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Abstract 

Background Freshwater ecosystems, such as streams, are facing increasing pressures from agricultural land use and 
recent literature stresses the importance of robust biomonitoring to detect trends in insect decline globally. Aquatic 
insects and other macroinvertebrates are often used as indicators of ecological condition in freshwater biomonitor-
ing programs; however, these diverse groups can present challenges to morphological identification and coarse-level 
taxonomic resolution can mask patterns in community composition. Here, we incorporate molecular identification 
(DNA metabarcoding) into a stream biomonitoring sampling design to explore the diversity and variability of aquatic 
macroinvertebrate communities at small spatial scales. While individual stream reaches can be very heterogenous, 
most community ecology studies focus on larger, landscape-level patterns of community composition. A high 
degree of community variability at the local scale has important implications for both biomonitoring and ecological 
research, and the incorporation of DNA metabarcoding into local biodiversity assessments will inform future sampling 
protocols.

Results We sampled twenty streams in southern Ontario, Canada, for aquatic macroinvertebrates across multiple 
time points and assessed local community variability by comparing field replicates taken ten meters apart within 
the same stream. Using bulk-tissue DNA metabarcoding, we revealed that aquatic macroinvertebrate communities 
are highly diverse at small spatial scales with unprecedented levels of local taxonomic turnover. We detected over 
1600 Operational Taxonomic Units (OTUs) from 149 families, and a single insect family, the Chironomidae, contained 
over one third of the total number of OTUs detected in our study. Benthic communities were largely comprised of 
rare taxa detected only once per stream despite multiple biological replicates (24–94% rare taxa per site). In addition 
to numerous rare taxa, our species pool estimates indicated that there was a large proportion of taxa that remained 
undetected by our sampling regime (14–94% per site). Our sites were located across a gradient of agricultural activity, 
and while we predicted that increased land use would homogenize benthic communities, this was not supported as 
within-stream dissimilarity was unrelated to land use. Within-stream dissimilarity estimates were consistently high for 
all levels of taxonomic resolution (invertebrate families, invertebrate OTUs, chironomid OTUs), indicating stream com-
munities are very dissimilar at small spatial scales.
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Background
As the effects of climate change become more severe 
and we enter a sixth mass extinction event [1], it is now 
more than ever critical to conserve vulnerable habitats 
and slow the rate of biodiversity loss. While trends in 
vertebrate species have been easier to document and tra-
ditionally received more attention [e.g., 2–4], the impor-
tance of insects and threats towards them have garnered 
a broader interest in the past decade with the publication 
of alarming trends in insect decline. For example, Hall-
man et al. [5] estimated that there has been a 75% decline 
in flying insect biomass in Germany since the late 1980s, 
and Sánchez-Bayo and Wyckhuys [6] have predicted that 
40% of insect species will be extinct in the next few dec-
ades. While there has been debate whether the decline 
will be as severe as Sánchez-Bayo and Wyckhuys [6] pre-
dicted [e.g., 7], it nevertheless remains clear that there is 
a consistent pattern of insect decline across a broad range 
of taxonomic groups and habitats in response to climate 
change and land use [8–10]. Freshwater habitats, such 
as streams, are particularly threatened by anthropogenic 
land use and climate change, despite their irreplaceable 
ecosystem services [11, 12]. The biodiversity of freshwa-
ter systems is declining at a faster rate than marine or 
terrestrial habitats [13], stressing how essential stream 
biomonitoring and conservation projects are to pre-
serve these ecosystems. Biomonitoring assessments often 
incorporate aquatic invertebrates, which are key bioin-
dicator taxa and sensitive to habitat disturbances [14]. 
However, these groups present challenges to traditional 
morphological identification. For example, many imma-
ture larval stages cannot be reliably identified to spe-
cies-level due to the lack of diagnostic characters which 
can result in identification errors [15, 16]. Due to these 
constraints, environmental assessments using morpho-
logical identifications often use coarse taxonomic reso-
lution (e.g., family-level) as a surrogate for species-level 
identification, which could potentially mask species-level 
turnover within a family or not prove sensitive enough 
to detect impairment [17]. The limitations in time and 
financial resources, large volumes of samples, and either 
coarse taxonomic resolution or narrow taxonomic focus 
can be impediments to monitor stream systems exposed 
to complex physical and chemical stressors.

The above challenges, combined with the need for 
species detection in an ongoing biodiversity crisis, has 
prompted research programs which suggest that molec-
ular tools can provide a promising future for freshwater 
biodiversity assessments [18–20]. Over the past dec-
ade, there have been major advancements in molecular 
identification tools (e.g., high-throughput sequencing 
or metabarcoding; [21, 22]), which have the potential 
to be incorporated into biomonitoring programs and 

ecological research. Metabarcoding has huge poten-
tial for environmental assessments as high-throughput 
sequencing (HTS) platforms can efficiently sequence and 
identify entire samples [22, 23]. In previous studies com-
paring morphological identification and DNA metabar-
coding of invertebrate communities, molecular methods 
have proven either equally or more effective than tradi-
tional approaches at investigating patterns of biodiversity 
[23–26]. Very speciose taxa can especially benefit from 
metabarcoding applications, such as the family Chirono-
midae (non-biting midges, a ubiquitous group of flies 
with a freshwater larval stage), which occupy most fresh-
water habitats and are often grouped at family-level reso-
lution in assessments [27].

