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Abstract

Background: Representatives of Cetacea have the greatest absolute brain size among animals, and the largest
relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates
have yet to be surveyed in cetaceans.

Results: We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1) in 38 cetacean
species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1
were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous
substitution) using site and branch models of molecular evolution. We also tested the hypothesis that selection on
MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for
phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and
in other subclades of Mammalia, however, there was not a significant positive association between ω and brain
size within Cetacea.

Conclusion: In conjunction with a recent study of Primates, we find no evidence to support an association
between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding
of significant positive selection in MCPH1 may be linked to other functions of the gene.

Background
The human brain is arguably one of the most remark-
able adaptations in the history of life. Compared to
other mammals, the human lineage has undergone a
massive expansion in relative brain and forebrain size,
cortical surface area, and overall cognitive ability [1].
However, many other vertebrates exhibit increased rela-
tive brain and forebrain sizes, as well as complex social
and cognitive behaviours. For example, odontocete ceta-
ceans (toothed whales) have some of the largest brains
relative to their body mass among extant mammals [2].
Relative brain size in some odontocete species is greater
than non-human primates [3], and in absolute terms,
the giant sperm whale (Physeter macrocephalus) has the
largest brain of any living organism at a maximum of 10
kg [4]. According to some researchers, high relative

brain or forebrain sizes are positively correlated with
indices of cognition or “intelligence” [1,5], although this
association has been criticized in the literature [6,7].
Among extant cetacean species, absolute and relative

brain size vary widely (Figure 1). There is some evidence
that a large shift towards increased brain size took place
near the base of Odontoceti (toothed whales), and a
further increase in Delphinoidea, the group that includes
Delphinidae (oceanic dolphins) among others [8]. Del-
phinids display the greatest encephalization and the
most complex behavior among cetaceans [9,10]. The
evolution of large brains in odontocetes has been linked
to their intricate behavioral repertoire and to their use
of echolocation [11], which requires production and
processing of high frequency sounds to perceive spatial
relationships in the surrounding liquid environment [2].
Odontocete cetaceans also are distinguished by indices
of complex cognition that are convergent with many
primate species [9,12]. Some researchers have proposed
that odontocetes evolved large brains for
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thermoregulation and are not as socially and behavio-
rally advanced as primates [13], however this has been
contested [10].
In primates, researchers have documented the associa-

tion of six genes (MCPH1, ASPM, CDK5RAP2, CENPJ,
STIL, WDR62) with the human congenital disorder of
primary microcephaly, a disease marked by a two-thirds
reduction in brain size and moderate to severe mental
retardation [14-22]. All six microcephaly genes identified
thus far are involved in control of the neural cell cycle
and/or centrosome function, and therefore have a

potentially large impact on the proliferation of neural
precursor cells [23,24]. Comparative analyses of protein-
coding DNA sequences from primates suggest that
these genes have evolved adaptively in primates
[14-19,25].
Multiple recent studies have revealed the importance

of one of these genes, microcephalin (MCPH1), in main-
taining genomic stability through mediation of the
response to double-strand DNA breakage and regulation
of chromosome condensation in the cell cycle [26-31].
MCPH1 is expressed in multiple tissues including those
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Figure 1 Variation in absolute brain size, relative brain size (EQ = encephalization quotient), and body size in cetaceans in a
phylogenetic context. Representatives from seven cetacean families are shown and are scaled to body length. EQ and absolute brain size are
indicated to the right of each species name by drawings of brains. The width of each brain is proportioned to the value of EQ or brain weight
for each species. For scale, EQ of Physeter macrocephalus is 0.58 and of Tursiops truncatus is 4.02. Brain weight of Physeter macrocephalus is 8.00
kg and of Tursiops truncatus is 1.76 kg. Phylogenetic relationships and approximate divergence times are from [42]. For the timescale, dark green
= Eocene, light green = Oligocene, orange = Miocene, and yellow = Plio-Pleistocene. EQ and brain weights for all species in our analysis are
shown in Supplemental Table S2.
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of the brain, liver, and kidney, but shows particularly
high expression in neural progenitor cells of the fore-
brain [32]. Microcephaly genes may play a role during
development in switching between symmetric and asym-
metric mitosis of neural progenitor cells to produce
neurons in the cerebral cortex [24,33]. Specifically,
microcephalin may affect the first stage of neural cell
division, with decreased MCPH1 function causing pre-
mature mitotic entry, eventually leading to a reduced
pool of neural progenitor cells [24]. In addition, the
developing neuronal tissue in the brain seems particu-
larly vulnerable to apoptosis as a result of DNA damage
caused by double-strand breaks, thus potentially bring-
ing about a decrease in viable neurons for individuals
with impaired MCPH1 function [34,35].
Although some lineages of whales and dolphins have

experienced profound evolutionary increases in relative
brain size, selection on microcephaly genes has not been
investigated in detail within Cetacea. Several researchers
have indicated the potential value of comparisons
between brain genes of primates and other large-brained
species for understanding processes underlying neurolo-
gical novelty in primates including humans [23,33,36].
Here we sequenced a large segment of microcephalin
(MCPH1) from 38 cetacean species, including 34
toothed whales and four baleen whales, and compared
these data with published sequences from primates,
which have convergently evolved large brain size. We
also downloaded complete MCPH1 protein-coding
sequences from Ensembl, including representatives of
major primate lineages as well as the common bottle-
nose dolphin, Tursiops truncatus. We enumerated pat-
terns of site- and branch-specific selection in cetacean
MCPH1 and compared these estimates with patterns of
selection intensity in primates and other mammals. We
also explicitly tested the hypothesis that brain size is
positively correlated with the intensity of selection at
the nucleotide level in MCPH1 following the approach
taken by [25].

