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Abstract 

Abrupt environmental changes can lead to evolutionary shifts in trait evolution. Identifying these shifts is an impor-
tant step in understanding the evolutionary history of phenotypes. The detection performances of different meth-
ods are influenced by many factors, including different numbers of shifts, shift sizes, where a shift occurs on a tree, 
and the types of phylogenetic structure. Furthermore, the model assumptions are oversimplified, so are likely to be 
violated in real data, which could cause the methods to fail. We perform simulations to assess the effect of these 
factors on the performance of shift detection methods. To make the comparisons more complete, we also propose 
an ensemble variable selection method (R package ELPASO) and compare it with existing methods (R packages ℓ
1ou and PhylogeneticEM). The performances of methods are highly dependent on the selection criterion. ℓ1ou+pBIC 
is usually the most conservative method and it performs well when signal sizes are large. ℓ1ou+BIC is the least con-
servative method and it performs well when signal sizes are small. The ensemble method provides more balanced 
choices between those two methods. Moreover, the performances of all methods are heavily impacted by measure-
ment error, tree reconstruction error and shifts in variance.

Keywords Evolutionary shift detection, Ornstein-Uhlenbeck model, LASSO, Trait evolution, Ensemble method, 
Phylogenetic comparative methods, ELPASO

Introduction
Understanding the evolutionary process of species is 
an important task in phylogenetic comparative studies. 
Felsenstein [1] is the first to introduce Brownian Motion 
(BM) to model the evolution of a continuous trait. BM 
models have been used in many evolutionary studies, 
such as flower size evolution [2], genome size evolution 
[3], the spread of HIV-1 in central Africa [4], and mam-
malian life history traits [5]. Hansen [6] proposed to use 
an Ornstein-Uhlenbeck (OU) processes to model evolu-
tion with natural selection. Unlike the BM process, the 

variance of the OU process in traits is bounded, which 
is more realistic [7]. Therefore, OU processes are now 
widely used in many evolutionary studies, including 
character displacement in Lesser Antillean Anolis Liz-
ards [7], and HIV-1 heritability [8].

Butler and King [7] formulate the multiple optima 
OU model for adaptive evolution in which optima dif-
fer between branches, and remain constant along an 
evolutionary path until discrete events where changes 
in selective regime occur. They use hypothesis testing to 
test whether the optima are different between groups. 
The changes can be modeled as shifts in the parameters 
of the OU processes. The shifts in optima are believed to 
be correlated with abrupt environmental changes [9, 10]. 
For example, Jaffe et  al. [11] investigate the relationship 
between the difference in optimal body sizes and habi-
tat changes for turtles. Therefore, by detecting shifts in 
optima based on observed traits, we can get knowledge 
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of unobserved historical environmental changes and 
better understand the evolutionary process of species. 
Using statistical models to detect the evolutionary shifts, 
where the shifts have occurred and the size of the shifts, 
becomes an important problem to be solved.

There are some existing approaches to address this 
problem. Uyeda and Harmon [12] propose a Bayesian 
framework to detect shifts in the selective optimum of 
OU models. However,the computation cost of Bayesian 
approaches is relatively high. We will focus on frequen-
tist approaches in this paper. Ho and Ané [13] illustrate 
the limitation of traditional model selection criteria 
(AIC, BIC) in the shift detection task and propose to 
use forward-backward selection with modified BIC [14]. 
Khabbazian et al. [15] formulate the shift detection prob-
lem into a variable selection problem and combine the 
OU model with LASSO to detect the shift points, which 
they implement in the ℓ1ou R package. Bastide et al. [16] 
develop a maximum likelihood estimation procedure 
based on the EM algorithm (implemented in the R pack-
age PhylogeneticEM).

Recently, ensemble methods have been widely applied 
to variable selection problems [17–19]. Ensemble feature 
selection can add more diversity to selected variables 
and produce robust variable selection results [20]. In this 
paper, we propose an ensemble variable selection method 
for shift detection and compare it with existing methods 
implemented in the PhylogeneticEM and ℓ1ou packages. 
We have implemented our method in a new R package, 
ELPASO (Ensemble LASSO for Phylogenetic Analysis 
of Shifts with OU). It is available at https:// github. com/ 
Wensh aZ/ ELPASO.

The main target of this paper is to compare the detec-
tion performances of different methods under the influ-
ence of various factors. Many factors influence the 
detection performances of different methods, including 
different numbers of shifts, different shift sizes, where a 
shift occurs on a tree (near the root; in the middle; near 
the tip), and the types of phylogenetic structure. Fur-
thermore, the violations of the model assumptions could 
bring challenges to the shift detection task. In order to 
describe the influence of the factors, we perform simu-
lations under various scenarios. The simulation results 
show that the most conservative methods perform well 
when the signal sizes are large for selecting a limited 
number of false positive shifts. In contrast, the least con-
servative methods perform well when the signal sizes are 
small for selecting a larger number of true positive shifts. 
How conservative a method is mostly depends on the 
selection criterion. pBIC [15] is a more conservative cri-
terion than BIC. ℓ1ou+pBIC is usually the most conserv-
ative method and performs well in cases with large signal 
sizes. ℓ1ou+BIC is the least conservative method and 

performs well when signal sizes are small. The ensemble 
methods provide more balanced choices between those 
two methods. From the simulations with model mis-
specification, we show that the measurement error, tree 
construction error and shift in diffusion variance will 
bring challenges to the shift detection task, leading to the 
failure of the existing methods.

