 [63,64] and Guillardia theta
CCMP2712 v1.0 [65,66] genome databases were accessed
online via the United States Department of Energy
Joint Genome Institute (JGI) genome portal [67,68]
using TBLASTN and BLASTP [69]. Additional sequence
data were collected from public databases including the
National Center for Biotechnology Information (NCBI)
[70] databases, the Cyanidioschyzon merolae Genome
Project [30,71] database, the Michigan State Univer-
sity Galdieria Database [72-74], UniProt [75] and JGI
[68]. Special attention was given to the nucleomorph
genomes of the cryptophytes Guillardia theta [76], Cryp-
tomonas paramecium [77), Hemiselmis andersenii [78]
and Chroomonas mesostigmatica [79] as well as to the
plastid genomes of the red algae Cyanidioschyzon mero-
lae [80], Cyanidium caldarium [81], Porphyra purpurea
[82], Pyropia yezoensis [70] and Gracilaria tenuistipitata
var. liui [83], the cryptophytes G. theta [84], Rhodomonas
salina [85] and Cryptomonas paramecium [86] and of the
diatoms P, tricornutum and T. pseudonana [87]. The newly
identified sequences of the extended LHC protein super-
family were classified according to their predicted sec-
ondary structures as well as sequence similarity to known
Chl-binding proteins as described by Engelken et al. [11].
It should be noted that the P. tricornutum RedCAP is also
known as “LHL1” in recent publications [37,45,47]. In this
nomenclature, “LHL” stands for “light-harvesting-like”, a
term that is ambiguous with the abbreviation “LIL” (also
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for “light-harvesting-like” [8]), which is why we prefer to
use the name “RedCAP” Prediction of transmembrane
helices was done with the DAS algorithm [88], which is
optimised for prokaryotic membrane proteins and there-
fore is well suited for proteins targeted to plastid mem-
branes. Signal peptides were identified using the program
SignalP 3.0 [89,90]. Bipartite chloroplast targeting pre-
sequences were manually predicted by their characteristic
N-terminal sequence motif [32,33].

Phylogenetic analysis

Alignments were prepared with T-Coffee [91,92] and
manually refined in BioEdit [93]. Due to the scarcity
of gaps and insertions within and nearby the analysed
transmembrane helices, Chl-binding sequence motifs can
be easily aligned. Due to the partially high sequence
divergence between the different LHC subfamilies, we
restricted the analysis to a conservative alignment con-
taining a combined stretch of 51 amino acid posi-
tions. With 45 parsimony informative sites, these amino
acid positions were highly informative. Bootstrap val-
ues (10,000 replicates) for the Neighbor-joining analyses
were obtained in MEGAS5 [94]. Maximum likelihood boot-
strap analyses with 100 replicates were performed using
MEGA5 and PhyML [95,96] and posterior probabilities
were calculated using MrBayes (2 million generations,
50% burn-in) [97], using a WAG+I"4 model of amino acid
evolution. The amino acid substitution model was cho-
sen using best maximum-likelihood fits as implemented
in MEGAS5 [94].