While metabarcoding provides an avenue for efficient 
and cost-effective macroinvertebrate identification for 
biomonitoring programs, the variability of stream habi-
tats can make it challenging to determine whether sam-
pling efforts have been sufficient. Local micro-habitat 
level conditions, such as riparian vegetation, sediment 
type, organic matter, and flow regime (e.g., riffle versus 
pool), are important factors in structuring benthic com-
munities [28, 29]. Since stream microhabitats can vary 
on small spatial scales, this creates a very patchy system 
in terms of physical stream attributes and resources, and 
thus affects community composition of aquatic inver-
tebrates [30]. This spatial extent knowledge gap, com-
bined with the potentially unknown taxonomic diversity 
of benthic invertebrates, can be uniquely answered by 
sampling methods based on metabarcoding principles 
to inform biomonitoring protocols and efficiently record 
biodiversity in stream systems.

Small-scale variations in stream habitats can be 
caused by both natural and anthropogenic processes, 
although loss of microhabitats (e.g., habitat homogene-
ity) is often associated with adjacent agricultural land 
use, which results in channelization and reduction of 
riparian vegetation [31]. Heterogeneous habitats tend 
to support higher species richness [32, 33], and it is 
perhaps unsurprising that increasing agricultural land 
use in the surrounding catchment area can cause taxo-
nomic and functional homogenization in aquatic mac-
roinvertebrates, resulting in more similar communities 
of ‘tolerant’ taxa [34, 35]. However, the relationship 
between beta diversity (a measurement of community 
dissimilarity) and both land use and habitat heteroge-
neity in stream macroinvertebrates is unclear and often 
case dependent. In Finland, Heino et  al. [36] deter-
mined that heterogeneity was not a significant predica-
tor of invertebrate beta diversity in streams using a mix 
of species and genus-level identifications. Additionally, 
research using predominately genus-level identifica-
tions by Petsch et al. [37] concluded that land use did not 
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cause homogenization of stream invertebrates in boreal 
(Finland) or subtropical (Brazil) regions. However, con-
trasting patterns have been detected in New Zealand, 
where habitat heterogeneity was a strong driver of beta 
diversity in stream invertebrate communities [38] and in 
North America (Maryland, USA) where Maloney et  al. 
[39] detected a negative relationship between beta diver-
sity and increased pasture and crop cover. The above 
studies of stream invertebrate beta diversity patterns 
are performed at large spatial scales (e.g., comparing 
beta diversity between major watersheds or geographic 
regions), and there are few stream studies that explore 
spatial resolution at small scales (e.g., microhabitat level, 
but see [36, 40]).

In this study, we used bulk tissue DNA metabarcoding 
to determine how variable benthic invertebrate commu-
nities are at small spatial scales across three time points 
in a single year. We determined the importance of taxo-
nomic resolution in revealing biodiversity patterns by 
performing all analyses at both family-level and OTU-
level resolution. As chironomid OTUs generally comprise 
high levels of diversity in freshwater samples, we also 
repeated all analyses using only OTUs from this family. 
We assessed whether overall taxonomic richness is linked 

to land use and calculated within-stream dissimilarity to 
determine if small-scale changes in community compo-
sition are influenced by agricultural activity. We hypoth-
esized that agricultural landscapes homogenize stream 
communities and cause more uniform benthic commu-
nities due the loss of habitat complexity, and therefore 
predicted that within-stream dissimilarity will decrease 
(e.g., more homogenous communities) as the percent-
age of agricultural land use in the catchment increases. 
We also explored how stream biodiversity estimates 
change between different levels of taxonomic resolution 
by calculating rarefaction curves and estimating the total 
regional species pool, calculating the sampling coverage 
at each stream site and determining the percentage of a 
local community made up by rare taxa in order to inform 
future sampling efforts.

Methods
Site selection and stream sampling
We collected benthic macroinvertebrates from twenty 
streams in southern Ontario across three time periods 
(May, July, and September 2019; Fig.  1). We selected 
streams on a continuum of surrounding land use, and 
sites were located either on Conservation Authority 

Fig. 1 A map of stream sampling sites in conservation areas (blue circles) and privately owned farms (orange squares) in southern Ontario, Canada, 
along the north shore of Lake Erie. The map was created using QGIS [46]. The black outlines demonstrate quaternary watershed boundaries where 
we sampled. The inset map shows the province of Ontario in white with our study region outlined in a black rectangle
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property or privately owned land (farm sites), and addi-
tionally were required to be wadable and wet for the 
entire study period. We used the Ontario Flow Assess-
ment Tool (OFAT) [41] to determine stream watershed 
boundaries in ArcGIS v. 10.6.1 [42] and the Ontario Land 
Cover Compilation v. 2.0 [43] to determine the percent-
age of agriculture land use (cropping) surrounding each 
stream site.

For field collection of aquatic macroinvertebrates, we 
collected four biological replicates within each stream 
(i.e., four bulk samples per stream) by selecting four tran-
sects that were approximately 10–20  m apart and posi-
tioned downstream to upstream to avoid contamination 
from sampling-related disturbance. We placed transects 
to include multiple microhabitats if present (e.g., riffles 
and pools, different substrates) and collected benthic 
macroinvertebrates and associated habitat information 
based on the Ontario Benthic Biomonitoring Network 
(OBBN) [44] and the Ontario Stream Assessment Pro-
tocol (OSAP) [45]. Each sample consisted of a 3-min-
ute travelling kick-and-sweep using a 500  μm D-net 
across the width of the stream. We then transferred the 
bulk sample to a 500 μm mesh sieve for rinsing and the 
removal of large debris, before storing in a sample con-
tainer and preserving in 95% ethanol on site. We kept 
the invertebrate samples in a chilled cooler until transfer 
to the lab on the same day, where they were stored in a 
4  °C fridge until further processing. All sampling equip-
ment (e.g., nets, sieves, forceps, waders) was cleaned with 
a 10% bleach solution and rinsed with de-ionized water 
(DI) between sites. In total, we collected four biological 
replicates per stream and 80 samples each month, for a 
total of 240 bulk samples.