The remainder of this paper is organized as follows. 
“Shift detection for trait evolution models” section intro-
duces the problem formulation of the shift detection 
task as a variable selection problem, and presents the 
methodology of ℓ1ou, PhylogeneticEM and our ensem-
ble method. “Simulations without model mis-speci-
fication”  section shows our simulation results for the 
different methods on simulated data under assumed OU 
models. In order to better evaluate the performance, we 
use three different criteria: true positive and false positive 
shifts detected, predictive log-likelihood on a test data 
set, and Adjusted Rand Index. We discuss the effect of 
number of shifts, shift size, shift position and tree shape 
on the performances of detection methods. “Simula-
tions with model mis-specification” section compares the 
methods when the model assumptions are not satisfied. 
Previous simulation studies often ignore this scenario. 
However, in practice, the model assumptions are usually 
violated. Finally, “Conclusion”  section provides conclu-
sions and discussion.

Shift detection for trait evolution models
Trait evolution models
The trait evolution process on a phylogenetic tree 
describes the changes in traits through generations. Each 
species has a certain value of the trait. And the trait val-
ues of different species are correlated because of their 
shared ancestry which is represented by a phylogenetic 
tree. We only observe the trait values at the tips of the 
tree. In this paper, the tree is assumed to be separately 
estimated from sequence data, and is treated as known.

Trait evolution models are used to model how the trait 
values change over time. Brownian Motion and Ornstein-
Uhlenbeck are two commonly used models to model the 
evolution of continuous traits. Let Y denote the vector 
of observed trait values at the tips, Yi as the trait value of 
taxon i. These two models assume that conditioning on 
the trait value of a parent, the evolutionary processes of 
sister species are independent. So we only need to specify 
the model on one branch. For a single branch, we let Y(t) 
denote the trait value at time t.

Brownian motion model
Felsenstein [1] proposed to use Brownian motion (BM) 
to model the evolution of continuous traits over time. 
Trait values of sister lineages start at the trait value of 
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their most recent common ancestor and evolve indepen-
dently following a BM model. The result of this model is 
that the correlation between the trait values of two spe-
cies depends only on the evolution time they shared. 
Under this model, the observed trait values Y follow a 
multivariate Gaussian distribution. For an ultrametric 
tree of height 1, each yi has mean µ0 and variance σ 2 , and 
the covariance between yi and yj is σ 2tij , where tij is the 
shared evolution time between species i and j.

Ornstein‑Uhlenbeck model
The variance of the BM model is unbounded, which is 
considered unrealistic. The OU model [6], on the other 
hand, incorporates a selection force that pulls the trait 
value toward a selective optimum θ . This model is pref-
erable to the BM model because of its more realistic 
assumptions. An OU process Y(t) is defined by the fol-
lowing stochastic differential equation

where dY(t) is the infinitesimal change in trait value; B(t) 
is a standard BM; σ 2 measures the intensity of random 
fluctuation; θ(t) is the optimal value of the trait at time t; 
and α ≥ 0 is the selection strength. When α = 0 , the OU 
process is the same as a BM. We assume that α and σ are 
constant.

Shift detection as a linear model selection problem
For the OU model, the assumption that the optimal value 
θ(t) is constant throughout the tree is not realistic, as dif-
ferent trait values are suited for different environments 
and evolutionary strategies. A more practical model 
allows the optimal value θ(t) to shift at certain posi-
tions on the tree. Hansen [6] proposed a heterogenous 
OU model to allow different optimal values on differ-
ent branches. Shifts are noncontinuous changes in the 
optimal value during the evolution process. A shift on a 
branch of the phylogenetic tree would influence all the 
species under that branch. Our goal here is to find the 
positions of shifts and estimate the changes in optimal 
trait value, θ , at the shifts. We assume that any shift in 
optimal value only occurs at the beginning of the branch, 
therefore the optimal value is constant along a single 
branch. Let θb denote the optimal value on branch b 
and tstart(b) the age of the beginning of branch b. Let T 
denote the age of the root node. We only consider ultra-
metric trees in this shift detection task. Let pa(b) denote 
the parent edge of b and end(b) the end node of b. Thus, 
△θb = θpa(b) − θb �= 0 means that a shift in optimal value 
occurred on branch b.

Let Y denote the observed trait values at the tips, Yi 
denote the trait value of taxon i and Y0 denote the trait 
value of the root node. Under the OU process, Y follows a 

dY (t) = α[θ(t)− Y (t)]dt + σdB(t)

multivariate normal distribution. Conditional on the ini-
tial trait value, the mean of each random variable Yi is [6]:

and the covariance between Yi and Yj is 
σ
2e−αdij (1− e−2αtij )/(2α).
Therefore, if we let Y0 follow the stationary distribu-

tion for the initial process (normal with mean θ0 and 
variance σ 2

/(2α) ) then E(Yi) = θb and the covariance 
is �(α)

ij = σ
2e−αdij/(2α) [21] where tij is the shared time 

between species i and j, and dij is the distance between 
taxa i and j. To transfer the shift detection problem into a 
regression problem, we can rewrite the mean of Yi as [15]:

