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Abstract 

Background The sturgeon group has been economically significant worldwide due to caviar production. Sturgeons 
consist of 27 species in the world. Mitogenome data could be used to infer genetic diversity and investigate the evo-
lutionary history of sturgeons. A limited number of complete mitogenomes in this family were sequenced. Here, we 
annotated the mitochondrial Huso huso genome, which revealed new aspects of this species.

Results In this species, the mitochondrial genome consisted of 13 genes encoding proteins, 22tRNA and 2rRNA, 
and two non-coding regions that followed other vertebrates. In addition, H. huso had a pseudo-tRNA-Glu 
between ND6 and Cytb and a 52-nucleotide tandem repeat with two replications in 12S rRNA. This duplication 
event is probably related to the slipped strand during replication, which could remain in the strand due to mispair-
ing during replication. Furthermore, an 82 bp repeat sequence with three replications was observed in the D-loop 
control region, which is usually visible in different species. Regulatory elements were also seen in the control region 
of the mitochondrial genome, which included termination sequences and conserved regulatory blocks. Genomic 
compounds showed the highest conservation in rRNA and tRNA, while protein-encoded genes and nonencoded 
regions had the highest divergence. The mitochondrial genome was phylogenetically assayed using 12 protein-
encoding genes.

Conclusions In H. huso sequencing, we identified a distinct genome organization relative to other species that have 
never been reported. In recent years, along with the advancement in sequencing identified more genome rearrange-
ments. However, it is an essential aspect of researching the evolution of the mitochondrial genome that needs to be 
recognized.

Keywords Huso huso, Mitogenome, Sturgeon, Caspian Sea, Tandem repeats

Background
Studying the molecular genetics of sturgeon could pro-
vide an excellent way to identify their origin and uncer-
tain aspects. The Acipenseridae consists of four genera 
(Acipenser, Huso, Pseudoscaphirhynchus, and Scaphi-
rhynchus), of which there are 25 species. Two genera, 
Acipenser and Huso, inhabit the Caspian Sea. Most stur-
geons have been identified as endangered by the Inter-
national Union for Conservation of Nature (IUCN) [1]. 
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Studies have shown that caviar production has declined 
in Europe and North America, as well as in Russia and 
Iran [2]. Sturgeon is one of the most valuable groups of 
fish due to caviar production. Sturgeons are very impor-
tant in genetic matters due to their 200 million-year-
old history; it has been known as living fossil since the 
Jurassic era. Caspian sturgeon are listed in the CITES 
Convention. The sturgeon population is endangered for 
problems such as irregular and illegal fishing of sturgeon, 
environmental changes, climatic conditions, low rate of 
artificial reproduction, loss of natural environments, and 
pollution.

Molecular studies on the genetic structure could help 
to identify valuable information about this endangered 
fish. In determining the genetic structure of Caspian stur-
geon, molecular techniques such as RFLP [3], RAPD [4], 
AFLP [5–7], microsatellite [8–12], and DNA sequencing 
[13, 14] have replaced traditional methods such as mer-
istics and morphometrics. DNA sequencing is one of the 
most accurate methods of identifying information about 
sturgeon [15]. Mugue et  al. [15] distinguished sturgeon 
at the species level with mitochondrial D-loop sequenc-
ing. In another study, mitochondrial D-loop sequencing 
was used as a complementary method to other labora-
tory methods [16]. Mitochondrial genome sequencing is 
a simple, immediate, and reliable method to identify spe-
cies. The Cytb and control regions have been used mainly 
to identify sturgeon species. However, researchers have 
found that the Cytb gene does not have a good resolution 
for identifying these species [15]. The size of mitochon-
drial DNA is approximately 15–20 kb, and the mitochon-
drial genome contains several copies, is double-stranded, 
and has a circular molecule. It contains 13 protein-
encoding genes, two genes encoding ribosomes, 22 genes 
encoding tRNAs, and two control regions. Because mito-
chondrial genomic DNA is inherited from the mother 
[17], it is suitable for evolutionary and historical studies 
[18]. Ludwig et al. [19] illustrated VNTR duplicate blocks 
in some sturgeon species in the control region in region 
5’ immediately after proline tRNA, which was three repli-
cates with a size of 82 bp. Mugue et al. [20] also reported 
a repetitive sequence of 82 pairs of bases in the ship spe-
cie. Research has shown that repetitive blocks in the con-
trol region are related to genes close to CR (12S rRNA 
and tRNA) [21].