Sample sorting and DNA extraction
Bulk macroinvertebrate samples were rinsed with DI 
water over a sterilized 500 μm sieve and sorted under a 
dissection microscope. Benthic macroinvertebrates were 
removed from sample debris and placed in a sterile 20 
mL tube containing 95% ethanol and ten 4  mm diam-
eter steel beads for later homogenization. As many bulk 
samples were very large, we used a subsampling approach 
based on equal effort by stopping sorting after 4  h had 
elapsed. The unsorted portion of sample was placed on 
a white grid and scanned for 2 min for any rare taxa that 
had not been encountered during the initial subsam-
pling. After sorting had been completed, excess ethanol 
was removed by a pipette and samples were air dried 
for 1 week while covered with a kimwipe. The dry bio-
mass of each sample was recorded, and then samples 
were homogenized within their sampling tubes using an 
IKA Tube Mill (IKA, Staufen, Germany) at 4000 rpm for 
15  min. Smaller samples were ground in a 2 mL sterile 

tube with two steel beads using a TissueLyser II (Qiagen, 
Hilden, Germany) at 30 Hz for 1 min. We subsampled 
20 mg (± 1 mg) of ground tissue into a sterile 2 mL tube 
and used a DNeasy Blood & Tissue Kit (Qiagen, Hilden, 
Germany) following manufactures’ guidelines for DNA 
extraction, follow by quantification using a Qubit 3.0 
Fluorometer (ThermoFisher Scientific, MA, USA). Sev-
eral samples contained less than 20 mg of tissue, and the 
entire sample was used for DNA extraction in place of 
sub-sampling.

PCR amplification and library preparation
We used a two-step PCR library preparation protocol 
to first amplify our target region followed by a second 
indexing reaction [see 47]. For the first step, we used the 
Qiagen multiplex PCR kit (Qiagen, Hilden, Germany) as 
our master mix and selected a primer pair (BF2 + BR2; 
[48]) that has been successful at amplifying a broad range 
of invertebrate taxa, including aquatic invertebrates col-
lected from our study region [49, 50]. We selected the 
mitochondrial cytochrome c oxidase subunit I (CO1) 
gene as our marker and the BF2 + BR2 primer set tar-
geted a 421 bp region to amplify in our initial PCR reac-
tion. Each reaction consisted of 2.5 µL DNA extract, 12.5 
µL of 2x Qiagen master mix, 9 µL of molecular water, 
and 0.5 µL of each primer (BF2 + BR2, reaction concen-
tration of 0.2 µM) for a total reaction volume of 25 µL. 
Our thermocycling profile followed Qiagen’s manufac-
turer’s protocol: a 95  °C initial denaturation for fifteen 
minutes, followed by 25 cycles of 94 °C for 30 s, 50 °C for 
90 s, 72 °C for 60 s, and a final extension at 72 °C for ten 
minutes and visualized using precast 2.0% agarose e-gels 
(E-Gel 96 SYBR Safe DNA stain; ThermoFisher Scientific, 
MA, USA). Each sampling period (e.g., month) consisting 
of 80 samples were prepared in their own plate, in addi-
tion to 6 PCR negative controls, 1 sequencing negative 
control, and 1 extraction negative control. We included 8 
PCR technical replicates per plate to ensure PCR repro-
ducibility and explicitly selected samples of both lower 
and higher invertebrate abundance. This resulted in three 
96-well PCR plates consisting of 240 samples, 24 tech-
nical replicates, and 24 negative controls. The resulting 
PCR products were purified using NucleoMag NGS clean 
up and size select magnetic beads (Macherey-Nagel, 
USA) with an 0.8x ratio of beads to PCR product as per 
Milián-García et al. [51].

A second PCR reaction was prepared using indexing 
primers to tag samples for library preparation. Here, we 
prepared a 50 µL PCR reaction using 5 µL of our puri-
fied PCR product, 25 µL of 2x Qiagen master mix, 10 µL 
of molecular water, and 5 µL each of forward and reverse 
indexing primers (initial concentration 10 µM) based on 
Illumina’s standard indexing protocol. The thermocycling 
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profile included an initial denaturation at 95 °C for fifteen 
minutes, 8 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C 
for 30 s, and a final extension of 72  °C for five minutes. 
After e-gel visualization to confirm amplification, we 
again purified the PCR products using NucleoMag beads 
(0.6x ratio, [51]). After a final visualization, we submitted 
the prepared libraries to the Advanced Analysis Center 
at the University of Guelph. Each plate was normalized, 
pooled, and sequenced separately on the Illumina MiSeq 
platform for a total of three separate runs.

In some cases, samples did not perform well in 
sequencing and were subsequently filtered out of the 
dataset based on low sequence read (36 samples fil-
tered out with fewer than 80k sequences). Most of the 
failed samples came from the same streams and had 
lower-than-average DNA concentration, and we re-ran 
these samples following the same protocol as above, but 
instead increased the template volume to 5 µL in the ini-
tial amplification PCR and added an additional 10 cycles 
to the thermocycling program for the first PCR (CO1 
amplification) and submitted a fourth plate for sequenc-
ing as above to replace failed samples.