Let β0 = Y0e
−αT + (1− e−αT

)θ0 and 
βb = (1− e−αtb)△θb . In this way, the shift detection 
problem under the OU model can be converted to a lin-
ear model selection problem. The trait values at tips can 
be written as:

where Xb is a vector defined by Xbi = 0 if taxon i is not 
under branch b, and Xbi = 1 if taxon i is under branch 
b, and ǫ follows a normal distribution with mean 0 and 
covariance matrix �(α) . The main task is to select the 
branches that have βb  = 0.

l1ou
Khabbazian et  al. [15] propose a phylogenetic LASSO 
method to detect shifts in optimal trait value under 
OU models. To remove the influence of the covariance 
matrix, they conduct a transformation before model 
selection:

Where β denotes the vector of βb and X denotes the 
design matrix, the bth column of X is Xb . After data 
transformation, the error terms �−1/2

α ǫ become a vector 
of independent standard normal random variables. The 

E(Yi) = Y0e
−αT +
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LASSO solution is to minimize the least squares with ℓ1 
penalty. The loss function is given by

They use the package lars to estimate β for every 
� value, and conduct backward selection based on the 
model selection criterion pBIC (see “Model selection 
criteria”  section for more details about pBIC) using 
the models selected for each � value as a starting point. 
They then use the same criterion to select from among 
the models found for different values of �.

The above process is based on a given α value. Khab-
bazian et al. [15] use the following procedure to obtain 
the estimation of α . Firstly, they set α = 0 and run the 
variable selection for this value of α . They then refit α 
with the selected variables. They repeat the selection 
step for the new α , and choose the model with the best 
criterion score from among these models. Because of 
the use of LASSO, the computation speed is faster than 
previous shift detection tools, including SURFACE [22] 
and bayou [12]. Their implementation of the method is 
available in the R package ℓ1ou.

PhylogeneticEM
Bastide et  al. [23] introduce a framework which 
treats phylogenetic analysis as a missing data prob-
lem, allowing the usage of the EM algorithm. They set 
τ = (σ ,α,β) as the vector of all the parameters to esti-
mate, and X = (Z,Y) as the trait values of both inter-
nal and external nodes. Z is the vector of trait values of 
internal nodes, Y is the vector of trait values of external 
nodes.

They assume the number of shifts is fixed and use the 
EM algorithm to estimate the parameters by maximiz-
ing the log likelihood logpτ (Y) . The EM algorithm is 
based on the decomposition:

The difficulty with the maximization, in this case, 
comes from the fact that the locations of shifts on the 
branches are discrete variables. They used a General-
ized EM (GEM, Dempster et  al. [24]) to conduct the 
maximization. The complexity for this is O(nk) where k 
is the number of shifts.

The above process is based on the assumption that the 
number of shifts k is fixed. They estimate the param-
eters with k = 1, ....,K  , where K is the given maximum 
number of shifts. They then conduct model selection 
on k based on penalized least squares:

1

2

∥

∥

∥
�

−1/2
α

Y − β0�
−1/2
α

1−�
−1/2
α

Xβ

∥

∥

∥

2
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logpτ (Y) = EZ[logpτ (Z,Y)|τ ] − EZ[logpτ (Z|Y)|τ ]

where Ŷi is the predicted trait value of taxon i given by 
the model with k shifts. The penalty term pen(k) if given 
by

where |SPIk | denotes the number of parsimonious identifi-
able sets of locations of k shifts and A is a constant which 
the authors fixed at 1.1 based on simulation results. The 
EDkhi function [25] is defined as follows: Let

where D and N are positive integers, XD and XN are 
independent chi-squared random variables with D and 
N degrees of freedom respectively. Then, for 0 < q ≤ 1 , 
EDkhi(D,N, q) is defined as the unique solution to

Baraud et  al. [25] show that the penalty used here 
bounds the risk of the selected variables, and gives non-
asymptotic guarantees. The implementation of this 
method is available in the R package PhylogeneticEM.

Ensemble method
The framework of the ensemble variable selection model 
for shift detection consists of two phases. Firstly, we apply 
LASSO on a number of random subsamples of the trans-
formed data. For each subsample, we obtain a ranking of 
the variables based on the largest penalty � for which the 
variable is selected by LASSO. We aggregate the rank-
ings from each subsample into an overall variable rank-
ing. Secondly, we use this ranking as a basis for a variable 
selection method.

The foundation of ensemble learning is to combine 
the results of multiple models. The idea is that combin-
ing the results of several models will obtain better results 
by reducing the model variance and bias. Bagging and 
boosting are the two most commonly used ensemble 
models. There has been substantial recent work on the 
use of ensemble models for feature selection. Bolón-
Canedo and Alonso-Betanzos [26] summarize the differ-
ent types of ensemble methods that are used in feature 
selection. We here use a homogenous scheme for the 
ensemble. That is, we firstly take subsamples from the 
training dataset, then apply LASSO to each subsample. 

PLS =
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LASSO provides a solution path by varying the penalty 
size. Therefore, for each subsample, a variable ranking is 
produced where variables are ranked in decreasing order 
of the largest penalty for which they are selected. Aggre-
gating the ranking sequences from all the subsamples, we 
can get the overall ranking for all the variables. The pro-
cess is shown in Fig. 1.