Ciftici et  al. [22] recognized the presence of duplicate 
blocks in the D-loop regions and reported an 82–83 bp 
tandem repeat by sequencing in Acipenser gueldenstae-
dtii, Acipenser stellatus, and huso huso species. The fre-
quency of multiple copies of the genome in a species 
may be attributed to the differences in mutation rates or 
a mechanism that may regulate mutation rates. A large 
number of studies have been performed on the teleosts 

fish of control regions that identified VNTR [19, 20, 22]. 
However, in this study, we also detected the presence of 
tandem repeats in the other two regions, 12S rRNA and 
tRNA. Previous research has shown excess tRNA in sev-
eral fish species [21–26], but there have been no reports 
about the presence of repeats in 12 SrRNAs.

The vertebrate mitogenome is highly conserved; how-
ever, with increasing genome sequence data for fish, 
reports of rearrangement have been observed. The pre-
sent study aims have been to draw a complete map of 
the mitochondrial genome of Huso huso and a complete 
sequencing of the mitochondrial genome, determina-
tion of genetic structure and phylogenetic relationships, 
and codon usage. Our attempt initially was to study the 
mitochondrial genome and its molecular mechanisms; in 
the following, we found novel aspects of rearrangement 
in this species. This study reveals that the mitochondrial 
genome of sturgeon could have differed in organiza-
tion, gene content, and order. In addition, these results 
will provide a better perspective of understanding fish’s 
evolution.

Results and discussion
Genome organization
The complete mitogenome of Huso huso was deposited 
in the Gene Bank (Accession number: MK213068). The 
Huso huso mitochondrial genome consisted of 16836 bp. 
This genome contained 37 encoding genes, 13 genes 
encoding proteins, 22tRNA and 2rRNA, and two OL and 
D-loop control regions, in which an additional tandem 
repeat tRNA- Glu was observed in Table 1.

Like many mitochondrial genomes, most genes were 
located in the heavy strand except ND6 and eight tRNA 
(tRNAGLN, tRNAala, tRNAGLU, tRNAser, tRNA tyr 
and tRNAcys, tRNA Asn and tRNA Pro) that were coded 
in the light strand. The D-loop (displacement loop) was 
located in the main non-coding region of the mitochon-
drial DNA molecule. The mitochondrial DNA could be 
replicated in two different ways, starting in the D-loop 
region. OL is the origin of light strand replication, which 
was identified in the WANCY region with a cluster of five 
tRNA similar to that of other vertebrates. There were two 
tRNA-Glu with repeated sequences, which could be seen 
in Fig. 1.

Nucleotide asymmetry of the strand is usually 
described by AT, and GC skews. GCskew is barely 
above zero (they are mostly negative). These results 
illustrate that the content of A is only slightly higher 
than that of T, whereas that of C is significantly 
higher than that of G. Skews are related to the differ-
ence in mutation pressures applied in light and heavy 
strings [27]. As a result, they are asymmetric and cause 
changes in mtDNA [18, 28, 29].
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Genome organization and evolutionary mechanism
A new type of mitochondrial genome organization has 
been found to contain an additional tRNA. This extra 
tRNA can be folded, creating a clover leaf structure of 
tRNA that also contains an anticodon.

This tRNA is very similar to the conventional tRNA 
sequence and is located between ND6 and Cytb. This 
issue is a new genome organization, and it could create 
new specific features in the genus H. huso that distinguish 
it from other sturgeon species. Changes in the tRNA of 