Methods
Sampling and DNA Amplification
We sampled 38 species of cetaceans from nine families;
twenty-three species belonged to Delphinidae, a family
that includes the highest relative brain sizes as measured
by the encephalization quotient (EQ) [10]. We also
included members of Mysticeti (baleen whales) and Phy-
seteridae (giant sperm whale) that represent taxa with
the largest absolute brain sizes that have ever evolved
[4,9,10]. All cetacean taxa included in this study are
listed in Additional File 1: Table S1.
We designed primers for exon 8 of MCPH1 from an

alignment of sequences from the 2.0 build of the Bos
taurus (domestic cow) genome and genomic data for

Tursiops truncatus available via Genbank. Exon 8 con-
sists of the highly variable inter-BRCT domain sequence
(IBS) and makes up approximately half of the coding
region of MCPH1. The IBS region shows evidence of
positive selection on the lineage leading to humans
[16,19]. A small portion of intron 7 and most of exon 8
(total amplicon = ~1237 basepairs [bp]) were PCR
amplified using MCPH1INT7F1 (5’ GCT TTA TCA
CGT TAT GGG CGG AC 3’) or MCPH1INT7F2 (5’
GCT TTA TCA CGT TAT GGG CGG ACT G 3’) in
the forward direction and MCPH1EX8R1 (5’ GAG AGA
CCA GTA AAG GAG GTT CAC 3’), MCPH1EX8R2 (5’
AGG AGG TTC ACA TAC TTT CAC TAC 3’), or
MCPH1RSeq2 (5’ CGG GAG AAA AGT AAT CAT CG
3’) in the reverse direction. PCR products were
sequenced using the above primers, as well as
MCPH1F1 (5’ AAA ACG AGA AGT GTC CGT CCG C
3’), MCPH1F2 (5’ CCT GTC TGC TAC GCC ATC
TGT AAC 3’), MCPH1FSeq3 (5’ TTT CCA GGA GAG
AGA GGA CC 3’), MCPH1R1 (5’ TTT CCA CAT CCC
AGT CGC CTA C 3’), and MCPH1RSeq1 (5’ TCT CCT
TGA GAT TAT CGG G 3’). PCR was performed using
1 μl template DNA, 100 pmol of each primer, 1X Accu-
Prime PCR Buffer I (Invitrogen), and 1 unit AccuPrime
Taq DNA Polymerase High Fidelity (Invitrogen) in a 50
μl reaction. PCR conditions consisted of 45 cycles of 1
min denaturation at 94°C, 1 min annealing at 58°C, and
1 min elongation at 68°C. All new sequences were
deposited in Genbank (accession numbers HQ873570-
HQ873608).

Data Set Compilation and Alignment
Three data sets were assembled. To investigate selection
pressure over the whole gene, the “whole-gene” data set
was compiled using complete MCPH1 coding sequences
downloaded via Ensembl (Homo, Pan, Pongo, Macaca,
Callithrix, Tupaia, Rattus, Mus, Canis, Equus, Bos, and
the delphinid cetacean, Tursiops). Species were selected
due to phylogenetic position, completeness, and quality
of available sequence. We also compiled a data set con-
sisting of sequences derived from exon 8 and a small
segment of intron 7 (the “exon 8” data set), including
those sequenced here and sequences downloaded for a
wider range of species, largely primates, from the
Ensembl and Genbank databases. Genbank accession
numbers for all downloaded sequences are listed in
Additional File 1. The third data set ("reduced exon 8”)
consisted of a reduced set of taxa that excluded
sequences that were less than 90% complete (e.g., Balae-
noptera acutorostrata, Kogia sima) and sequences from
species belonging to Monodontidae due to the presence
of a stop codon near the end of the sequence (see Addi-
tional File 1). Sequences for all data sets were aligned
using CLUSTAL W [37] with a gap-opening penalty of
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10 and a gap-extension penalty of 1. Exonic indels were
multiples of 3 bp and were adjusted by eye to reflect the
open reading frame.

Phylogenetic Analyses
Please see Additional File 1 for a full account of phylo-
genetic methods.