There are several choices for how we aggregate the 
rankings from the different subsamples into a single 
overall ranking. For example, geometric mean, arithme-
tic mean, median, and so on. It is possible to apply these 
aggregation methods either to the ranking or to the values 
of the penalty � . We suggest using the first quartile of the 
ranking to aggregate the results because the first quartile 
is robust to outliers. In a few subsamples, a shift may be 
ranked very low, possibly because the taxa that distin-
guish it from other shift positions are not included in the 
subsample. In these cases, the rank might be very large, 
and therefore have a large influence on the geometric or 
arithmetic mean. Furthermore, using the first quartile can 
improve our ability to distinguish between shifts and sur-
rogates. It is common for only one of the surrogate vari-
ables to be ranked highly, and the shift to have a low rank. 
This can cause the median rank of the true shifts to be 
low. However, if the number of surrogates is not excessive, 
the first quartile of the rank will usually be high.

After obtaining the aggregated ranking, we use step-
wise selection to choose the final combination of vari-
ables. Forward selection, backward selection, and 

forward-backward selection are potential approaches. 
Forward selection starts with the null model, and sequen-
tially adds variables in the ranked order, starting with 
the highest ranked, as long as the model score is bet-
ter than the previous model. Backward selection starts 
with the full model, and sequentially removes variables 
in rank order, starting with the lowest ranked, as long 
as the model score after removing each variable is bet-
ter than the previous model. forward-backward selec-
tion consists of one forward selection pass followed by 
one backward selection pass, starting with the model 
selected by forward selection. Firstly include the variables 
that improve the model score then remove the variables 
whose removal further improves the model score. From 
the simulation results, forward-backward selection per-
forms best.

Our procedure to estimate α and σ 2 is similar to ℓ1ou. 

1. Fit a null BM phylogenetic regression model on the 
dataset. Get the initial estimate of σ 2.

2. Use α = 0 and the σ 2 value from the first step to cal-
culate the covariance matrix and apply the ensemble 
method variable selection procedure.

3. Fit the phylogenetic regression model with the 
selected variables in Step 2 and get new estimates of 
α and σ 2.

4. Repeat Step 2 and Step 3 once more.
5. Select the model with the best model criterion score.

Model selection criteria
For all the models, a criterion is used to conduct model 
selection for the number of shifts. AIC and BIC are most 
the commonly used criteria in model selection problems. 
Ho and Ané [13] showed that using AIC as the criterion 
may lead to model overfitting. Khabbazian et al. [15] pre-
sent a new criterion pBIC including a phylogenetic cor-
rection. The traditional BIC is given by:

where n is the number of taxa, k is the number of shifts 
selected, Mk is the estimated model. 2k + 3 is the num-
ber of parameters: each shift location and magnitude is 
counted as a parameter and there are 3 general param-
eters ( β0 , α , and σ ). The phylogenetic BIC proposed by 
Khabbazian et al. [15] is given by:

BIC(Mk) = −2loglik(Mk)+ (2k + 3)log(n)

(2)

pBIC(Mk) = −2loglik(Mk)+ 2klog(2n − 3)+ 2log(n)

+ log det

(

(

XOα
Mk

)T
v�−1

α
XOα
Mk

)

Fig. 1 The model structure of ensemble method for shift detection
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where X α̂

Mk

 is the matrix Xα with only the columns cor-
responding to the k selected shifts, and v is the observed 
trait variance. The penalty for the shift position is 
2klog(2n − 3) . The penalty for shift magnitudes and the 
intercept are shown in the last term. PhylogeneticEM 
uses penalized least squares for model selection; details 
are in “PhylogeneticEM” section.

Simulations without model mis‑specification
We conduct simulations to compare PhylogeneticEM, ℓ
1ou (pBIC/BIC) and ensemble LASSO (pBIC/BIC). The 
most direct method for comparison is to compare how 
many true shifts the methods detect and how many 
wrong shifts are selected. However, the OU model is 
not completely identifiable [13, 15, 16], and even if the 
selected shifts are not equivalent to the true model, a 
good argument can be made that selecting a close sur-
rogate shift is preferable to failing to select the shift at 
all. In these cases, the true positive versus false posi-
tive curve might misrepresent the performance, since 
neither method has a true positive, but the method 
that selects the surrogate has a false positive, and so is 
deemed to have performed worse, even though select-
ing the close surrogate is arguably more correct. There-
fore, we include two more measurements in comparison: 
predictive log-likelihood and Adjusted Rand Index [27]. 
The idea of predictive log-likelihood is to compare the 
prediction accuracy on test data, of the selected models 
from different methods. Adjusted Rand Index evaluates 
how similar the clustering of the selected model is to the 
clustering of the true model. We can get a more compre-
hensive understanding of the characteristics, strengths, 

limitations of the methods by combining the three differ-
ent measurements.

We simulate a number of scenarios with varying num-
bers of shifts and signal sizes. We simulate datasets under 
OU models along the 100-taxon Anolis lizards’ tree 
[10]. We compare the methods on scenarios with 3, 7, 
or 12 shifts. Data were simulated according to the shifts 
in Fig. 2. For each scenario, we set α = 1 and σ 2 = 2 so 
that σ

2

2α = 1 . We simulate under eight true signal sizes: 
β = 0.2, 1, 1.5, 2, 2.5, 3, 5, 7 and 10. In each simulation, all 
shifts have the same value of β . For simplicity, only the 
results of simulations with 7 shifts are presented in the 
plots in the main text. The results of simulations with 3 
and 12 shifts have similar conclusions and are presented 
in Supplemental Material. We also show the results for 
only some β values in the true positive versus false posi-
tive plot and ARI plot. The results for omitted β values 
are similar to the results shown.