Table 1 Summary of gene features of Huso huso 

Gene Coding Position Size (bp) Codon Anticodon Intergenic

Nucleotides

Strand From To Start Stop

tRNA Phe H 1 68 68 GAA 

12SrRNA H 69 1081 1013 0

tRNA val H 1082 1151 70 UAC 0

16SrRNA H 1153 2854 1702  + 1

tRNA leu H 2855 2929 75 UAA 0

ND1 H 2930 3904 975 ATG TAG 0

tRNA Ile H 3914 3984 71 GAU  + 9

tRNA Gln H 3984 4054 71 UUG -1

tRNA met L 4054 4123 70 CAU 0

ND2 H 4124 5168 1045 ATG TAG 0

tRNA trp H 5169 5241 73 UCA 0

tRNA ala H 5243 5312 70 UGC  + 2

tRNA asn H 5314 5386 73 GUU 0

OL L 5387 5420 34 0

tRNA cys L 5421 5487 67 GCA 0

tRNA tyr L 5488 5558 71 GUA 0

COI L 5560 7128 1569 GTG TAA  + 1

tRNA ser H 7120 7192 73 UGA -7

tRNA Asp L 7198 7269 72 GUC  + 7

COII H 7284 7974 691 ATG T  + 14

tRNA lys H 7975 8048 74 UUU 0

ATP8 H 8050 8217 168 ATG TAA  + 1

ATP6 H 8208 8891 684 ATG TAA -8

COIII H 8891 9675 785 ATG TAA 0

tRNA Gly H 9676 9748 73 UCC 0

ND3 H 9749 10097 349 ATG TAG 0

tRNA Arg H 10098 10167 70 UCG 0

ND4 L H 10168 10464 297 ATG TAA 0

ND4 H 10458 11838 1381 ATG T -5

tRNA His H 11839 11907 69 GUG 0

tRNA ser H 11908 11975 68 GCU 0

tRNA leu H 11976 12048 73 UAG 0

ND5 H 12049 13890 1842 ATG TAA 0

ND6 L 13887 14408 522 ATG TAG -2

tRNA Glu L 14409 14478 70 UUC  + 4

tRNA Glu L 14483 14552 70 UUC 0

cytb H 14555 15695 1141 ATG T  + 2

tRNA thr H 15696 15769 74 UGU 0

tRNA pro L 15773 15842 70 UGG  + 3

D-loop H 15842 16836 994 0
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other fish species have also been observed [21–25]. In a 
study of a fish species, additional tRNA-Ile was generated 
with anticodon mutations TAC to AAT. It was also seen 
in Serranidae that the extra tRNA-Asp in the light strand 
resulted from the rearrangement of the mitochondrial 
genome [30, 31].

This gene content of the fish mitochondrial genome 
is typically the result of gene amplification and causes 
diversity in species.

The rearrangement of the mitochondrial genome 
observed in fish usually can include translocation [32, 
33], which is also due to the tandem duplication of 
gene regions. These results showed that extra tRNA 
is left in the mitochondrial genome after changes. 
Several abnormal fish mitochondrial genome tRNAs 
include extra tRNA-ser at the downstream ND5 in sea 
bass Morone saxatilis [24], extra tRNA met in Pam-
pus species [22], the pseudo tRNA at the same posi-
tion in parrotfish Chlorurus sordidus [23], extra tRNA 
Asn, pseudo tRNA ala in the WANCY cluster polar 

cod Boreogadus saida [21], and tRNA pro amplifica-
tion in CR from Antarctic notthenioig [25] were found 
in previous results. These reports have shown that new 
tRNAs appear to have been seen in various places. 
This issue results from rearrangement and mispairing, 
which ultimately leaves one or more additional tRNA 
in the mitochondrial genomes of different fish species. 
Rearrangements in bony fish determine the complete 
nucleotide sequence of the mitochondrial genome [34], 
such that for a benthic fish, Gonostoma gracile, the 
entire mitochondrial genome includes 19 tRNA genes 
that exist in typical vertebrates. However, the gene 
sequence of tRNA Glu is different [35].

Protein coding genes
The cumulative length of H. huso mitochondrial pro-
tein-coding genes was 11406 bp, which was calculated 
as 67% of the total length of the mitochondrial genome. 
The genes encoded in mtDNA were highly compact 
and contained overlapping sections. Our overlap was 

Fig. 1 The complete mitochondrial genomes in Huso huso. Protein coding, ribosomal RNA, and transfer RNA genes are shown using different 
colors. Genes encoded on the H-strand are in the outer region. Genes coded on the L-strand are in the inner region
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between 13 protein-encoding genes in this species 
between ATP8 and ATP6, which had an eight bp over-
lap, between ND4 L and ND4, which was five bp, and 
between ND5 and ND6, it was found to be two bp.