Tests for Positive Selection and Selective Constraints
Positive selection acting on the complete coding
sequence of MCPH1 was examined by estimating ω
(dN/dS, the ratio of the rate of nonsynonymous substi-
tution to the rate of synonymous substitution) using the
site models in the codeml program of PAML 4.0 [38].
An unrooted species tree of Boreoeutheria [39-41] was
used as an input tree with Rodentia, Primates + Scan-
dentia, and Laurasiatheria positioned as a basal polyt-
omy. Model M1a (nearly-neutral: ω0 < 1, ω1 = 1) was
compared to M2a (positive selection: ω0 < 1, ω1 = 1, ω2

> 1) and M8a (nearly neutral; beta distribution: 0 < ω0 <
1 and ω1 = 1) was compared to model M8 (positive
selection: beta distribution: 0 < ω0 < 1 and ω1 > 1) by
performing likelihood ratio tests (LRTs) and assessing
their significance using a c2 distribution (two degrees of
freedom [df] for M1a vs. M2a; one df for M8 vs. M8a).
For the comparison of M8 vs. M8a, we halved the p-
value as suggested by [38]. A Bayes Empirical Bayes
(BEB) analysis was implemented to calculate posterior
probabilities of positively selected sites using the M2a
and M8 models as described in [38]. An individual site
was considered to have undergone positive selection (ω
> 1), if the posterior probability was ≥0.95. Variation in
ω among branches was examined using the free-ratio
model in which each branch of the tree was given a
separate ω-value. The fit of the free-ratio model was
compared to model M0 in which all branches in the
tree were assigned the same ω value using the LRT with
20 degrees of freedom for the whole MCPH1 data set.
To further investigate selection on exon 8 of MCPH1,

for which 38 cetacean species were sequenced (Addi-
tional File 1: Table S1), all intronic sequence was
deleted, as well as sequence downstream of a stop
codon found near the 3’ end of exon 8 in monodontids
(see Additional File 1). All “exon 8” analyses were imple-
mented using a species tree and also a gene tree derived
from phylogenetic analysis of the MCPH1 data. The spe-
cies tree employed was a composite gathered from sev-
eral sources [39-42]; the gene tree for PAML analyses
was the optimal topology recovered by maximum likeli-
hood (ML) analysis and was consistent with the 50%
majority rule consensus of Bayesian trees. In both the
species tree and the gene tree, Loxodonta, Euarchonto-
glires, and Laurasiatheria were treated as a basal trichot-
omy. The ratio ω was then estimated in the codeml

program of PAML 4.0 [38], as described above for the
complete coding sequence of MCPH1. Separate analyses
were conducted using the site models for all mammals,
cetaceans only, odontocetes only, delphinids only, mysti-
cetes only, primates only, and all mammals excepting
cetaceans and primates. By analyzing various subclades
of mammals using the site models, the goal was to
determine whether evidence for positive selection is a
general feature of MCPH1 in mammals, or is instead
restricted to only certain mammalian lineages. In addi-
tion, analyses using the species tree and gene tree were
also conducted for the “reduced exon 8” data set (see
above).
For the taxon-rich exon 8 alignment, ω was also esti-

mated for individual branches and groups of branches
[38]. Several branch model analyses were conducted
including a free-ratio model (all branches separate),
two-ratio models in which one branch was given a sepa-
rate ω (repeated for the branch leading to the last com-
mon ancestor [LCA] to each of the following groups:
Cetacea, Mysticeti, Odontoceti, Delphinoidea, Delphini-
dae, as well as each of the terminal branches leading to
Physeter and Orcinus), and two-ratio models in which
one stem-based clade was given a separate ω (repeated
for Cetacea, Mysticeti, Odontoceti, Delphinoidea, and
Delphinidae). All models listed above were tested against
a one-ratio model (M0) using LRTs and 1 df. Branch
models with p ≤ 0.004 (0.05/13) after Bonferroni correc-
tion for multiple tests were interpreted as having a sig-
nificantly different ω on the “foreground” branches of
interest in comparison to the “background” ω on all
remaining branches of the tree. Comparisons between
background branches and foreground branch(es) at the
base of lineages or within whole clades were conducted
to test whether the pattern of selection on these
branches was significantly distinct from the rest of the
tree. Branches were selected for comparison due to their
proposed relation to an evolutionary change in relative
and/or absolute brain size. For example, in the case of
Odontoceti and Delphinoidea, Marino et al. [8] pro-
posed that these clades mark shifts associated with
increases in relative brain size. Delphinidae was selected
due to the high relative brain size of multiple species
within the clade [8]. The branches leading to Mysticeti,
Physeter, and Orcinus were also tested because these
lineages terminate at species with large absolute brain
sizes [8,9] (Figure 1, Additional File 1: Table S2). For all
PAML branch models, both a species tree and the
MCPH1 gene tree were used as input trees.

Variation of MCPH1 within Cetacean Species
We recorded heterozygous sites for each cetacean
MCPH1 sequence that was generated in this study. Sites
in sequencing chromatograms that showed nearly equal
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height peaks for two different bases at the same position
were considered true heterozygous sites (i.e., due to
divergent alleles that were PCR-amplified from that spe-
cimen). The position (first, second, or third codon) and
the nature (synonymous or nonsynonymous, transition
or transversion, etc.) of change at each heterozygous site
were noted, and this variation within species was com-
pared to the pattern of nucleotide substitution in
MCPH1 between cetacean species. For Tursiops trunca-
tus and Delphinus capensis, we compared sequences
derived from two individuals of each species and
checked for intraspecific variation in MCPH1.