True positive versus false positive
We first compare the methods by true positive versus 
false positive curves. True positive is the number of true 
shifts detected by the model. False positive is the num-
ber of shifts that are not simulated but which are wrongly 
detected by the model. If two models have similar false 
positive values, the one with a higher true positive value 
is considered to have a better performance. If one model 
has a higher true positive and higher false positive than 
another, there is no obvious conclusion about which 
model is better. It becomes a trade-off problem between 
precision and recall.

Fig. 2 Tree used in simulations to compare the precision and recall of different methods. The shifts positions are indicated by asterisks. Different 
colours indicate different optimal values for the trait
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Figure  3 shows the average true positive versus false 
positive curve from 200 simulations in each scenario. 
Each point in Fig.  3 represents the mean of true posi-
tive and mean of false positive values. From the simula-
tion results, ℓ1ou+pBIC is usually the most conservative 
method, with both lowest true positive and false positive. 
For example, in the simulation of 7 shifts and β = 2 , ℓ
1ou+pBIC on average detects under 2 shifts. ℓ1ou+BIC is 
usually the least conservative method. Ensemble LASSO 
provides more balanced choices between those two 
methods. In most simulations, ensemble LASSO with 
BIC and pBIC have both higher true positive and false 
positive compared to ℓ1ou+pBIC and have both lower 
true positive and false positive compared to ℓ1ou+BIC. 
Furthermore, in some situations, ensemble LASSO 
methods have a better performance compared to ℓ1ou. 
For example, in the simulation of 7 shifts and β = 2 , 
ensemble LASSO+pBIC has higher true positive and 
lower false positive compared to ℓ1ou+pBIC and ensem-
ble LASSO+BIC has higher true positive and lower false 
positive compared to ℓ1ou+BIC. PhylogeneticEM is even 
more conservative than ℓ1ou+pBIC when the signal sizes 
are small. It performs well where there are only 3 true 
shifts. However when the number of shifts and the coef-
ficient sizes are large enough, PhylogeneticEM performs 
poorly compared to other methods, including more false 
positive and fewer true positive variables.

Predictive log‑likelihood
For each simulation, we generate 1000 test datasets 
and 200 training datasets. The test datasets are gener-
ated using the same tree with the same shift positions 
and values. We calculate the mean of log likelihood val-
ues over 1000 test datasets using the estimated shifts 

from training sets. For all the methods, we only use the 
selected shift positions and re-estimated the shift magni-
tudes on the training set. When the results of a method 
give a higher predictive log-likelihood value, it indicates 
that the method performs better at predicting the trait 
values. Figure 4 shows the mean of average log likelihood 
values over 1000 test datasets with different numbers of 
true shifts and coefficient sizes.

From the simulation results, when the size of coef-
ficients are very small or very large, methods with pBIC 
have a higher prediction log likelihood value. When coef-
ficient sizes are very small, methods with pBIC are very 
strict and tend to select nearly no shifts. In these scenar-
ios, the signal sizes are so small that the null model has a 
higher prediction likelihood compared to the true model. 
When coefficient sizes are very large, all the methods can 
detect almost all the true shifts, while the methods with 
BIC might include more false positive shifts. Conversely, 
when the coefficient sizes are in the middle of the range, 
methods with BIC have a better performance in terms of 
prediction accuracy. PhylogeneticEM is quite conserva-
tive, with high predictive log-likelihood when the signal 
sizes are small. In most cases, the performance of Phylo-
geneticEM is between that of the pBIC and BIC methods. 
The difference between the ensemble method and ℓ1ou is 
smaller than the difference between BIC and pBIC, and 
which method performs better varies between scenarios.

Adjusted rand index
An alternative approach to assess the accuracy of the cho-
sen shifts is to compare the induced grouping of species 
based on the shifts. We used Adjusted Rand Index (ARI, 
[27]) between the clustering of tips of the true model 
and the clustering of the estimated shifts to evaluate the 

Fig. 3 True positive numbers versus False positive numbers with 7 shifts
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model performances. The Rand index proportional to 
the number of pairs in agreement between two cluster-
ings. The ARI is a scaled and centred version of the Rand 
index so that identical clusterings give an ARI of 1 and 
the expected ARI of two random clusterings is 0.

Figure  5 shows the ARI comparison of the different 
methods with 3, 7, and 12 shifts. ARI shows a similar 
result to the prediction log likelihood. When the sig-
nal sizes are small, the methods with BIC have a better 
performance. When the signal sizes are large enough, 
the methods with pBIC have a higher ARI score. Phylo-
geneticEM has low ARI score when the signal sizes are 
small and good performances when the signal sizes are 
in the middle. Based on true positive versus false posi-
tive numbers, PhylogeneticEM has poor performance 

with 7 and 12 shifts, but its predictive log-likelihood 
and ARI are comparable to other methods. This means 
that the shifts estimated by PhylogeneticEM might not 
be the exact true shifts, but they give similar trait pre-
dictions and trait clustering results.