Most genes encoding mitochondrial proteins in this 
species began with the ATG primer, similar to many 
metazoa [36]. The COI gene only had one separate start 
codon, GTG. Among the coding genes for the protein, 
the Cytb, COII, and ND4 genes were terminated in T 
(Table 1). This incomplete codon is completed with the 
addition of poly A and finally will become TAA.

The calculation of available nucleotide abundance at 
each codon position in all 13 protein genes is shown 
in the table. The T nucleotide was mostly seen in the 
position of the second codon. Since triple codons are 
encoded with T in the second position for hydrophobic 
or hydrophobic residues, this observed deviation indi-
cates a high ratio of hydrophobic residues between the 
coding proteins. The 12 genes encoding proteins in the 
heavy strand shared an anti-G deviation; it was approx-
imately 10% or less at the third codon position. The 
deviation, primarily in the position of the third codon, 
is probably due to the selection pressure on the synony-
mous mutation in this position (Table S2).

Serine and leucine amino acids indicated the high-
est frequency in Huso huso, using six different codons, 
while some amino acids used 2 or 4 codons. After 
them, the amino acids alanine, threonine, glycine, pro-
line, and valine showed the highest frequency with four 
codons. Of course, arginine also had four codons and was 
observed with a relatively high frequency. The rest of the 
amino acids used two codons, which displayed the same 
frequency (Fig. 2) (Table S3).

rRNA and tRNA
Evaluation of rRNAs in this species showed that the 
length for 12S rRNA was 1013 bp and for 16S rRNA was 
1702  bp. The H strand encoded both rRNAs, and their 
nucleotide composition for 12S rRNA and 16S rRNA 
was A% 31.4, C% 27.5, T% 19.3, G% 21.7, and A% 35.5, 
C% 24.6, T% 19.6, G% 20.0, respectively. The deviation 
of the nucleotide composition is a strand-specific prop-
erty in mtDNA, and this deviation observed is against G. 
Similar phenomena have been found in the mitochon-
drial genome of other fishes [37] and mammals [3] that 
are thought to be related to asymmetric replication of the 
H and L strand [38, 39], exceptionally in stem 16S rRNA 
and 12S rRNA, which is necessary for stability in the 

Fig. 2 Relative synonymous codon usage (RSCU) of the mitochondrial protein-coding genes and codon usage of Huso huso for whole genome 
sequencing
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stem structure, and the deviation against G observed less 
[4, 40, 41].

tRNAThr and tRNAPro relative to cytochrome b differ 
from those determined in other vertebrates.

In region 5′ 12S rRNA, a 52-nucleotide VNTR 
sequence was observed with the following sequence, 
which could be the result of mispairing:

AGG CTT GGT CCT GGC CTT ACT ATC AAT TTT 
AAC CCA ATT TAC ACA TGC AAGT 

This sequence could produce stems, loops, and a sta-
ble structure (Fig. S1). Of the tRNAs, 14 were encoded by 
the heavy strand, these tRNAs are 67 to 75 bp. All tRNAs 
except ser (AGY) could be converted to clover leaves, the 
structure of which could be determined by tRNA scan-
ning. tRNAser was reduced in the dehydrooridine arm, 
transforming its second structure into a short clover leaf, 
similar to most metazoa [42] (Fig. 3).

Noncoding regions
Noncoding regions in mtDNA include OL and CR and 
several regions between genes. The size of the CR has 
been 994  bp, which is located downstream of tRNAper. 
This region is rich in AT and is considered the largest 
noncoding region.

CR contains several TASs, and the TAS sequence 
extends into several CR regions. This sequence is asso-
ciated with CSB-conserved sequence blocks. The con-
served CSB-1–3 sequence blocks are downstream 
of this region. The TAS region is rich in repeats and is 
the most variable part of the CR. It contains duplicate 

elements with a length of 82 bp. It contains a conserved 
TACAT motif, and the TAS motif is an inverse comple-
ment to ATGTA. The TAS motif can be paired with the 
CTAS motif, resulting in the formation of stable hairpin 
loops, which may also serve as a specific sequence signal 
to terminate mtDNA replication [43]. Repeat sequences 
were identified in this region in fish of different species 
[44–46].

