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Abstract 

Background  Diatoms are present in all waters and are highly sensitive to pollution gradients. Therefore, they are 
ideal bioindicators for water quality assessment. Current indices used in these applications are based on identifying 
diatom species and counting their abundances using traditional light microscopy. Several molecular techniques have 
been developed to help automate different steps of this process, but obtaining reliable estimates of diatom commu-
nity composition and species abundance remains challenging.

Results  Here, we evaluated a recently developed quantification method based on Genotyping by Sequencing (GBS) 
for the first time in diatoms to estimate the relative abundances within a species complex. For this purpose, a refer-
ence database comprised of thousands of genomic DNA clusters was generated from cultures of Nitzschia palea. The 
sequencing reads from calibration and mock samples were mapped against this database for parallel quantification. 
We sequenced 25 mock diatom communities containing up to five taxa per sample in different abundances. Taxon 
abundances in these communities were also quantified by a diatom expert using manual counting of cells on light 
microscopic slides. The relative abundances of strains across mock samples were over- or under-estimated by the 
manual counting method, and a majority of mock samples had stronger correlations using GBS. Moreover, one previ-
ously recognized putative hybrid had the largest number of false positive detections demonstrating the limitation of 
the manual counting method when morphologically similar and/or phylogenetically close taxa are analyzed.

Conclusions  Our results suggest that GBS is a reliable method to estimate the relative abundances of the N. 
palea taxa analyzed in this study and outperformed traditional light microscopy in terms of accuracy. GBS provides 
increased taxonomic resolution compared to currently available quantitative molecular approaches, and it is more 
scalable in the number of species that can be analyzed in a single run. Hence, this is a significant step forward in 
developing automated, high-throughput molecular methods specifically designed for the quantification of [diatom] 
communities for freshwater quality assessments.

Keywords  Diatoms, GBS, Mock communities, Quantification, Relative abundance, Water quality assessment

*Correspondence:
Ozan Çiftçi
ozancift@gmail.com
1 Institute of Environmental Sciences (CML), Leiden University, P.O. 
Box 9518, 2300 RA Leiden, The Netherlands
2 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The 
Netherlands
3 BaseClear B.V., Sylviusweg 74, 2333 BE Leiden, The Netherlands

4 German Research Center for Geosciences, GFZ, 14473 Potsdam, 
Germany
5 Radboud Institute for Biological and Environmental Sciences, 
Heyendaalseweg 135, 6500 GL Nijmegen, The Netherlands
6 Diatomella, IJkelaarstraat 3, 6611 KN Overasselt, The Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-023-02104-2&domain=pdf
http://orcid.org/0000-0003-2951-3267
http://orcid.org/0000-0002-8968-4546
http://orcid.org/0000-0003-2362-461X
http://orcid.org/0000-0003-0771-4500
http://orcid.org/0000-0002-2717-4735
http://orcid.org/0000-0002-6508-0895


Page 2 of 12Çiftçi et al. BMC Ecology and Evolution            (2023) 23:4 

Background
The increasing release of chemicals from agricultural, 
industrial, and domestic sources in the last few decades 
has led to significant contamination of aquatic ecosys-
tems. The freshwater compartment is particularly vul-
nerable to such anthropogenic impacts, and large-scale 
monitoring programs have been established to assess 
the resulting degradation, such as the Water Framework 
Directive (WFD) [1]. Biofilms (communities of organisms 
attached to surfaces) are one of the biological compart-
ments recognized by the WFD as a target for freshwater 
quality assessment due to their rapid responses to envi-
ronmental changes, rapid growth rates, and physiological 
variety of the constituent organisms [2]. Microalgae are 
the dominant members of these communities and have 
a vital role as primary producers. They are sensitive to 
many environmental variables (e.g., salinity, pH, nutrient 
concentrations) and have traditionally been used to clas-
sify water bodies based on autecological preferences of 
the community’s taxonomic composition [3].