Bioinformatics pipeline
We used the bioinformatics platform JAMP v. 0.67 
(http:// github. com/ Vasco Elbre cht/ JAMP) to process the 
raw sequence data. The protocol is listed in detailed in 
Persaud et al. [50], but in brief this involved paired-end 
merging of de-multiplexed reads using USEARCH v. 
11.0.6668 [52] followed by trimming primer sequences 
from reads using cutadapt v. 1.15 [53]. We assessed 
sequence size by filtering out any that were more than 
ten base pairs longer or shorter than our target (421 bp) 
and filtered out low-quality sequence with expected 
errors ≥ 1. We used USEARCH v. 11.0.6668 [52] to clus-
ter quality sequences from all runs into Operational 
Taxonomic Units (OTUs) using a 97% similarity thresh-
old, and OTUs with less than 0.01% abundance across 
all samples were filtered out [24, 54]. We matched our 
OTUs to the Barcode of Life Data System reference 
sequence library (BOLD) [55] using the Python program 
BOLDigger [56]. Raw sequences are available on NCBI’s 
Sequence Read Archive (BioProject ID: PRJNA783201) 
and our final OTU table with sequence reads per sample 
and associated taxonomic metadata are available as sup-
plementary information.

Data quality control
All of our statistical analyses and figures were performed 
using R version 4.0.3 [57], and all plots were created 
using the package ggplot2 v.3.3.3 [58]. We used the R 
package metabaR v. 1.0.0 [59] to assess the quality of our 
metabarcoding data, including confirming sequencing 

depth was appropriate and checking for contamination 
on sequences present in our negative controls (see Addi-
tional file 1: Appendix 1 for further details). A sequence 
was identified as a contaminate if it had a relative abun-
dance that was highest in a negative control (as no other 
DNA should be present in negative controls, contami-
nants should be preferentially amplified). A sample would 
be flagged as failed if more than 10% of its total sequence 
reads corresponded to an OTU identified as a contami-
nant. Based on the small number of reads in sequencing 
controls, we tested multiple filtering thresholds to lower 
the influence of tag jumps and prevent false positives. The 
abundance of an OTU in sample was changed to zero if 
the relative abundance of that OTU was less than 0.001% 
of the total abundance of that OTU in the entire dataset. 
We then filtered out samples with low sequence reads 
(less than 1 SD below average sequence read; 87,344) and 
assessed the quality of technical replicates for reproduci-
bility based on Bray-Curtis distances within and between 
samples (e.g., contrasting the dissimilarities in OTU com-
position). A sample was flagged as a failed if the distance 
within a sample (e.g., between technical replicates) was 
greater than the threshold of the intersection value for 
within and between sample distances. We filtered out any 
non-target taxa and retained only arthropods, annelids 
and molluscs which were the three must abundant phyla 
in terms of both total sequence reads and OTU counts. 
We did not include nematodes in any further analysis as 
we did not obtain many sequences or OTUs matching to 
this group, likely due to a combination of the small size 
of some species and primer bias. Finally, we filtered out 
poor-quality taxonomic matches (< 90% match to refer-
ence database). After cleaning the data using metabaR, 
we calculated the total number of sequences and OTUs 
that were removed from the dataset during this process. 
See Additional file  1: Appendix  1 for additional details 
and figures for the above protocol.

Statistical analysis
To assess the influence of taxonomic resolution on eco-
logical patterns, we analyzed the data first at family-level 
and OTU-level resolution. We additionally analyzed the 
chironomid OTUs on their own as this family made up 
a large portion of the diversity within our dataset. All 
data were analyzed at three time points in our data set 
(May, July, September). To determine if taxon richness 
varied between stream type (e.g., located in a conserva-
tion area or on private property) or between sampling 
months, we used the ‘lmer’ function in the R package 
lmerTest v. 3.1-3 [60] to perform a mixed effects model 
to test the significance of site type and sampling month 
(and the interaction between them) on taxa richness for 
each identification level. We incorporated stream site as 

http://github.com/VascoElbrecht/JAMP
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a crossed random effect to account for all streams being 
repeatedly sampled each month. We used lmerTest to 
generate p values for the fixed effects in the above and all 
subsequent models by using Satterthwaite’s method to 
approximate degrees of freedom for all F-tests (see [60]).

To assess how within-stream dissimilarity is influenced 
by surrounding land use, we calculated the Raup-Crick 
index between the four biological replicates (transects) 
within a stream using the ‘raupcrick’ function with 999 
simulations in the R package vegan v. 2.5-7 [61] and then 
took the mean of all pairwise comparisons as the dissimi-
larity value for that site. Using Raup-Crick as a dissimi-
larity index is ideal for metabarcoding data as it treats the 
number of sequence reads per OTU as binary (e.g., pres-
ence/absence) as opposed to an abundance value, and it 
is based on occurrence probabilities in proportion to fre-
quency of a species occurrence and thus should be robust 
to the influence of rare taxa and large differences in rich-
ness between sites. We calculated a mixed effects model 
for each identification level to test if within site dissimi-
larity (i.e., the mean of all within-site pairwise compari-
sons) was correlated with the percentage of agricultural 
land use or sampling month, and if there was an interac-
tion between these two fixed effects.