A comparison of mtDNA sequences in sturgeon and 
conserved sequences of termination replication (TAS) 
sturgeons with changes in the number of consecutive 
duplicate sequences showed that they could form stable 
structures during mtDNA replication. In the mtDNA 
of sturgeons, the control region responsible for the ter-
mination of H-strand replication contains one to seven 
variable number tandem repeats (VNTRs) with a unit 
size of 78 to 83 bp [47]. The D-loop of sturgeon mtDNA 
differs from the human D-loop and contains more than 
one TAS; therefore, the termination of mtDNA replica-
tion cannot be explained by helicase activity alone. Addi-
tionally, it is not still determined why sturgeons exhibit a 
wide range of haplotypes differing in VNTR length and, 
correspondingly, in the number of TAS elements [47]. 
Kornienko et al. [47] identified VNTR regions containing 
highly conserved sequences that terminate with a CAT 
triplet in all sturgeon species studied. TAS elements are 
located in repeating units that constitute the VNTR. TAS 
nucleotide sequences are associated with the termination 
of mtDNA replication. An ineffective DNA repair system 
and a lack of protective histones in this organelle cause 
the mutation rate in mitochondrial DNA to be higher 

Fig. 3 The secondary structure of tRNA genes in H.huso 
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than in the DNA nucleus, resulting in VNTRs. Tandem 
repeats in this region increase the length of the D-loop, 
and a lower D-loop increases the rate of supercoil forma-
tion [43]. This issue has an effect on protein bonding and 
accessibility as well as on transcription and replication 
[48, 49] (Fig. 4).

Variation in repeat tandems in this region probably 
evolved through the process of illegitimate elongation 
[45]. It occurs during mtDNA replication and is possibly 
the mechanism mediated by slipped strands and mispair-
ing [50].

We identified conserved CSBD and CSB-1, CSB-2, 
and CSB-3 sequence blocks with high similarity of CSB 
sequences from other fishes (Fig. 4). While five conserved 
block sequences have been reported in the conserved 
central domain in mammals in the control region, only 3 
CSBs are typically found in bony fishes [51–53]. CSB-D 
is critical in maintaining regulatory performance in CR 
and is considered the most protected part of CR (95% of 
its sequence is conserved). The CSB 1, 2, and 3 sequences 
had the least conserving. Consensus sequences for CSB 
could be found here:

CSB-D, TAC TGG CAT CTG ATT AAT;
CSB-1, TAA TAG ATA GTG AAT GAT ATA ATG 
ACATA;
CSB-2, CAA ACC CCC TAC CCCC;
CSB-3, TGT CAA ACC CCA AAA GCA .

In addition, three conserved sequences were found 
downstream of the protected central conserved domain, 
and CSB-1 is an AT-rich region following a GAC ATA  
conserved motif.

The downstream CSBs are separated by a poly C and 
are identified by TTA or TA. CSB 2 consists of a sequence 
with a polyC stretch. These CSBs are involved in forming 
primer RNA for mtDNA amplification and play a vital 
role in the RNA switch in DNA synthesis, which begins 
in the OL region [29, 54].

The noncoding OL region is located in a cluster of five 
tRNA genes (trp (W), Ala (A), Asn (N), Cys (C), and Tyr 
(Y)). It is called the WANCY region. The OL region has 
34 nucleotides and is identified by a stable loop stem 
structure with a GC-rich stem and a T-rich loop. Two 
common features of vertebrate OL are the 5’ flanking 
region rich in pyrimidine (stem) and a motif (5ʹ-CTT 
CCT -3ʹ) found in the stem (Fig. 5).

Both may be related to the accuracy and efficiency of 
DNA replication in OL, as seen in the human mitochon-
drial genome [55].

Phylogenetic analysis
The control regions and the regions that caused the insta-
bility in the phylogenetic tree were discarded (the high 
homogeneity of the genes encoding the protein, due to 
their high capability in phylogenetic function, were used 
in the experiment). We performed partition maximum 

Fig. 4 The D-loop region, along with the CSB-conserved blocks
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likelihood (ML) using the concatenated nucleotide 
sequences of the 12 protein-coding genes.

We excluded VNTRs because they are rapidly evolving 
sequences, which may lead to multiple substitutions at 
some sites. Therefore high heteroplasy would reduce the 

resolution of our phylogeny. The sturgeon species created 
two clades in the phylogenetic trees (Atlantic, Pacific).