Localisation studies

The RedCAP:green fluorescent protein (GFP) was con-
structed via standard cloning procedures [98] using the
P tricornutum transformation vector pPha-T1 (Gen-
Bank AF219942) [99] following strategies described ear-
lier [32,33]. The RedCAP:GFP construct was sequenced
(GATC Biotech AG, Konstanz, Germany) to ensure cor-
rect cloning. Nuclear transformation of P tricornutum
was performed according to the procedure described by
Kroth [100]. Transformed cell lines were screened for
the expression of GFP using an Olympus BX51 epi-
fluorescence microscope (Olympus Europe, Hamburg,
Germany). Images were then acquired with a confocal
laser scanning microscope LSM 510 META (Carl Zeiss
Microlmaging GmbH, Géttingen, Germany) using a Plan-
Apochromat 63x/1.4 Oil DIC objective. For the images
presented in Figure 3, GFP fluorescence and chlorophyll
autofluorescence were excited at 488 nm, filtered with a
beam splitter (HFT 405/488/543), and detected by two
different photomultipliers with a band-pass filter (BP 505-
530) for GFP fluorescence and a low pass filter (LP 650)
for chlorophyll autofluorescence, transmitted light images
were simultaneously detected. For the images presented in
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Figure S4 (see Additional file 8), GFP and Chl fluorescence
were excited at 488 nm and detected simultaneously by
the meta detector with spectral resolution (lambda mode)
at 16 bit dynamic range and later separated via linear
unmixing using the software ZEN (Carl Zeiss Microlmag-
ing GmbH, Géttingen, Germany). Reference spectra were
beforehand acquired from wild type cells (for Chl autoflu-
orescence) and a transformed cell line expressing cytosolic
GFP with spatial separation from the plastidic Chl aut-
ofluorescence (for GFP fluorescence). Transmitted light
images (488 nm wavelength) were recorded separately
after the fluorescence image stacks were completed. For
both sets of images, maximum intensity z-projections
were calculated from slices of image stacks to ensure
complete detection of fluorophores within a cell.

Diatom cultivation and light treatments

Phaeodactylum tricornutum (UTEX Collection, strain
646) was cultured in f/2 seawater medium [101] pre-
pared with “Tropic Marin” artificial seawater (Dr. Biener
GmbH, Wartenberg/Angersbach, Germany) at a final con-
centration of 50% (w/v) compared to natural seawater and
continuously bubbled with sterile air. Cells were grown
at 22°C at low light (LL, 45 wmol - photons - m=2 - s71)
under a light regime of 16 h light/8 h dark (illumination
from 8 am to 12 midnight). For the diurnal rhythm exper-
iments, cultures were grown at LL for 4 days and cells at
mid-logarithmic growth phase were kept further at LL or
transferred to ML conditions (750 umol photons - m=2 -
s~! throughout the illumination time) or D (no illumi-
nation) for 33 h. For the light stress experiments, cells
grown at LL as described above. Starting at 2 pm (after
6 h of illumination) the cultures were either kept at LL
for an additional 6 h or transferred to HL (1,500 to 2,000
wmol photons - m~2 - s71) for 2 h and moved back to LL
for 4 h for recovery. Photosynthetic active radiation was
measured using a quantum photometer (Model LI-185A,
Li-Cor Inc., Lincoln, NE, USA). Cells were harvested by
centrifugation at 3,000 g for 1 min at 21°C and pellets
were stored at -80°C prior to analysis. Four independent
experiments were performed for each data point.

Expression studies

The harvested cells were mechanically disrupted with
mortar and pestle under liquid nitrogen and total RNA
was isolated using a combination of phenol/chloroform
extraction with Trizol reagent (Invitrogen, Carlsbad, CA,
USA) and the RNeasy kit (Qiagen, Hilden, Germany).
Genomic DNA contaminations were removed using
Turbo DNase (Ambion, Woodward, TX, USA) accord-
ing to the manufacturer’s instructions. 350 ng DNA-free
RNA was reverse transcribed for each sample individu-
ally with the QuantiTect reverse transcription kit (Qiagen,
Hilden, Germany). The resulting cDNA preparations were
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diluted 4-fold in RNase/DNase-free water and 1 uL of the
c¢DNA template was used in a 20 uL qPCR reaction con-
taining PCR primers (primer sequences in Table S4, see
Additional file 11) and DNA polymerase master mix with
SYBR Green (MESA GREEN qPCR MasterMix Plus for
SYBR Assay Low ROX, Eurogentec Deutschland GmbH,
Cologne, Germany). The reaction was heated to 95°C fol-
lowed by 40 cycles for 15 s at 95°C and 1 min at 60°C.
The amount of amplified DNA was monitored by mea-
suring fluorescence at the end of each cycle using the
Real-Time PCR System 7500 (Applied Biosystems, Lin-
coln, CA, USA). Relative transcript levels were calculated
with help of the Relative Expression Software Tool REST
[102] using the first sample of each light condition as cal-
ibrator and 18 S rRNA as endogenous control. 18 S rRNA
(GenBank: AY485459.1) has been identified as one of the
most stable endogenous controls for qPCR in P, tricornu-
tum [41,103]. The P. tricornutum LHCF2 gene is a gene for
which light/dark dependent up/down regulation has been
demonstrated previously [36] (LHCF2 is called “FcpB” in
the cited study). We therefore included LHCF?2 as a posi-
tive control for transcript up- and down-regulation using
the exact primer sequences proposed by Siaut et al. [36]).
Gene models of the investigated sequences from P tri-
cornutum can be accessed at the JGI P. tricornutum v2.0
genome database [61,62] with the following protein IDs
(in parentheses): LHCF2 (25172), OHP1-like 1 (53712),
OHP1-like 2 (33932), OHP2 (55112), SEPX (56446) and
RedCAP (17326).