Gathering information on microalgae community com-
position and abundance is, however, a challenging task 
that requires taxonomic expertise and specialized tools. 
These challenges apply particularly to diatoms, a group of 
microalgae that are present in all types of waters that are 
highly sensitive to eutrophication/organic pollution gra-
dients [4]. Conventionally, diatom taxonomists identify 
and count several hundred diatom valves in biofilm sam-
ples using light microscopy. Specialized tools for micro-
algae have also been developed which integrate sampling 
devices, image analysis technologies, and machine learn-
ing algorithms, such as ZOOSCAN [5], VPR [6], and 
FlowCam [7]. However, these tools provide limited tax-
onomic resolution when morphological differences are 
subtle. Moreover, recent molecular phylogenetic stud-
ies have shown that many diatom morphospecies com-
prise several evolutionary lineages likely corresponding 
to species-level differentiation [8–11]. It is essential to 
recognize these ‘cryptic’ species because their ecological 
niches may differ even when they live in sympatry [12, 
13], or when different localities harbor different propor-
tions of morphs with varying ecological tolerances [14]. 
Moreover, indices based on diatom community metrics 
that are currently in use for freshwater quality monitor-
ing in European countries [15–17] require the identifi-
cation and quantification of hundreds of species which 
include morphologically similar and/or phylogenetically 
close taxa.

Molecular methods can overcome some of these chal-
lenges. For example, qPCR and ddPCR methods have 
been developed to assess the abundance and distribu-
tion of sub-populations of plankton in environmental 
samples [13, 18–20]. However, these methods require a 

priori information on the target gene of the focal popu-
lations and are limited to surveys targeting certain spe-
cies or genera, hampering scalability which is crucial for 
environmental assessments. DNA metabarcoding can 
overcome this issue, and several studies comparing meta-
barcoding with microscopy methods have been published 
in the last decade [10, 21–27]. In general, metabarcoding 
has proven to be a valuable tool for detecting rare spe-
cies and overall changes in community composition. 
However, several issues have been highlighted for obtain-
ing reliable abundance estimates, including; (1) reference 
database incompleteness, (2) lack of resolution of phylo-
genetic markers, (3) cryptic diversity, and (4) gene copy 
number variation [28, 29]. Moreover, the correlations of 
gene copy numbers and genome sizes with biovolumes of 
different species need to be considered for reliable esti-
mates [13]. Therefore, morphological assessment remains 
to play a central role despite the many advantages offered 
by these more recently developed molecular approaches 
[30–32]. There are several additional High Throughput 
Sequencing (HTS) based methods that have been used in 
recent years to quantify species abundances in plant mix-
tures, including genome skimming and multispecies gen-
otyping by sequencing (msGBS) [33–35]. These methods 
could have great value in applications that rely on the 
identification and quantification of microalgae in envi-
ronmental samples, such as freshwater quality assess-
ments because they are scalable in species numbers (i.e., 
more species can be analyzed in a single sequencing run 
depending on the sequencing depth) and provide a taxo-
nomic resolution comparable to the surveys performed 
by taxonomists.

Nitzschia palea is one of those widespread bioindica-
tor species complexes with several morphological vari-
ants described from either organic- and metal-polluted 
or clean and only slightly polluted habitats [2, 17, 36, 37]. 
Morphological differences between these varieties are 
very subtle, and their differentiation using light micros-
copy is impossible [38]. Molecular data (rbcL, 28S rRNA, 
and cox1 genes) suggest no objective criteria to choose a 
precise molecular threshold for species boundaries in N. 
palea, although the complex does contain several line-
ages [12, 39, 40]. Ciftci et  al. [41] revealed three evolu-
tionary lineages based on 183 genes and detected recent 
gene flow between clades with different morphologies 
and a resulting putative hybrid. It is important to identify 
and quantify the abundances of these intraspecific line-
ages to reveal any differences in their distribution and 
ecology.