Analysis of Associations Between ω and Phenotype
To test prior hypotheses of association between ω and
phenotype, we compiled data on absolute brain and
body mass for 27 cetaceans for which we had molecular
data; these traits vary widely among extant cetaceans
(Figure 1). Absolute brain and body mass data came
from multiple, previously published sources [8,9,43,44].
For Platanista minor, we used measurements derived
from the very close relative, Platanista gangetica [42,43].
Because some body masses above came from individual
animals and may not represent the full size range of a
particular species, we also gathered data on maximum
body size from species accounts in [45]. In addition, a
measure of relative brain mass, the encephalization quo-
tient (EQ), was calculated for each species using a stan-
dard allometric equation of mammalian brain mass vs.
body mass from [1]: EQ = brain mass/0.12 (body mass)
0.67. Absolute brain size, body size, maximum body size,
and EQ were then log-transformed for statistical analysis
(see below). Morphological data were deposited online
in Supplemental Table S2.
We used the method of [25] to assess associations

between ω and various phenotypic variables: absolute
brain mass, absolute body mass, maximum body mass
derived from [45], and EQ. For each of the 27 cetacean
species that were scored for phenotypic data (see
above), we calculated the average “root-to-tip” ω along
branches extending from the last common ancestor of
Cetacea to each extant cetacean species in our dataset.
This approach has the advantage of producing a mea-
sure of selection that takes the entire evolutionary his-
tory of a lineage from a common ancestor into account
and which is a property of the species tips in a way that
is more comparable with extant phenotypes. This proce-
dure also negates the issue of temporal effects on ω
[25]. Root-to-tip ω values were estimated in PAML 4.0
[38] using a 2-rate branch model and the species tree of
[42]. Phylogenetically controlled regression analyses of
log-transformed root-to-tip ω versus each log-trans-
formed morphological variable were performed using
BayesTraits [46,47] and the time-calibrated tree of [42]

to explicitly test for gene-phenotype associations. The
significance of the regression analyses was determined
using a one-tailed t-test in the positive direction, in
order to test the hypothesis that there is a positive rela-
tionship between estimated selection pressure on
MCPH1 (ω) and the phenotypic variables as in [25].
Each regression was performed across all cetaceans and
just within the Odontoceti.
In addition to the EQ, we also explored two other

methods of assessing relative brain size. In the first
method, we calculated residuals from a regression
between brain and body mass and used these in a subse-
quent regression analysis with root-to-tip ω. In the sec-
ond method, we performed a multiple regression of
brain and body mass with root-to-tip ω. Both of these
approaches produced similar results to the regression
using the EQ, and are not shown here.

Results
Characterization and Phylogenetic Analysis of MCPH1
The alignment of the entire protein-coding region of
MCPH1 consisted of 2571 bp with 31 indels that were
in frame and 3-33 bp (multiples of three) in length. Of
the complete sequences, protein translations ranged
from 822 amino acids (aa) in length in Mus to 842 aa in
Callithrix. Phylogenetic analyses were performed using
the exon 8 data set. The topology of the ML tree and
the Bayesian consensus trees were congruent (Figure 2;
Additional File 1: Figure S1, Figure S2). Most higher-
level relationships among mammalian orders and subor-
ders were consistent with those of large comprehensive
data sets [39,40]. Many higher-level relationships within
Cetacea supported by MCPH1 (Figure 2) were congru-
ent with the supermatrix of [42]; however, some rela-
tionships differed, especially within Delphinidae. For a
more detailed description of the alignment and phyloge-
netic results, see Additional File 1.

Molecular Evolution of MCPH1
For the MCPH1 whole gene data set, site models that
incorporated positive selection (M2a and M8) were sig-
nificantly better fits to the data (p < 0.001) than corre-
sponding nearly neutral models (M1a and M8a).
Overall, model M2a assigned 3.43% of codons to the
class of positively selected sites (ω = 2.334), and model
M8 assigned 12.40% to the positive selection class (ω =
1.644). Both models M2a and M8 yielded three sites
that had high probabilities (≥0.95 in BEB analysis) of
belonging to the class of sites with ω > 1 (308, 398,
and 521), all of which were located in the IBS region
between the BRCA1 C-terminal (BRCT) domains.
None of the three positively selected sites showed evi-
dence of convergence in amino acid sequence between
primates and cetaceans. Analyses using branch models
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revealed that the free ratio model, in which each
branch had a unique ω, was significantly better (p<
0.0001) than the model in which all branches were
constrained to have the same ω. The free-ratio model
revealed two branches with ω > 1: the branch leading
to the LCA of Hominidae and the terminal branch
leading to the bottlenose dolphin Tursiops (Figure 3).

The greatest ω was on the branch leading to the LCA
of Hominidae (ω = 3.022; 12.1 nonsynonymous substi-
tutions and 1.6 synonymous substitutions), and evi-
dence of ω > 1 along this branch agrees with other
studies [16,19]. The ω for the terminal branch leading
to Tursiops (1.271; 175.9 nonsynonymous substitutions
and 54.4 synonymous substitutions) is marginally