Additional files

Additional file 1: List of sequences, pdf file. Table S1. List of sequences
analysed in Figure 1 and Figure S1 (see Additional file 3).

Additional file 2: Sequence alignment, text file (FASTA format).
Sequence alignment used to build the phylogenetic tree of three- and
four-helices protein families of the extended LHC protein superfamily
(Figure S3, see Additional file 5), 51 positions, 55 taxa.

Additional file 3: Annotated sequence alignments, pdf file. Figure S1.
(A) Sequence alignment of helices | and IIl of RedCAPs with red lineage
LHCF, CAC/LHCR and LHCX/LI818 proteins. (B) Sequence alignment of
helices I and Ill of RedCAPs with green lineage CAB (LHCa, LHCb and LHCP),
LHCSR/LI818, ELIP and LHL4 proteins. (C) Full-length sequence alignment
of identified RedCAP amino acid sequences. Identical amino acids are
surrounded by black and similar amino acids by grey boxes. Chl-binding
motifs located in transmembrane helices | and Il are marked with a green
bar above the alignment, and the approximate position of transmembrane
helix Il is marked with a grey bar. Accession numbers of aligned sequences
are given in Table S1 (see Additional file 1).

Additional file 4: Putative chlorophyll-binding sites in RedCAPs, pdf
file. Figure S2. Putative chlorophyll-binding sites in members of the LHC
(light-harvesting complex) and the RedCAP protein families. Experimentally
derived chlorophyll binding sites from Arabidopsis thaliana LHCII proteins
are indicated in green according to [104-106]. Conserved amino acid
positions that may represent putative binding sites for chlorophylls or
carotenoids in RedCAPs are indicated in blue. Note that the second helix
(helix 1) is poorly conserved between distant members of the LHC protein
family and not conserved between LHC and RedCAP,



http://www.biomedcentral.com/content/supplementary/1471-2148-13-159-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-13-159-S2.txt
http://www.biomedcentral.com/content/supplementary/1471-2148-13-159-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-13-159-S4.pdf

Sturm et al. BMC Evolutionary Biology 2013, 13:159
http://www.biomedcentral.com/1471-2148/13/159

therefore the alignment of different helices Il does not necessarily show
homologous positions.

Additional file 5: Phylogenetic tree, pdf file. Figure S3. Phylogenetic
tree of three- and four-helices protein families of the extended LHC protein
superfamily. Robust internal nodes were labelled according to their
corresponding statistical support (Maximum likelihood, ML;
Neighbor-joining, NJ and bayesian posterior probability). Accession
numbers of analysed sequences are listed in Table S1 (see Additional file 1);
for the sequence alignment see Additional file 2.

Additional file 6: Sequence alignment, text file (FASTA format).
Sequence alignment used to build the phylogenetic tree of RedCAPs
(Figure 1), 146 positions, 13 taxa.