We used the R package iNEXT v. 2.0.20 [62] to gener-
ate rarefaction and extrapolation curves to estimate the 
regional diversity in each sampling period (month) for 
macroinvertebrate families, macroinvertebrate OTUs 
and chironomid OTUs. To estimate how many unde-
tected taxa remained at each stream site (e.g., locally), 
we calculated the number of expected total taxa at each 
based on Chao’s equation using the ‘specpool’ function in 
the R package vegan [61] and plotted this as the percent-
age of coverage achieved by dividing the observed num-
ber of taxa over the expected number of taxa. Finally, to 
assess how many rare taxa make up a local community, 
we calculated the percentage of taxa which only occurred 
in one (of four) biological replicates at each stream site. 
We calculated two separate mixed effects models to 
determine if either the percentage of sampling coverage 
or the percentage of rare taxa were significantly different 
between either sampling month or level of identification 
(i.e., families, all OTUs, chironomid OTUs). All raw data 
and associated R code are provided as supplementary 
information (see Additional files 2, 3, 4).

Results
Summary and taxonomic richness
We received 74,771,159 sequence reads from the four 
MiSeq runs (average of 18,893,999 sequences per run), 
and after post-bioinformatic processing our samples 
contained a total of 51, 334, 969 reads (average per 
sample 161,430 ± 69,286 standard deviation) and 2276 

OTUs (average 72 per sample ± 33 SD), while all nega-
tive controls combined had only 1954 reads (average 
per control 57 ± 16 SD) and 241 OTUs (average per 
control 16 ± 13 SD). Notably, our OTU table origi-
nally contained 5597 OTUs which were filtered out 
after clustering for not meeting the 0.01% abundance 
threshold (these OTUs corresponded to only 33,840 
sequences in total). Three OTU sequences were flagged 
as contaminants through metabaR [59], two of which 
were unidentified algae and one matched to a species 
of maple tree (Acer sp.), indicating that the most likely 
cause of the small amount of sequences in the negative 
controls were tag jumps during sequencing. No samples 
were flagged as contaminated, and all technical repli-
cates passed our reproducibility criteria. Three samples 
were removed from the dataset for sequencing depth 
lower than one standard deviation of the mean (< 86k 
sequences). The most common reason for an OTU to 
be removed from the final dataset was a match of less 
than 90% to the sequence reference database (BOLD). 
Post metabaR [59], our cleaned dataset contained a 
total of 41,978,040 high quality reads (177,123 per sam-
ple ± 46,881 SD) and 1681 macroinvertebrate OTUs (65 
per sample ± 29 SD). We created two more data frames 
from the cleaned data, one with OTUs scaled back to 
family-level resolution (145 families total; average of 13 
per sample ± 5 SD) and one containing only OTUs from 
the family Chironomidae (586 OTUs; average of 23 per 
sample ± 17 SD), as chironomids contained a third of 
the total diversity within the invertebrate dataset.

There was no significant influence of site type (CA 
versus farm;  F1,18 = 0.39, p = 0.54) or sampling month 
 (F2, 36 = 2.62, p = 0.09) on average OTU richness (Fig. 2). 
Likewise, there was no effect of either site type or sam-
pling month on average family richness (type:  F1,18 
= 0.22, p = 0.75; month:  F2,36 = 1.98, p = 0.15; Fig.  2). 
While site type had no effect on average chironomid 
OTU richness  (F1,18 = 0.77, p = 0.72), there was slight 
evidence that sampling month was important (though 
not statistical significant;  F2,36 = 3.12, p = 0.056; Fig. 2). 
For all above models, there was no significant interac-
tion between site type and sampling month on taxo-
nomic richness.

Site dissimilarity and agricultural land use
Mean within-site Raup-Crick dissimilarity was not signif-
icantly correlated with the percentage of agricultural land 
or month for family-level identification (agriculture:  F1,18 
= 1.28, p = 0.27; month:  F2,36 = 0.36, p = 0.70), OTU-level 
identification (agriculture:  F1,18 = 1.74, p = 0.21; month: 
 F2,36 = 0.51, p = 0.60), or for chironomid OTUs (agricul-
ture:  F1,18 = 1.26, p = 0.27; month:  F1,36 = 0.09, p = 0.91). 
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Dissimilarity was generally high for all sites (i.e., most 
values within range 0.5–1.0; Fig. 3).

Rare and undetected taxa
We collected a total of 80 samples for each sampling 
period, but the species rarefaction curves did not level 
off (Fig. 4). Extrapolations estimated that at 150 sampling 
units, the number of new taxa would begin to level off 
for family-level identification and for chironomid OTUs. 
Based on Chao’s equation, we determined that each sam-
pling month collected approximately 69% of total inver-
tebrate families present, 62% of all invertebrate OTUs 
present, and 60% of chironomid OTUs present, and at 
the stream level this value ranged dramatically from 
32–94% for families, 28–84% for all invertebrate OTUs, 
and 14–90% for chironomid OTUs, indicating that many 
taxa can be missed locally (Fig.  5). We observed that 
there were significant effects of both identification level 
 (F2,152 = 7.5, p < 0.001) and sampling month  (F2,152 = 5.26, 
p < 0.01). OTU-level resolution (for all invertebrates and 
just chironomids) had more undetected taxa than family-
level resolution and September had the highest coverage 
for all groups (particularly families).

In addition to undetected taxa, we also calculated the 
proportion of rare taxa at each stream to determine how 
variable streams are at small spatial scales. Streams had 
on average 59% (range 40–87%) of invertebrate OTUs 
that were only detected in one of four biological repli-
cates, indicating a high degree of turnover within a sin-
gle site (Fig. 6). Likewise, there was an average of 46% of 
unique taxa per stream (range 24–71%) for invertebrate 
families and 61% (range 31–94%) for chironomid OTUs 
(Fig.  6). There was a significant difference in the num-
ber of rare taxa between different identification levels 
 (F2,156 = 37.6, p < 0.001) and slight evidence that sampling 
month had an effect (though not statistically significant; 
 F2,156 = 2.91, p = 0.057). There were less rare taxa in the 
family-level dataset compared to the OTU and chirono-
mid OTU datasets.