0.005  substitutions/site
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Sotalia fluviatilis
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Figure 2 Relationships among cetaceans in the maximum likelihood (ML) gene tree for MCPH1 based on the exon 8 data set. The
phylogram of the whole tree that includes Primates and other terrestrial mammals is presented in Additional file 1, Figure S2. The cetacean part
of the tree is illustrated here and shows well-supported nodes within Cetacea (red dots = ML bootstrap ≥70% and Bayesian posterior probability
(with and without indels) ≥ 0.95). Higher level taxa are delimited by brackets to the right.
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greater than the value expected for a complete absence
of selective constraints (ω = 1.000).
Using the coding sequences in the more taxon-rich

exon 8 data set of all mammals, both site models incor-
porating positive selection (M2a and M8) again were
significantly better (both p < 0.001) than corresponding
models that only incorporate nearly neutral evolution
(M1a and M8a; Table 1); This was true whether the spe-
cies tree (Table 1) or the MCPH1 gene tree (Additional
File 1: Table S3) was used (in the remainder of the
paper, we refer primarily to results using the species
tree; gene tree models were highly consistent with
results using the species tree). The class of sites with ω
> 1 for the M8 model (14.0% of sites) was characterized
by an ω that was significantly greater than 1 (ω = 1.
721). M2a and M8 identified one and seven sites,
respectively, with an ω > 1 using the BEB method
(Table 1). Among sites identified as having an ω > 1,
parallel changes in amino acid sequence were not shared

between any cetacean and any primate. The mean ω for
sites in Model M2a was ω = 0.858 for exon 8. The
reduced data set produced similar results (not shown)
and identified the same sites under positive selection.
We performed further tests to determine whether evi-

dence for positive selection was restricted to different
subclades of our tree, or alternatively whether positive
selection is a general feature that characterizes the evo-
lution of MCPH1 in the mammalian lineages sampled
here. According to models M2a and M8, clades that
showed strong evidence for positive selection acting at a
subset of sites included Primates, Cetacea, Odontoceti
(species tree only), Delphinidae, and all mammals
excepting cetaceans and primates (M8 only) (Table 1).
Both site models did not indicate positive selection
within Mysticeti, but only four mysticete sequences
were sampled here, and this is well below the recom-
mended number for robust tests of positive selection
using models M2a and M8 [38].
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0.544

0.270
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0.790

0.168
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0.387

0.790

0.391
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0.190

Figure 3 Selection intensity estimates for species with complete MCPH1 sequences. Phylogenetic relationships are derived from [40,41].
The ω estimates for individual branches according to the “free ratio model” are shown. ω values for the entire protein-coding region of MCPH1
are above branches, and ω values that were estimated after exclusion of exon 8 are shown below branches. Red branches mark lineages with ω
> 1. The branch that terminates at the cetacean, Tursiops, was the only branch with ω > 1 for the whole MCPH1 gene and after removal of the
highly variable exon 8 from analysis.
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Table 1 Results for site model analyses using the species tree derived from multiple sources [39-42]

Avg. Prop. sites ω sites with Sites under positive selection

Model -ln L ω ω > 1 ω > 1 (p > 0.95, BEB)

All mammals:

M1a 15880.84 0.757

M2a 15869.046 0.858 0.07 2.063 362

M8 15863.642 0.829 0.14 1.721 112, 132, 172, 205, 209, 247, 362

M8a 15877.044 0.737

M1a v. M2a: df = 2, -2ΔlnL = 23.587, p < 0.001

M8 v. M8a: df = 1, -2ΔlnL = 26.804, p < 0.001

All cetaceans:

M1a 3913.4037 0.7975

M2a 3903.628 0.9548 0.021 6.767 89, 362

M8 3903.6499 0.9458 0.072 6.564 89, 362

M8a 3913.4114 0.8017

M1a v. M2a: df = 2, -2ΔlnL = 19.551, p < 0.001

M8 v. M8a: df = 1, -2ΔlnL = 19.523, p < 0.001

All odontocetes:

M1a 3519.5486 0.7351

M2a 3514.0255 0.9211 0.046 4.583 89

M8 3514.0265 0.923 0.045 4.635 89, 195

M8a 3519.5486 0.7351

M1a v. M2a: df = 2, -2ΔlnL = 11.046, p < 0.001

M8 v. M8a: df = 1, -2ΔlnL = 11.044, p < 0.001

All delphinids:

M1a 2251.6189 0.548

M2a 2236.8709 0.9868 0.028 14.257 20, 89, 195

M7 2251.7481 0.5

M8 2236.871 0.9887 0.045 14.308 20, 89, 195

M8a 2251.6189 0.5479

M1a v. M2a: df = 2, -2ΔlnL = 29.496, p < 0.001

M8 v. M8a: df = 1, -2ΔlnL = 29.496, p < 0.001

All mysticetes:

M1a 1690.448 1

M2a 1688.2783 1.5764 0.014 41.761 None

M8 1690.448 1.5764 0.014 41.757 None

M8a 1690.448 1

M1a v. M2a: df = 2, -2ΔlnL = 4.339, p = 0.114

M8 v. M8a: df = 1, -2ΔlnL = 0, p = 1.0

All primates:

M1a 5103.5715 0.6245

M2a 5098.7948 0.728 0.065 2.608 None

M8 5098.9315 0.7297 0.132 2.13 209, 309

M8a 5103.5982 0.6244

M1a v. M2a: df = 2, -2ΔlnL = 9.553, p = 0.008

M8 v. M8a: df = 1, -2ΔlnL = 9.333, p = 0.005
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For the exon 8 data set, several branch model compar-
isons were executed (Table 2). We compared model M0
(one ω across the whole tree) to the free-ratio model in
which all branches had separate ω values; the parameter
rich free-ratio model was not a significantly better fit
than M0 (p = 0.464; Table 2). Of the two-branch models
explored here (see Methods), three “foreground”
branches or sets of foreground branches showed evi-
dence of ω greater than 1: the branch leading to the
LCA of Mysticeti (ω = 1.340; ω = 3.115 for the gene
tree), the set of all mysticete branches (ω = 1.838), and
the terminal branch that connects to Physeter (ω =
1.447). Although ω was high for foreground branches in
these various two branch models, fit was not signifi-
cantly better than model M0 (one ω) following Bonfer-
roni corrections. In mysticetes, ω was generally high but
not significantly greater than 1 according to the LRT
(Table 2).