Shift position
In this section, we study the influence of shift position. 
Intuitively, different shift positions influence different 
numbers of taxa and have different evolution time for the 
taxa so the results might be different. Indeed the pBIC 
criterion is designed specifically to account for the effect 
of shift position. We perform simulations with only 1 
shift in different positions on the tree (Fig.  6). We per-
form simulations with β = 1, 5, 10 , α = 1 and σ 2 = 2.

Fig. 4 The mean log likelihood on 1000 test datasets

Fig. 5 ARI with 7 true shifts
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Fig. 6 Shifts in different positions of tree

Fig. 7 True positive versus false positive with different shift positions
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Figure  7 shows the true positive versus false positive 
curves of different shift positions. When the coefficient 
size is very large, all the methods can detect the true pos-
itive shift correctly, regardless of its position. When the 
coefficient size is not large enough, the shift near the root 
is the easiest one to detect. All the methods have higher 
true positive values compared to shifts in other positions. 
The result is in line with common sense — shifts near 
the root influence a large group of taxa and the evolu-
tion time after the shift is longer, so the shift might have 
a larger influence on the trait values, making it easier to 
detect. However, shifts near leaves are easier to detect 
compared to shifts in the middle based on the simula-
tions for β = 5 . And for β = 5 , ensemble LASSO+BIC 
performs better than ℓ1ou+BIC at detecting the shift 
near the root or the shift near the leaves. PhylogeneticEM 
has a good performance for detecting the shift near the 
root but has worse performance for detecting the shift 
near the leaves and the shift in the middle.

Different types of tree
In this section, we compare the method performances 
on shift detection tasks on different types of phyloge-
netic trees. We mainly consider 4 types of tree: balanced 
tree, caterpillar tree, pure birth tree and coalescent tree. 
We generate these 4 types of trees with 128 taxa and 254 
edges. Figure  8 shows the generated tree and simulated 

shifts for each type of tree. In this simulation, there are 3 
shifts on each tree.

Figure  9 shows the true positive versus false positive 
curves for different types of trees. Interestingly, the shifts 
in the coalescent tree are the easiest to detect when the 
coefficient size is small and the most difficult to detect 
when the coefficient size is large. However, the results 
might also be influenced by the shift setting of the experi-
ment. For the result of coalescent tree, the shift 115 is 
easy to detect and the shift 192 is difficult to detect. For 
other types of tree, generally speaking when the coeffi-
cient size is in the middle of the range, the shifts on the 
caterpillar tree are the easiest to detect, and then the bal-
anced tree, then the pure birth tree and finally the coales-
cent tree.

From the simulation results, the performances of meth-
ods are highly dependent on the selection criterion. The 
phylogenetic Bayesian information criterion (pBIC) is 
more conservative than the Bayesian information crite-
rion (BIC). When the signal sizes are small, the methods 
using pBIC struggle to detect any signal, leading to poor 
detection results. And when the signal sizes are large, 
nearly all the methods are able to detect the true posi-
tive shifts while the methods using BIC include too many 
false positive signals. Therefore, when the signal sizes are 
small, the methods using BIC have better performance 
and when the signal sizes are large, the methods using 
pBIC have better performance. ℓ1ou+pBIC is usually 

Fig. 8 Four different types of tree
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the most conservative method and ℓ1ou+BIC is the least 
conservative method. Thanks to the ensemble of numer-
ous selection results, ensemble LASSO provides more 
balanced choices between those two methods. Moreover, 
different positions of shifts and different types of trees 
result in selection tasks with different difficulties. The 
shifts near the root are the easiest to detect. The shifts on 
the caterpillar tree are the easiest to detect, and then the 
balanced tree, then the pure birth tree and finally the coa-
lescent tree.

Simulations with model mis‑specification
In this section, we study the performance of the methods 
in  situations where the model assumptions from “Shift 
detection for trait evolution models” section are not met, 
or where the parameter α is misestimated. We study three 
common misspecified situations: measurement errors 
in the trait values; a misspecified tree and the diffusion 
variance σ 2 not constant throughout the tree. Param-
eter misestimation is not usually considered in model 

misspecification studies, but because ℓ1ou and ensemble 
LASSO use a very crude method for estimating the rate 
of mean reversion, it is possible that this estimate will be 
far from the truth, so it is important to see how they are 
influenced when this happens. We therefore also simulate 
a situation in which we deliberately mis-estimate α . The 
three misspecified scenarios are all common difficulties. 
Some traits are difficult to measure accurately, resulting 
in additional variance in the measured values. The tree is 
estimated from sequence data, usually via a model which 
is much simpler than the true evolutionary process, and 
therefore, the estimated phylogenetic tree is subject to 
both bias and sampling variance. Finally, an environmen-
tal shift in evolutionary history might lead not only to a 
shift in the optimal value, but also to a shift in variance. If 
shifts in variance occur, it might also bring difficulties for 
the shift detection methods.

From the simulation results, ℓ1ou and ensemble 
LASSO are robust to the misestimation of α . There-
fore, although both methods only uses 2-3 iterations 

Fig. 9 True positive versus false positive with different types of trees



Page 12 of 19Zhang et al. BMC Ecology and Evolution           (2024) 24:11 

to estimate the α value, it doesn’t affect the detection 
of shifts even if the estimation is not perfect. How-
ever, the performances of all the shift detection meth-
ods are heavily impacted by measurement error, tree 
reconstruction error and shifts in variance. Because of 
the noise brought by these factors, the methods have 
difficulty detecting the true positive shifts and often 
include many false positive shifts. Moreover the incor-
rect tree might prevent convergence of the estimation of 
α in ℓ1ou and ensemble LASSO. Further research about 
improving the shift detection performance under these 
challenging scenarios would be an interesting topic for 
future studies.