Discussion
Rare and missing taxa
Our approach of sampling at small spatial scales within 
streams revealed incredibly diverse benthic macroin-
vertebrate communities which varied considerably over 
short distances. While we collected a total of 80 samples 

Fig. 2 The average taxonomic richness per site in each category (conservation area - CA), n = 7, or farm, n = 13) over the sampling period (May, July, 
Sept, total n = 237). There was no significant effect of site type or sampling month on taxonomic richness for any group, though sampling month 
approach significance for chironomid OTUs  (F1,36 = 3.12, p = 0.056). Note the different Y-axis scales in the 3 figures
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for each sampling month, this was not sufficient to detect 
biodiversity at the OTU-level at either the local scale 
(within a stream; alpha diversity) or the regional scale 
(total species pool; gamma diversity). Even at family-level 
taxonomic resolution, we consistently underestimated 
total number of taxa present both locally and regionally, 
and this increased dramatically for OTUs. Our extrapo-
lations suggest that after 150 samples, the accumulation 
curve would not be complete. This not only indicates a 
vast level of diversity masked at the family level, but also 
suggests that our sampling was not sufficient to capture to 
complete local community. Doubling our sampling effort 
(i.e., eight local transects per stream) would be unlikely 
to represent adequately OTU-level diversity as inverte-
brate OTUs continued to increase past our extrapola-
tion threshold. While few aquatic metabarcoding papers 
explore biodiversity at the site level or compare observed 
versus expected number of taxa, morphological studies 
using family-level resolution have found similar results as 
our study. In shallow streams in Brazil, Ligeiro et al. [63] 
detected 53 invertebrate families and determined that 
81% of them were rare (in this case based on a thresh-
old of less than 1% abundance, which differs from our 

definition). However, Ligeiro et  al. [63] concluded that, 
since sampling a single riffle in a stream collected approx-
imately 75% of invertebrate families present, intensive 
sampling is not efficient and that the priority should be 
broad spatial coverage. In contrast, we observed that a 
single sample within a stream in our study is highly dis-
similar in OTU composition from a second point only 
ten meters away and can represent anywhere between 
27 and 85% of the total OTUs detected. Based on our 
results, we conclude that one sampling point is not suf-
ficient and a more thorough sampling protocol is neces-
sary for a more accurate representation of local diversity. 
While sampling intensity is an important consideration, 
a caveat of course is that improvements in sequencing 
analyses (e.g., increasing read depth) could improve the 
detection of rare taxa.

Our results more closely resemble terrestrial arthro-
pod metabarcoding studies using malaise traps to explore 
community composition. In southern Ontario, Steinke 
et al. [54] surprisingly discovered that ten Malaise traps 
(tent-like insect collection traps) placed in a row had 
remarkably high differences in community composition. 
This field design of trap placement is comparable to our 

Fig. 3 The mean Raup-Crick dissimilarity of all pairwise comparisons within a site is plotted against the percentage of agricultural land use 
surrounding the stream site. There was no significant relationship between dissimilarity and agriculture or sampling month for any identification 
level
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four kicknet transects within a stream, where we simi-
larly found very high within-stream dissimilarity, numer-
ous rare taxa, and large estimates of undetected taxa. 
For example, Steinke et al. [54] estimated that their OTU 
pool contained approximately 60% of the total diversity 
in the region, whereas our estimates were 69% for all 
invertebrate OTUs (and 78% for chironomid OTUs only). 
These patterns not only resemble our study in terms of 
missing taxa, but also display strikingly similar patterns 
in the number of rare taxa or those occurring only once 
within a site. Steinke et  al. [54] detected close to 3000 
OTUs, and almost half of these only occurred once in 
the same location. At the site level, the percentage of rare 
taxa in our study (e.g., only occurring at one of four tran-
sects in a stream) ranged from 40 to 90% and averaged 
approximately 60%.

This pattern of arthropod rarity persists across geo-
graphic ranges, as a tropical DNA barcoding study using 
Malaise traps [64] observed very high beta diversity 
amongst traps, which did not decrease with increased 
local sampling, indicating that the regional species pool 
had not been adequately sampled. However, repeated 
yearly sampling of the same localities decreased beta 

diversity and allowed D’Souza and Hebert [64] to deter-
mine which taxa were present yearly (even if rare) and 
which were ‘transient’ taxa. D’Souza and Hebert’s [64] 
study clearly demonstrated the need for both spatially 
and temporally robust datasets to estimate accurately 
taxon richness and beta diversity both within a site and 
over time. In our dataset, we see a large proportion of 
rare taxa; however, repeated yearly sampling would 
allow us better power to determine which taxa are rare 
and which are transient. This is an ongoing challenge of 
attempting to characterize local communities in streams 
with no discrete boundaries and of how to delineate local 
sites in a continuous system. The spatial extent and sam-
pling grain of a study can significantly alter conclusions 
drawn regarding community composition [65, 66]. It 
is possible that sampling small spatial scales like in our 
study can result in an overinflation of local richness due 
to mass effects swamping out local environmental signal 
[36], such as taxa being carried to the site due to water 
flow but not actually being able to establish there (e.g., 
a “sink” habitat for that species) and thus result in these 
transient taxa skewing dissimilarity estimates. Alterna-
tively, sampling too large an area can miss changes in 

Fig. 4 Rarefaction curves for the number of taxa collected each sampling month where the solid line represents interpolated richness from our 
samples and the dashed line is an extrapolation based on expected number of taxa with continued sampling. Symbols indicate the point where 
our sampling stopped (n = 80). Note difference in y-axis scales
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community composition in response to environmen-
tal signals due to dispersal limitation. Here, we demon-
strated a vast amount of both diversity and variability in 
aquatic macroinvertebrates at both the local and regional 
scale, underscoring the importance of developing con-
sistent, long-term monitoring programs to assess more 
accurately patterns in insect declines and thus better 
inform protection measures.