MCPH1 Polymorphism in Cetacea
A total of 38 sites in exon 8 were heterozygous in at
least one of the cetacean species sampled here; 14

species showed allelic variation. Parsimony optimization
of this variation onto the MCPH1 gene tree (Figure 2)
suggests that 22 nonsynonymous and 18 synonymous
changes can account for the intraspecific variation (28
transitions and 12 transversions). None of the 40 point
mutations included changes to a stop codon. Ten
changes were at first codon positions, 10 at second
positions, and 20 at third positions; some of the allelic
differences were shared among closely related species in
our sample (e.g., between Delphinus delphis and
D. capensis).
A comparison between substitutions that characterize

change among cetacean species and polymorphic muta-
tions within cetacean species indicated that a greater
proportion of substitutions among species were nonsy-
nonymous than within species (326 nonsynonymous and
154 synonymous estimated using model M0 for the spe-
cies tree of [42] versus 22 nonsynonymous and 18
synonymous changes within species). The larger propor-
tion of nonsynonymous change across the cetacean phy-
logeny (68%) relative to the proportion of
nonsynonymous mutations within species (55%) is con-
sistent with positive selection [48], but much more
extensive sampling of MCPH1 variation within species is
necessary to rigorously test this hypothesis in the future.

Association of ω with Phenotype
We explicitly tested the hypothesis that selection inten-
sity on MCPH1, as represented by root-to-tip ω (Addi-
tional File 1: Table S2), was positively correlated with
different measures of brain and body size in cetaceans.
Based on phylogenetically controlled regression analyses,
we found no significant association between ω and abso-
lute brain mass or EQ (Table 3). There is a significant
association with absolute body mass, (p = 0.024; Table 3)
and a non-significant trend with brain mass across all
cetaceans, which suggests a closer relationship between ω
and overall body size. However both regression coeffi-
cients are low, and when mysticetes are excluded the
associations become weaker, implying that these large-
bodied species have a major effect on results (Table 3).
To further explore the relationship between selection on

Table 1 Results for site model analyses using the species tree derived from multiple sources [39404142] (Continued)

No cetaceans/primates:

M1a 8990.4108 0.7309

M2a 8987.9053 0.8132 0.059 2.17 None

M8 8980.7366 0.7764 0.117 1.82589 None

M8a 8986.2851 0.7017

M1a v. M2a: df = 2, -2ΔlnL = 5.011, p = 0.082

M8 v. M8a: df = 1, -2ΔlnL = 11.010, p = 0.002

Each data set is listed separately with models, likelihood score (-lnL), average ω, the proportion of sites in the site class with ω > 1, the ω estimate for the site
class with ω > 1, and the specific sites with ω > 1 using the Bayes empirical Bayes (BEB) procedure. Likelihood ratio tests for site models are also shown below
for each data set with degrees of freedom (df), likelihood ratio (-2ΔlnL), and p-value. Statistically significant p-values are shown in bold.

Table 2 Branch models

Model -ln L p (GT) ω (GT) -ln L p (ST) ω
(ST)

Cetacea 15867.095 0.534 0.963 15996.857 0.545 0.962

Mysticeti 15865.373 0.050 3.115 15996.264 0.213 1.340

Odontoceti 15867.250 0.781 0.639 15997.024 0.858 0.767

Physeter 15867.035 0.477 1.328 15996.698 0.408 1.447

Delphinoidea 15867.288 0.994 0.768 15997.023 0.854 0.785

Delphinidae 15867.268 0.840 0.730 15996.491 0.295 0.440

Orcinus 15866.947 0.409 0.428 15996.963 0.695 0.613

All cetaceans 15865.290 0.046 0.940 15995.134 0.051 0.930

All mysticetes 15864.062 0.011 1.840 15993.772 0.011 1.838

All odontocetes 15866.791 0.319 0.861 15996.583 0.340 0.854

All delphinoids 15867.261 0.816 0.789 15997.020 0.840 0.759

All delphinids 15867.026 0.469 0.899 15996.952 0.675 0.829

Free ratio 15797.540 0.310 15929.589 0.464

These are listed with likelihood score (-ln L), p-value of likelihood ratio test v.
M0, and ω for the foreground branches when applicable. Results are shown
for analyses using the MCPH1 gene tree as well as the species tree.
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MCPH1 and phenotypic evolution, we performed a mul-
tiple regression with root-to-tip dN and root-to-tip dS
(log-transformed) for both absolute body and brain mass
across cetaceans, in order to partition out the effects of
dN and dS. dN was not significantly positively associated
with either phenotype (body mass: t23 = 0.803, p = 0.215;
brain mass t23 = 0.521, p = 0.304), whereas dS was signifi-
cantly negatively associated with both (body mass: t23 =
2.498, p = 0.010; brain mass t23 = 2.022, p = 0.027). The
negative relationship between dS and body mass is con-
sistent with the conclusions of previous studies which
show that the neutral rate of molecular evolution is asso-
ciated with body mass and life history traits such as gen-
eration time and life span [49,50]. Hence, we cannot rule
out the possibility that the weak associations observed
reflect variation in the neutral substitution rate, which is
associated with body size, rather than adaptive evolution.