Measurement errors
It is common for the measurement of traits to be sub-
ject to errors. These errors may impact the shift detec-
tion methods, which assume that the trait values are 
measured perfectly. In this section, we simulate additive 
Gaussian measurement error N (0, σ 2

e ) for the trait value 

of each species. When σ 2
e  is larger, the size of the meas-

urement error is larger.
Because of the measurement errors in the training 

data, the true shift model sometimes has a lower log-
likelihood than the null model. If we use the training 
data with measurement error to estimate the param-
eters of selected shifts, the parameters will be far from 
the real values and thus introduce errors while calcu-
lating the predictive log-likelihood. Since our purpose 
is to identify the true shifts, predictive log-likelihood 
using training data with measurement error to estimate 
the parameters is not an ideal way to assess the selected 
shifts. Therefore, we also compare the prediction log-
likelihood of the shift detection methods using the 
training data with measurement error to select shifts, 
but with parameters estimated from training data with-
out measurement error. Figure 10 shows the results of 
log likelihood with parameters estimated from training 
data without measurement error. Prediction log-likeli-
hood results with shift magnitudes estimated from data 

Fig. 10 Average test log likelihood with parameters estimated from training data without measurement error using the shifts selected 
from training data with measurement error
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with measurement error are shown in Supplemental 
Material. The plot shows that the measurement error 
will influence the accuracy of shift detection. The loss 
of accuracy increases with the number of shifts. The 
performance of all the methods worsens with measure-
ment error. Methods based on BIC are more robust to 
measurement error when the signal strength is strong, 
and perform less well when the signal strength is weak. 
The performance of PhyloEM is generally between 
the performance of methods using BIC and methods 
using pBIC. The difference between the performance 
of ℓ1ou and the ensemble method is much smaller 
than between methods using BIC, and methods using 
pBIC. When the signal is not so strong ( β = 1 ), even 
a relatively small measurement error severely impacts 
performance.

Incorrect tree
Another possible violation of the model assump-
tions is that we use a wrong tree to do the shift detec-
tion. There are two possible errors in the analyzed tree: 
wrong topology or wrong branch lengths. In the case of 
an incorrect topology, it is not always clear that there 
is a meaningful way to define “true shifts” in a false 
tree. Therefore, we will focus on the case with incor-
rectly specified branch lengths. We simulate data from 
a tree with different branch lengths and apply the 
methods using the original tree. We use a gamma dis-
tribution to randomly generate each internal branch 

length. The mean of each branch length is the original 
branch length. When the scale parameter is larger, the 
generated tree has larger difference from the original 
tree. In order to generate ultrametric trees and keep 
the total tree depth the same as the original tree, the 
external branches are generated by the original tree 
depth minus the tree depth of the starting node of 
each external branch. The internal branches are gener-
ated with a depth first order. If the depth of one inter-
nal branch is larger than the given tree depth, this 
branch length is resampled. We generate 3 trees with 
scale = 1/30, 1/10, 1/5 as shown in Fig. 11.

Firstly, we find that this violation of assumptions can 
cause convergence problems while iterating the methods 
to estimate α in ℓ1ou or the ensemble method. This is a 
problem we observe for real data in the Anolis Data. Fig-
ure  12 shows the number of cases where the estimated 
alpha does not converge in 10 iterations out of 200 simu-
lations. The convergence problems seem to particularly 
affect the ensemble method but are also present for ℓ1ou. 
For the non-converging simulations, we present results 
for the best α value attempted (in terms of our model 
selection criterion).

Figure 13 shows the average number of true and false 
positives for each misspecified tree. Figure 14 shows the 
prediction log-likelihood. We see that generally speak-
ing, the difference between the real tree and the ana-
lyzed tree will worsen the performance of the methods 
by either lowering the true positive rate or increasing the 

Fig. 11 Regenerated tree with different beta



Page 14 of 19Zhang et al. BMC Ecology and Evolution           (2024) 24:11 

Fig. 12 Number of non-converging cases when analyzing on a misspecified tree

Fig. 13 True positive versus false positive with applying methods on misspecified trees (larger triangles show larger difference with the original 
tree)
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false positive rate. However, the methods are relatively 
robust to this misspecification. PhyloEM appears to be 
most influenced by the misspecification, becoming less 
conservative when the tree is misspecified. This increases 
both the true positive rate and the false positive rate. 
The predictive log-likelihood on test data is fairly robust 
to the tree misspecification. In some exceptional cases, 
the methods perform better when the tree is misspeci-
fied. For example, for simulations with 7 or 12 true shifts, 
nearly all the methods had higher true positive rates 
when the tree was most misspecified (scale parameter = 
1/5) than for the original tree.

Misestimation of α
Recall from “Shift detection for trait evolution mod-
els”  section that both ℓ1ou and ensemble use a very 
rough method to estimate α . This could lead to the esti-
mated α values being very bad. In this section, we inves-
tigate the extent to which misestimation of α can impact 
the variable selection results. In this simulation, we use 
α = 1 to generate data and use different fixed values of 
α̂ values 

(

10−4, 10−3, ..., 102
)

 in the methods and compare 
the model performances.