Taxonomic richness and land use
While both family and OTU-level richness varied 
between streams, this was not significantly linked to 
seasonality or site location (i.e., whether the stream was 
located on private land or on conservation authority 
property). This is perhaps unsurprising as local richness 
(or alpha diversity) can be influenced by a number of hab-
itat parameters in aquatic systems, such as microhabitat 
availability in streams [28] or hydroperiod in wetlands 
[67], or can be unrelated to any habitat parameters [63]. 
While aquatic macroinvertebrates have been successfully 
used as indicators for decades [14, 68], it is likely that a 
binary category (e.g., farm or conservation area) was not 
an effective tool to classify stream quality, especially in 

a heavily impacted landscape such as southern Ontario. 
Streams vary in physical habitat parameters, such as 
the riparian buffer width and the slope of the bank, and 
these metrics may provide a local buffer from adjacent 
or upstream landscape-scale agricultural practices [31]. 
The importance of local habitat conditions has been 
shown also in previous work in southern Ontario streams 
by Yates and Bates [69], who determined that aquatic 
macroinvertebrates (at family-level) were more associ-
ated with human activity directly adjacent to the stream 
such as channel alteration (e.g., decreased sinuosity) and 
buffer width. In contrast, more mobile fish communi-
ties were more responsive to landscape-scale parameters 
over local conditions in the same system [69]. Fish also 
have a more evident threshold response in community 
composition to agricultural impairment, whereas mac-
roinvertebrates (albeit at family-level resolution) respond 
more gradually to such changes [70] However, there is 
also the potential that largely developed landscapes, such 
as southern Ontario, have historically excluded sensitive 
taxa through centuries of agriculture, and invertebrate 
communities are already homogenous due to lack of true 
reference-condition streams [71].

Fig. 5 Estimated percentage of taxonomic coverage achieved at each stream by dividing the observed number of taxa over the extrapolated 
number of taxa expected based on Chao’s equation for each sampling month. Grey lines connect the same stream over time. The amount of 
‘undetected’ taxa was significantly different between identification levels  (F2,152 = 7.5, p < 0.001) and sampling months  (F2,152 = 5.26, p < 0.01)
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While it is possible these invertebrate communities are 
homogenous at the family level as suggested by Krynak 
and Yates [71], and our total family count was generally 
in concordance with other stream studies in this region 
using family resolution through morphological identi-
fication [69–71], the total OTU richness in our study 
indicates that vast levels of turnover within a family are 
possible. At over 1600 OTUs, our metabarcoding rich-
ness appears to be much higher than stream metabar-
coding studies in various geographic regions [26, 72–74] 
and more closely resembles richness counts in terrestrial 
[54, 75] and soil [76] metabarcoding papers. It is likely 
that bioinformatic decisions in clustering and matching 
OTUs have a large influence on the taxonomic diversity 
in a dataset [77]. While our choice of clustering threshold 
for OTU delineation (97%) is comparable to other stud-
ies, it is a more conservative choice in terms of richness 
than would be achieved at 98% clustering or by using 
exact or amplicon sequence variants (ESV/ASV) [78] and 
thus probably not responsible for the high level of diver-
sity found in our dataset. Our OTU count may also be 
considered a conservative estimate of diversity due to the 

potential for taxonomic blind spots arising from the use 
of a single marker (COI) and primer set [79]. We addi-
tionally filtered out very low-read OTUs post-clustering 
(less than 0.01% abundance) which would have reduced 
the diversity in our dataset. This filtering threshold is 
commonly used in other invertebrate metabarcoding 
studies [24, 54], however it decreased the total OTUs in 
our dataset by half. However, while these OTUs made 
up 50% of the total OTUs, they only corresponded to 
33,840 sequence reads (0.06% of total sequences) and it is 
important to define a threshold to eliminate OTUs based 
upon erroneous sequences. We also selected a thresh-
old of 90% sequence similarity to the reference data-
base (BOLD) in order to be included in the final dataset. 
While many studies use a conservative 98% threshold [26, 
54], others have selected a 85% similarity threshold [74]. 
In our dataset, it is likely that 98% is too strict a cut-off 
due to the sparsity of reference sequences for understud-
ied taxa such as chironomids. A match of 90% similarity 
is generally accepted as a ‘family-level’ match in multi-
ple metabarcoding studies [26, 74] and thus aligned well 
with our approach of comparing OTU and family-level 