Additional file 7: References for Figure 2, pdf file. Table S2. Reference
table for the proposed evolutionary history of RedCAP, LHC and LHC-like
genes (Figure 2). Findings for cyanobacteria, green algae and plants have
been generalised according to published studies, while findings for red
algae, cryptophytes and diatoms are specific for representative species of
which the plastid-, nucleomorph-, and nuclear genomes (or large
transcriptome datasets in the case of “present” statements) have been
sequenced and published (see footnotes in table). Genes are marked as
"present” if their existence has been reported in the literature; “absent”
means that these genes were neither identified in our analyses, nor—to
our knowledge—have been reported to exist before (hence no references
for “absent” statements). For RedCAP sequence identifiers see also Table 1
of this study.

Additional file 8: Localisation of the RedCAP protein in complex
plastids of diatoms II, pdf file. Figure S4. Expression of the full-length
RedCAP:GFP fusion constructs in P. tricornutum. Microscopical images of
transmitted light (differential interference contrast, DIC), Chlorophyll
autofluorescence, GFP fluorescence and a merged image are shown from
left to right, fluorescence images are maximum intensity projections of
seven slices of a 3.08 wm image stack, scale bars represent 10 pem.

Additional file 9: RedCAP, LHCF and LHC-like gene expression
analysis as given by REST, pdf file. Table 53. RedCAP, LHCF and LHC-like
gene expression analysis as given by REST [102]. (A) Data for dark-treated
cells (experimental condition D). (B) Data for low light grown cells
(experimental condition LL). (C) Data for moderate high light grown cells
(experimental condition ML). (D) Data for cells exposed to high light for 2 h
(condition HL). Experiments were performed in four replicates as described
in the Methods section of the manuscript. For details of the software see
[102]; the column “P(H1)" lists the results of REST's hypothesis test (the
probability that the difference between the sample and control occurs
only by chance), the "Result” column lists those up- or down-regulations
(relative to the first sample) that are indicated as significant by the
statistical randomisation tests by REST.

Additional file 10: Changes in RedCAP, LHC and LHC-like transcript
abundance, pdf file. Figure S5. Changes in RedCAP, LHC and LHC-like
transcript abundance. Abbreviations and symbols: upward arrow,
up-regulation; rightward arrow, no changes in the expression; downward
arrow, down-regulation; CR, diurnal rhythm; HL, high light; LL, low light; ML,
moderate high light; n.c, not clear; ¢, a transient, statistically significant
up-regulation at the beginning of the previous light phase; ®, diurnal
rhythm under LL but not under ML conditions; ¢, up-regulation in the late
phase of illumination; ¢, up-regulation in the early phase of illumination; €,
short-term moderate up-regulation.

Additional file 11: Primers used for the RT-qPCR, pdf file. Table S4.
Primer sequences used for the real-time quantitative PCR analysis in

P. tricornutum, the LHCF2 gene has been analysed with the primers
designed by Siaut et al. [36] (the gene is called “FcpB” in the cited study).

Abbreviations

CAB: Chlorophyll a/b-binding; CAC: Chlorophyll a/c-binding; Chl: Chlorophyll;
D: Darkness; ELIP: Early light-induced protein; GFP: Green fluorescent protein;
HL: High light; HLIP: High light-induced protein; LHC: Light-harvesting
complex; LHCF: Fucoxanthin-containing light-harvesting complex; LHCR:
Light-harvesting complex in red algae; LHL: High light intensity-inducible
light-harvesting complex-like; LL: Low light; ML: Moderate high light; NPQ:
Non-photochemical quenching; OHP: One-helix protein; PS I: Photosystem |;
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PS IIl: Photosystem Il; RedCAP: Red lineage chlorophyll a/b-binding-like
proteins; ROS: Reactive oxygen species; SEP: Stress-enhanced protein.
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