Figure 15 shows the prediction log likelihood with dif-
ferent estimated α̂ . From the plots, the performance of 

PhylogeneticEM is influenced most by changes in the 
estimation of α . Especially when the estimated α is too 
large, the method performs poorly. Ensemble methods 
and ℓ1ou are more robust to misestimation of α . Since 
PhlyoEM uses maximum likelihood to estimate α , which 
is expected to produce more accurate estimates, robust-
ness to misestimation is less important than for ℓ1ou and 
the ensemble method, which use a very rough method to 
estimate α.

Shift in variance
In this simulation study, we allow the diffusion variance 
parameter σ 2 to change over the tree. In particular, we 
set σ 2 = 1 for most of the tree, but for the part of the 
tree on branch 195 and below (shown in Fig. 16) we set 
σ
2 = 2, 4, 6, 8, 11 . That is, there is a shift in variance at the 

top of branch 195. This is a reasonable biological model, 
as an abrupt change of environment can bring about 
changes to the rate of trait evolution. We perform one 
simulation where there are no shifts in mean, to study 
the false positive rate and loss of predictive log-likelihood 
caused by this shift in variance.

The left subplot of Fig. 17 shows the number of false 
positive shifts in optimal values detected by different 

Fig. 14 Average test log likelihood with applying methods on misspecified trees
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methods. The right subplot of Fig.  17 shows the pre-
dictive log-likelihood of the selected models under 
each method. The plots show that when the diffusion 
variance is not constant on the tree, all of the methods 
will detect false positive shifts in optimal values, lead-
ing to failure to accurately predict the test data. There-
fore, developing a model which incorporates shifts in 
variance is an interesting future research direction.

we cannot say that any method outperforms the others 
in every situation. For example, ensemble methods and 
ℓ1ou are more robust to misestimation of α . Another 
example is that the methods with pBIC are the most 
conservative: they perform best with large signal sizes. 
They can detect the true shifts without introducing 
false positive shifts. However, they cannot give reason-
able results when the signal sizes are small. The ensem-
ble method with BIC can better capture the shifts near 
the leaves. PhylogeneticEM is even more conservative 
with small signal sizes and falls between methods with 
pBIC and with BIC, with large signal sizes. It is hard 
to tell which method and criterion is the most suit-
able to use in a specific task. By comparing the results 

Fig. 15 Average test log likelihood with changing estimated alpha

Recommendations
We suggest applying multiple methods to each data set 
and comparing the results. Based on the simulation 
results, different methods have different strengths and 
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of different methods, we can get the confidence level 
of the selected shifts. For example, the shifts which are 
selected by all the methods are more likely to be true. 
Khabbazian et al. [15] use bootstrap support to evalu-
ate how likely the selected shifts are true. However, 
the bootstrap support can be influenced by biases in 
a particular method. By combing the results of several 
different methods, we can assess the confidence of par-
ticular shifts in a way that is unlikely to be influenced 
by the bias of any particular method.

Conclusion
In this article, we compared the performances of sev-
eral shift detection methods — ℓ1ou, PhylogeneticEM, 
ensemble method — for trait evolution models. To 
understand the strength, weaknesses, and restrictions 
of different methods, we compared the performances 
over a large range of scenarios including both correctly 
specified and misspecified cases. We used three differ-
ent measurements to compare the results, true positive 
versus false positive curve, predictive log-likelihood 
and Adjusted Rand Index. All three measurements 
give similar conclusions about the performance of the 
methods.

From the simulation results, when the coefficients 
are very small, PhylogeneticEM, ℓ1ou+pBIC and 
ensemble+pBIC are very strict and tend to select nearly 
no shifts. In these scenarios, ensemble+BIC and ℓ

1ou+BIC perform better at detecting the small magnitude 
shifts. However when the coefficients are large, nearly 
all the methods can detect the true shifts, but ℓ1ou+BIC 
and ensemble+BIC include more false positive shifts. 
The performances of methods are highly dependent on 
the criterion. A better criterion might help the methods 
to give very good results with varying signal sizes. Fur-
ther research about appropriate model selection criteria 
for shift detection might be an interesting topic for future 
studies.

Furthermore, we compared the model performances 
on different shift positions in trees and different types 
of trees. From the results, the shifts near the leaves are 
the most difficult to detect and the shifts near the root 
are the easiest to detect. The shifts on the coalescent 
tree are the easiest to detect when the coefficient is 
small and the most difficult to detect when the coeffi-
cient is large.

Fig. 16 Diffusion variance parameter changes on branch 195

Fig. 17 Diffusion variance parameter changes on branch 195
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We also conducted simulations in several scenarios 
where the model assumptions do not hold. We stud-
ied training data with measurement error; misspecified 
phylogenetic trees; misestimation of the parameter α ; 
and non-constant diffusion variance. From the simula-
tion results, measurement error and a misspecified phy-
logenetic tree make shift detection more difficult and 
all the methods perform worse in these cases. ℓ1ou and 
the ensemble method are robust to misestimation of α . 
When shifts occur in the diffusion variance σ 2 , all of the 
methods detect the signal as many false positive shifts in 
optimal values, leading to failure to accurately predict the 
test data. Therefore, future research is needed on shift 
detection methods that can handle these violations of the 
model assumptions.
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