Mitogenomic phylogeny has put Acipenser stellatus 
as a sister group of Huso huso with high support (boot-
strap 100% and posterior probability 1.00). Huso huso 
similarly formed with high support (bootstrap 100%) a 
sister group to the remaining species of clade Atlantic. 
This topology is consistent with the phylogenies of the 
complete mitochondrial genome of Liao et al. [2], Li et al. 
[56], and Popovic et  al. [57]. This topology is inconsist-
ent with the findings of Mugue et al. [20]. Paraphilic spe-
cies with Huso huso, including Acipenser guelenstaedtii, 
Acipenser baerii, Acipenser nudiventris, Acipenser fulve-
scens, Acipenser ruthenus, Acipenser brevirotrum. Our 
results agree with the taxonomy for sturgeons within 
the genus and reflected monophilic and paraphilic taxa 
(Fig. 6) [2, 30, and 61]. The analysis of Nedoluzhko et al. 
[58] and Sheraliev et al. [40] showed that in the Atlantic 
clad, H. huso was put as a sister group with all remain-
ing Acipenser species. Also, Sheraliev et  al. [40] con-
firmed that A. stellatus is closely related to P. kaufmanni 
(Fig.  6). Sheraliev et  al. [40] showed that H. huso is not 
closely related to A. stellatus, and is an ancestor clade 
Atlantic species, these results contradict our findings 
and are consistent with some results [59]. « A. oxyrin-
chus” and A. sturio formed a separate branch in the 
Pacific clade, clustered as paraphily with the rest spe-
cies in this clade. Acipenser guelenstaedtii and Acipenser 

Fig. 5 The OL region was found in Huso huso 

Fig. 6 Evolutionary relationship between Huso huso and other sturgeon species by a phylogenetic tree
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baerii formed a group monophyletic, whereas Acipenser 
nudiventris and Acipenser ruthenus were together mono-
phyletic in the clade Atlantic. A. transmontanus and A. 
schrenckii formed group monophyletic while A. sinen-
sis and A. dabryanus were monophyletic in the clade 
Pacific. Polyodontidae was used as the outgroup because 
it was an ancient sturgeon. It is generally believed that 
the sturgeons originated from the ancient population 
in Europe, and the early diversity occurred in Asia [40]. 
Short mitochondrial gene fragments have revealed limi-
tations in complex phylogenetic relationships in many 
lineages. Many informative sites from longer DNA 
sequences, such as the complete mitochondrial genome, 
allow deeper branches and higher levels of relationships 
to resolve complex relationships. Based on more genetic 
data, the mitochondrial genome will completely elucidate 
the phylogenetic relationships and determine a higher 
lineage level.

The substitution rates genes
More details showed that the divergence between substi-
tutions in the mitochondrial genome of rRNA and tRNA 
was less than that in the protein coding genes, indicat-
ing the stability of the stem and loop in the rRNA and 
tRNA. The CR had the most divergence. The divergence 
ratio varies between the genes encoding the protein, and 
ATP8, ND3, ND6, Cytb, and ND4 L showed the high-
est conservation, but ND2 and COII showed the highest 
divergence. ND2 is a small protein-encoding gene that 
is amplified by a primer and can be used as a protein-
encoding gene with good divergence in barcoding species 
is much more suitable than COI (the complete gene can 
be used instead of the partial gene). Applying these new 
genomic sequences to taxonomic tests of this species will 
be very useful. It will have achievements for phylogenetic 
analysis and the study of lineage rearrangements, conser-
vation, and evaluation of biological studies.

We calculated the ratio of nonsynonymous substitu-
tions (Ka) to the rate of synonymous substitution (Ks) 
(Fig. S2). Our results show that all 13 genes have a Ka/Ks 
ratio lower than one, indicating a strong selection signal 
for harmful mutations in all mitochondrial protein genes. 
However, the mean Ka/Ks ratio (0.1 to 0.001) showed 
a significant difference between individual genes. The 
highest rate (ND2, COII) indicates that the purification 
selection is under minimal pressure.

Conclusions
We identified the complete mitochondrial genome con-
sisting of 22 tRNAs, two rRNAs, 13 protein-encoding 
genes, and two OL and D-loop control regions. The 
VNTR is found in three sites, and a VNTR is between 
ND6 and Cytb as pseudo-tRNA-Glu. This organization of 

the genome was separate from other previously reported 
sturgeon species. These results included increased tRNA 
in H. huso and a VNTR in the 12 SrRNAs.