Discussion
MCPH1 as a Phylogenetic Marker in Mammals
Despite, or because of its molecular evolutionary
dynamics, exon 8 of MCPH1 performed well as a phylo-
genetic marker at both deep and shallow nodes (Figure 2;
Additional File 1: Figure S1, Figure S2). Most relation-
ships among mammalian orders and supraordinal clades
in the MCPH1 tree are congruent with analyses sup-
ported by much larger data sets [39,40], and 15 clades
within Primates are characterized by high support scores
and congruence with comprehensive phylogenetic

hypotheses for this group [41,51] (Additional File 1:
Figure S2). We also obtained good resolution within
Cetacea (Figure 2), as compared to a recent supermatrix
analysis of data from over 50 genes [42]. Overall, the con-
gruence of our MCPH1 topology (Figure 2; Additional
File 1: Figure S1, Figure S2) with published results is
impressive, and is consistent with some previous studies
which showed that highly variable nuclear genes with
extensive amino acid replacements and evidence of posi-
tive selection can be efficient phylogenetic markers
[52,53].

The Evolution of MCPH1 across Mammals
Cetaceans, especially odontocetes, display multiple neu-
roanatomical and behavioral similarities with primates.
Representatives of both groups have evolved large brains
relative to their body sizes as well as highly complex
cognitive abilities [9,10], although some researchers dis-
pute this latter point [13]. In addition, cetaceans show
similarities with great apes in brain histology, neural
connectivity, and enlargement of specific parts of the
brain associated with cognition and social awareness
[54], as well as extensive gyrification, or folding of the
cerebral cortex [10,54]. Due to their convergence in
multiple neurological and behavioral features, cetaceans
present an obvious test of the hypothesis that MCPH1 is
related to the evolution of large brain size in mammals.
Analysis of the full coding sequence of MCPH1

(Figure 3) revealed high ωs on the stem branch to

Table 3 Regression analyses

A)

Analysis n R2 t-statistic p-value
(1 tailed positive)

All Cetaceans

ω vs. brain mass 27 0.100 1.663 0.054

ω vs. EQ 27 0.105 -1.710 1.000

ω vs. body mass 27 0.148 2.087 0.024

ω vs. max body mass 27 0.112 1.776 0.044

Toothed Whales only

ω vs. brain mass 25 0.064 1.249 0.112

ω vs. EQ 25 0.031 -0.860 1.000

ω vs. body mass 25 0.079 1.408 0.086

ω vs. max body mass 25 0.084 1.454 0.079

B) dN dS

Analysis n R2 t-statistic p-value
(1 tailed positive)

t-statistic p-value
(1 tailed negative)

All Cetaceans

Body mass vs. dN &dS 27 0.231 0.803 0.215 -2.498 0.010

Brain mass vs. dN &dS 27 0.173 0.521 0.304 -2.022 0.027

A) Regression analyses using BayesTraits of root-to-tip ω (dN/dS) versus absolute brain mass, relative brain mass (encephalization quotient = EQ), absolute body
mass, and maximum body mass derived from [45]. Results are shown for all cetaceans and toothed whales only. B) Multiple regression analyses of absolute brain
mass and absolute body mass versus dN (rate of nonsynonymous substitution) and dS (rate of synonymous substitution).
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hominid primates and also on the terminal branch lead-
ing to the bottlenose dolphin Tursiops. Very high aver-
age ω over the entire protein-coding sequence of a gene,
especially one this long (~2500 bp), is rare, as indicated
by comparisons across complete genome sequences of
different species (e.g., [55]). The high ω on the cetacean
branch, in combination with the superior fit of positive
selection models to the MCPH1 data relative to nearly
neutral models, suggests a persistent signal of positive
selection since the bottlenose dolphin lineage split from
Bos taurus (Ruminantia). Comparative analyses of
MCPH1 sequences did not reveal evidence for precise
site-specific convergent molecular evolution of MCPH1
between cetaceans and primates at the amino acid level
in either the whole gene or exon 8 data sets. However
for exon 8, seven sites were identified as evolving under
positive selection in Boreoeutheria (Table 1). Changes at
positively selected sites, inferred using the site models,
were not restricted to either Primates or Cetacea sug-
gesting that the gene may have an important evolution-
ary role across mammals (Table 1). Further detailed
analysis of other mammalian clades will be needed to
determine how extensive positive selection has been on
MCPH1.