Fig. 6 There were four biological replicates at each of the twenty streams to assess small-scale variation in community composition. Bars represent 
the percentage of the total number of taxa occurring at a stream that were only collected in one of four biological replicates (transects). Grey 
lines connect the same stream over time. The amount of ‘undetected’ taxa was significantly different between identification levels  (F2,156 = 37.6, 
p < 0.001). Sampling month had no significant effect on the percentage of rare taxa  (F2,156 = 2.91, p = 0.057)
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diversity. In addition to bioinformatic sources of bias 
when estimating total diversity, it is important to note 
that all stages of a protocol can ultimately alter the 
number of taxa detected. For example, we incorporated 
sub-sampling approaches for both removing benthic 
macroinvertebrates from the bulk sample and taking a 
representative sample of the subsequent homogenized 
tissue for DNA extraction. Smaller samples would there-
fore be more thoroughly sampled than large, dense sam-
ples. Laboratory components such as PCR biases can 
also affect sample diversity as primer biases can result in 
some taxa being preferentially amplified [48]. The num-
ber of PCR cycles will also affect the detection of rare 
taxa. We encountered a subset of samples which initially 
resulted in poor sequencing results and subsequently 
required a higher number of PCR cycles. While this 
allowed us to include those samples in this manuscript, 
it does introduce a source of variability when comparing 
taxa composition.

In our system, chironomids had the highest OTU count 
of any family. This is consistent with previous aquatic 
metabarcoding work, notably Beerman et  al. [24], who 
detected nearly 200 chironomid OTUs in a stream mes-
ocosm experiment. Of these total chironomid OTUs, 
85% did not have a binomial name assigned from BOLD, 
which is nearly identical to the value we detected (84.8% 
without a binomial name in the reference database for 
high similarity matches). Even with unnamed OTUs, 
Beerman et  al. [24] detected unique responses to envi-
ronmental stressors (even amongst OTUs which matched 
to the same binomial name). Reference databases are not 
complete for many groups, especially very species-rich 
groups or difficult-to-identify taxa such as aquatic insect 
larvae, and improvement in species coverages must be 
made in order to improve the quality of metabarcoding 
datasets. It is also important to consider that the use of 
97% as a clustering threshold can also result in the “split-
ting” of OTUs (e.g., a single species with large intraspe-
cific divergence of CO1 being split into two OTUs) and 
thus artificially inflating the OTU count. For example, 
some chironomid species complexes can have as high as a 
10% divergence [80], which would result in multiple OTU 
clusters when using a 97% threshold. Ultimately, there 
are numerous bioinformatic decisions which can either 
increase or decrease the number of OTUs in a metabar-
coding study. The vast diversity of the chironomid family 
in particular merits future study to determine the extent 
of haplotype diversity which may interfere with establish-
ing discrete OTUs using a set clustering threshold [24, 
80].

Dissimilarity and habitat heterogeneity
Mean Raup-Crick dissimilarity values were consistently 
high for all levels of taxonomic assignment and sam-
pling season, indicating that our biological replicates 
were quite unique from each other even when collected 
at the same stream. While a categorical land use vari-
able did not prove informative in distinguishing mac-
roinvertebrate communities from farm or conservation 
area streams, we expected the percentage of land used 
for cropping in the catchment would be a more accurate 
indication of stream condition. We expected an increased 
level of agriculture would result in more homogeneous 
invertebrate communities within a stream (i.e., lower 
beta diversity) due to the reduction in habitat complexity 
[34, 35, 38, 39]. We detected no significant relationship 
between land use and beta diversity [36, 37], and dissimi-
larity values were quite variable.

Interestingly, we observed steeper declines in dissimi-
larity values in May along a gradient of agricultural land 
use for all groups compared to other sampling months, 
though this trend was not statistically significant. While 
it is possible this is a spurious correlation, Zizka et  al. 
[81] observed seasonal community changes for aquatic 
macroinvertebrate OTUs in a study of urban streams. 
In reference condition (“near natural”) streams, Zizka 
et  al. [81] discovered that the community composi-
tion of invertebrates stayed consistent across seasonal 
sampling periods, whereas communities in more highly 
impacted streams differed across seasonal sampling 
periods. This contrasting pattern in seasonal change 
may be in response to the fact that the inflow of stress-
ors can change over time in impacted areas, resulting in 
a community-level response that differs over time [81]. 
It is possible here that changes in water quality or other 
habitat parameters during the spring resulted in more 
homogenous communities compared to later in the 
sampling season. Of course, this may also be due to the 
emergence of different insect taxa in streams over a sea-
son. Our results here indicate that the percentage of agri-
culture in the landscape is not sufficient here to detect a 
complicated influence of land use; more detailed param-
eters are necessary, or our sampling was not sufficient to 
detect any homogenization, or perhaps the variation in 
land use in our study was not significant enough to detect 
a gradient response in community composition.

Conclusions
Metabarcoding revealed a huge amount of diversity in 
southern Ontario streams, with many rare or undetected 
taxa present within each stream. This study highlights the 
importance of developing robust monitoring plans given 
the challenges associated with obtaining adequate com-
munity composition data for aquatic macroinvertebrate 
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taxa. Field sampling design is an extremely important 
consideration in monitoring studies, and by using molec-
ular identification we reveal that one sampling point in a 
stream in not sufficient to detect local diversity. While we 
detected no discernable response in taxonomic richness 
or within-stream dissimilarity to agricultural land use, it 
is possible our interpretation of agriculture land use was 
too narrow. Given the importance of local parameters to 
aquatic invertebrate communities, future metabarcoding 
studies should consider more precise estimates of land 
use, including both water chemistry and physical param-
eters, such as stream sinuosity, riparian buffer width, and 
bank slope to reflect more accurately site condition. In 
general, our conclusions regarding OTU diversity and 
rarity were similar to terrestrial metabarcoding work and 
indicate that aquatic biomonitoring programs can benefit 
from molecular identification to more accurately reflect 
trends in insect biodiversity.
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