The 13 genes encoding proteins show that they are 
less conserved than rRNA and tRNA. Divergence varies 
between genes. COII was the highest, while the ATP8 
synthetase subunit was the lowest. Observing the diver-
gence rates of these genes allows us to compare them for 
barcoding. Although COI is commonly used for DNA 
barcoding, this gene has observed low divergence, indi-
cating that it cannot clearly distinguish very close species. 
The data analysis showed that ND2 is a better candidate 
for barcode identification in the grouping. It has a higher 
percentage of variable sites than COI. Therefore, it can 
differentiate between newly derived species.

In addition, the smaller size of ND2 makes it easier 
to use compared to COI. The sequence was amplified 
entirely using only one pair of primers. Thus, a complete 
gene instead of a partial gene can be used for barcoding.

Nevertheless, we observed a kind of diversity in this 
particular species, which included the presence of tan-
dem repeats in the control region and 12S rRNA and 
tRNA-Glu, resulting from mispairing. There have been 
reports of pseudo tRNA in several species of fish, but 
there have been no reports about the presence of repeats 
in fish in 12S rRNA.

Methods
Sampling, PCR amplification, and sequencing
Samples of sturgeon were taken from the waters of Iran 
on the south coast of the Caspian Sea. Systematic stud-
ies were performed to select a random animal specimen 
to avoid exaggerating the effects and to conform to the 
conventional statistically significant criteria. Samples 
were received from three provinces along the south coast 
of the Caspian Sea (Mazandaran, Golestan, Gilan) in five 
fishing areas, and samples were collected from the cau-
dal fin. Complete genomic DNA was obtained using the 
ammonium acetate method [60], and 16 pairs of uni-
versal primers overlapping mitochondrial genome frag-
ments were amplified and then sequenced.

Primers and PCRs were performed based on the meth-
ods described by Shao et al. [61] (Table S1). One hundred 
μl of PCR products, along with 50 μl of each forward and 
reverse primer (10  pmol), were used to determine the 
sequences of DNA fragments using the Sanger method 
by the European company of Microsynth.

Assembling genome sequences and annotating
The sequencing results were manually corrected and 
edited using (ChromaSprov.1.42), and then the mito-
chondrial genome was searched for protein and rRNA 
using the BLAST tool. http:// www. ncbi. nlm. nil. gov/ 

http://www.ncbi.nlm.nil.gov/BLAST.cgi
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BLAST. cgi,  and annotations were performed based 
on the mitochondrial genome alignment of closely 
related species in the GenBank database. The obtained 
sequences from 16 pieces were aligned with Clustal X 
and then edited with BioEdit software.

The overlapping sequences were achieved, and the 
results of the contigs were assembled using the SeqMan 
module of Lasergene 11.0 software (DNASTAR, Madi-
son, WI, USA) and then mapped to reach the complete 
mitochondrial genome of Huso huso. Sequence results 
and combined annotations were used to map the species’ 
genome. Most tRNA genes and their secondary struc-
tures were predictable by tRNA-scan [62]. The cloverleaf 
structure was detected by computer.

Sequence analysis
Nucleotide compositions were obtained using the 
DNASTAR program, and ATskew and GCskew were cal-
culated using the formula [56].

Tandem Repeat Finder was used to identify dupli-
cate sequences. The complete mitochondrial genome 
sequencing of Ka/Ks, the ratio of protein-coding genes, 
was calculated by PAL2NAL online (http:// www. bork. 
embl. de/ pal2n al). The codon usage of 13 protein-coding 
genes was calculated using Mega 10 software.

Phylogenetic analysis
In this study, mitogenomes of additional species were 
obtained from GenBank and aligned using Clustal X. After 
removing their stop codons to draw the phylogenetic tree, 
the genes became concatenated. We used European, Chi-
nese, Russian, and American sturgeon species for phylog-
eny. Sequences of 12 genes encoding proteins were aligned 
with Clustal X, and minor manual settings were used.

To compare the differences, probability tests were per-
formed. Different models were used for comparison and 
Determination, and the best model selection based on 
BIC was determined for 12 protein-coding genes. Finally, 
GTR + I + G was selected as the best model, and 12 genes 
based on maximum likelihood and gamma distribution 
were evaluated using all sites and bootstrap 1000.
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