In this study, we aimed to evaluate a genome-based 
quantification method, msGBS, to estimate the relative 
abundances within the N. palea species complex. msGBS 
is based on randomly fragmenting genomic DNA (i.e., 
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nuclear, mitochondrial, and plastid DNA) using endonu-
cleases, and amplifying these fragments with ligated syn-
thetic adapters. Therefore, only a subset of the genome 
is sequenced providing a middle ground between tar-
geted and whole genome sequencing [35]. The sequenc-
ing reads originating from each monoclonal sample are 
clustered into a relatively small reference genome, and 
the reads originating from mixed samples are mapped 
against these reference clusters. Homologous clusters 
among taxa are removed from the reference providing 
increased taxonomic resolution, and the high-through-
put sequencing allows analyzing many taxa in a single 
run providing increased scalability. Moreover, a calibra-
tion key is generated from samples of equal cell propor-
tions (i.e., calibration samples) to convert read counts 
to taxa abundances, which corrects for biases related to 
variations in typical DNA yields from different taxa. We 
used msGBS on mock mixtures prepared from six strains 
belonging to three N. palea lineages for (1) resolving 
closely related taxa within a non-model diatom species, 
and (2) comparing quantification accuracy with tradi-
tional light microscopic surveys.

Results
GBS library preparation and clustering
A total of 36 DNA isolations were performed with con-
centrations ranging from 5 to 82  ng/µl. DNA yield for 
the pooled sequencing library was 1.66  ng/µl, and the 
average fragment size was 1003 base pairs. We obtained 
113,369,922 reads from this library, 56.7% containing 
adapter barcodes. All retained reads after demultiplex-
ing passed quality filtering, and the number of reads per 
sample ranged from 48,354 to 6,638,094. Around 50% of 
the reads were identified as duplicate reads. After derep-
lication, 32,114,904 read pairs were retained, of which 
14.2% were merged, and 85.8% were joined.

We obtained a low number of reads for one mono-
clonal sample (TCC13903) due to failed library prepa-
ration. Therefore, we removed this strain from the 
meta-reference and repeated the data analysis start-
ing from the mapping step. We also excluded the valves 
assigned to TCC13903 from the light microscopy data-
set for comparison. Thus, the total number of valves in 
the final LM dataset was lower than 200 for a majority 
of the mock samples. Similarly, we recalculated the rela-
tive abundances of mock preparations (i.e., expected val-
ues) after subtracting the number of cells included from 
TCC13903.

The number of total clusters that we obtained after 
the removal of TCC13903 and the clusters that passed 
all filtering steps are listed in Table  1. TCC907 had 
the lowest average number of reads per cluster in the 

meta-reference, probably due to the higher genetic pol-
ymorphism of its allopolyploid genome [41].

Among the clusters filtered based on homology, non-
target mappings were most common between TCC523, 
TCC641, and TCC852 (Table  2, Additional file  1: 
Table  S1), the members of a single clade based on the 
183 nuclear gene phylogenies provided by Ciftci et  al. 
[41]. BLASTN filtering removed 1.48% of the clusters 
in the meta-reference. After filtering, 98.7–99.8% of the 
reads were mapped to the target monoculture sample, 
and a total of 47,447 clusters were retained in the final 
meta-reference database.

One calibration sample out of five also gave a low 
number of reads, and a four-sample calibration set was 
used in the subsequent steps. We obtained 267,307–
305,356 reads from the calibration samples. The distri-
bution of reads within calibration samples varied largely 
among strains (4596–151,562). However, the variance 
of the relative read counts across calibration samples 
was low (s2 between 0.04 and 0.74). Two mock samples 
(1 and 11) were removed from the GBS dataset due to 
a low number of reads after cluster filtering (< 3000) 
(Additional file  1: Table  S1). Among the 23 samples 
retained, one (sample 21) had a slightly higher number 
of reads than the filtering threshold (3653 reads), and 
the remaining 22 samples had 234,602 to 2,497,370 
reads (Additional file  1: Table  S1). In total, 22,494,098 
read mapping events were registered to 34,933 clusters 
in the meta-reference (i.e. 73.6% of the total number of 

Table 1  Summary of sequence clustering and filtering steps 
during meta-reference construction