The Evolution of MCPH1 within Cetacea and its Relation
to Brain Size
With the inclusion of more species in the exon 8 data
set, estimated ω ratios revealed a more complex pattern
of evolution in cetaceans. In general, exon 8 had a rela-
tively high mean ω across mammals (Table 1) and ω
within Cetacea was elevated relative to the remaining
branches in the tree (Table 2). Both Odontoceti and
Delphinoidea represent clades in which shifts to larger
relative brain sizes have been proposed, and the highest
EQs are restricted to members of Delphinidae [10].
However, our comparative analyses of MCPH1 did not
reveal especially high ω scores on the branches leading
to the LCAs of Cetacea, Odontoceti, Delphinoidea, or
Delphinidae (Table 2). Absence of strong evidence for
positive selection in these lineages does not match the
evolutionary change of the EQ in which there is a large
increase in relative brain size along the lineage leading
from the LCA of Cetacea to the LCA of Delphinidae
[10]. Regression analyses agreed with these results, find-
ing no robust associations between ω and absolute or
relative brain size (Table 3).
Some of the largest ω scores, according to the branch

models, were recorded along the branch leading to the
LCA of mysticetes and across all mysticete branches
(Table 2). This is contrary to the hypothesis that selec-
tion in MCPH1 is related to an increase in relative brain
size [16,19], as mysticetes have smaller brains than
expected given their body size compared to the

mammalian average [2]; however, it does not rule out
that MCPH1 may be linked to overall change in EQ
within cetaceans. Although mysticetes have low EQs,
the brains of these cetaceans have the largest absolute
mass in the animal kingdom, aside from elephants and
the odontocete Physeter macrocephalus (giant sperm
whale; Figure 1) [10]. It has been argued that the mole-
cular evolution of genes involved in the proliferation of
neural progenitor cells should bear a closer relation to
absolute brain size than relative brain size [25]; if
MCPH1 has had such an evolutionary role we may then
expect it to have high rates of evolution during the evo-
lution of the largest cetaceans (Figure 1). Both the
ancestral mysticete branch and the Physeter terminal
branch have high ω (Table 2), but the branch leading to
the very large delphinid, Orcinus orca which dwarfs
most extant and extinct oceanic dolphins (Figure 1), did
not show an extreme ω for MCPH1 in comparison to
dolphins with much smaller brain and body sizes (Table
2; Additional File 1: Table S2). Our regression analyses
do not support a robust association of ω with absolute
brain mass, so we cannot confidently say that the high
ω in mysticetes is causally related to selection for large
brain size. Indeed, a stronger association was found
between root-to-tip ω and body mass and therefore we
cannot exclude body mass, or other correlated traits,
from being the relevant phenotype. Our multiple regres-
sions with dN and dS furthermore suggest that these
trends may be driven largely by variation in dS, instead
of dN, perhaps related to variation in life history traits
which affect the rate at which neutral variants are fixed
[49,50].
The lack of association between brain size and the

evolution of MCPH1 found in cetaceans agrees with the
conclusions drawn from a recent study of anthropoid
primates which showed that MCPH1 is not associated
with the evolution of either absolute or relative brain
size [25], despite the clear critical importance of
MCPH1 in brain development. Together these studies
question the commonly held assumption that this locus
has a direct role in the evolution of brain size as a gross
measure [16,19,56]. While we cannot rule out more
nuanced roles in brain evolution, the phenotypic rele-
vance of positive selection on this locus is currently an
outstanding issue.
MCPH1 is expressed in many other tissues [32], and

mutations in MCPH1 have been discovered in cancerous
tumors [27]. Some mysticetes have very long lifespans
[57], are the largest animals that have yet evolved, and
are characterized by a very high fetal growth rate [58].
Given that MCPH1 functions in cell cycle regulation
and DNA damage repair [24], it is plausible that positive
selection in mysticetes and other mammals is related to
the evolution of other phenotypes such as the rate of
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growth, absolute number of cells, or tumor suppression
in very large organisms with long lifespans, although
these hypotheses are currently speculative. Some evi-
dence, presented here, suggests that positive selection
has acted on this locus in non-primate, non-cetacean
mammals (Table 1 - model M8). It may therefore be
possible to study the evolutionary function of MCPH1,
and to test these hypotheses, in more experimentally
tractable organisms such as rodents.

Conclusions
Extant cetacean species are characterized by a very broad
range of body sizes and brain sizes, among the greatest
variation seen in any mammalian order (Figure 1).
Although this study did not find evidence for a statisti-
cally significant association between selection intensity
(ω) in MCPH1, a gene associated with microcephaly, and
absolute or relative brain size in cetaceans (Table 3),
some intriguing patterns emerged from detailed phyloge-
netic and molecular analyses of MCPH1. Evolutionary
models that included parameters for positive selection
consistently fit the MCPH1 sequence data significantly
better than alternative models of negative selection and
neutral change (Table 1). Using complete sequences of
MCPH1, we identified ω > 1 in only two cases, along the
lineage leading to Tursiops (bottlenose dolphin) and also
on the branch leading to Hominidae (human, gorilla,
chimp, and orang). Furthermore, analysis of a larger data
set of cetacean sequences derived from the hypervariable
exon 8 again indicated a very high average ω within Ceta-
cea, with the largest ω values in Mysticeti, a group char-
acterized by low EQ but large absolute brain and body
weights. Despite finding strong evidence for positive
selection having acted on a gene which has a key role in
brain development, we found no compelling evidence to
support the hypothesis that there is an association
between the evolution of this locus and the evolution of
brain size in cetaceans. This is in agreement with results
from anthropoid primates, and suggests that positive
selection on MCPH1 may be related to change in pheno-
types other than gross brain size.

Additional material

Additional file 1: Supplemental Information. This includes
Supplemental Methods, Supplemental Results, Supplemental Appendix I,
Supplemental Tables S1, S2, S3 and Supplemental Figures S1, S2.
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