Strain Total number 
of clusters

Number of clusters 
after filtering

Number of 
reads after 
filtering

TCC13901 10,503 6243 (59.4%) 992,811

TCC523 13,440 8877 (66.0%) 1,662,267

TCC641 24,240 13,710 (56.6%) 1,752,771

TCC852 14,986 5285 (35.3%) 1,104,154

TCC907 14,649 13,332 (91.0%) 359,650

Table 2  The number of gDNA clusters filtered due to homology

*Target mappings
1,2,3,4 Non-target mappings of more than 1000 clusters (ordered)

TCC13901 TCC523 TCC641 TCC852 TCC907

TCC13901 2733* 172 485 390 480

TCC523 12 1716* 14212 11734 241

TCC641 186 169 8677* 13083 190

TCC852 900 212 56231 2278* 688

TCC907 206 0 39 20 1052*
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clusters), including monoculture, mock, and calibration 
samples.

False positive and false negative detections
Light microscopy (LM) counts distinguished strains 
based on their length, width, and fibula density features 
(Additional file  1: Table  S2). These features overlapped 
with the morphometric ranges provided by Çiftçi et  al. 
[41], except for TCC907 (Additional file  1: Table  S3). 
This strain is reported to be a recent putative hybrid, and 

it had many morphological deformities due to culture 
conditions. Among the six strains analyzed in this study, 
the highest number of false positives using LM was for 
TCC907, which was falsely detected in five mock sam-
ples (Table  3). False-positive detections in mock mix-
tures were more common with GBS than LM (Table 3). 
However, the falsely detected strains with GBS had the 
lowest cell count in the respective mock sample for most 
of these cases, indicating that the GBS method tends to 
assign a small proportion of reads to other strains. The 
only false-negative detection was for mock sample 22, 
where TCC523 and TCC852 were missed in LM counts.

Relative abundance estimates across strains
We obtained moderate-to-strong correlations (R2 > 0.5) 
for three out of five strains (TCC13901, TCC523, 
and TCC852) when GBS estimates across mock sam-
ples were compared with microscope counts, whereas 
only TCC641 had a moderate correlation with LM 
estimates (Fig.  1). Moreover, the GBS-based method 
over-estimated the mock relative abundance of one mon-
oclonal sample (TCC852) and under-estimated another 
(TCC641), whereas LM over- or under-estimated all. 

Table 3  The number of false positive (FP) and false negative (FN) 
detections using LM and GBS methods

Strain LM GBS

FP FN FP FN

TCC13901 4 0 7 0

TCC523 3 1 7 0

TCC641 2 0 6 0

TCC852 4 1 6 0

TCC907 5 0 7 0

Fig. 1  Regression lines (blue and red) and coefficients of determination for relative abundance estimates per Nitzschia palea strain across mock 
samples. 95% confidence intervals (grey) are drawn around the regression lines
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Confidence intervals were narrower for GBS estimates 
indicating that GBS was more accurate than LM. The 
removal of the monoculture sample TCC13903 from the 
dataset had a slightly positive effect only for one strain 
(TCC523), while the correlations for TCC641 decreased 
significantly (from 0.46 to 0.27).

Relative abundance estimates across mock samples
Out of the 22 mock samples analyzed using GBS and LM, 
relative abundances for nine samples had strong correla-
tions (> 0.7) using both methods (Fig. 2). A higher degree 
of correlation was obtained using GBS in 15 of these 
samples, whereas LM performed better in six samples. 
Only sample 23 had weak correlations with both meth-
ods. Two samples, 1 and 11, were analyzed using only LM 
and these had weak or no correlations with mock rela-
tive abundances. Sample 12 was analyzed only with GBS, 
and the correlation was very strong (0.98) for this sample. 
For mock samples 19 and 25, which contained a single N. 
palea strain, 14% and 20% of the reads were mapped to 
other strains, respectively. Similarly, on average, 6% of the 
reads mapped to absent strains in mock samples (false 
positive signal). Out of 17 cases of false positive detec-
tions of a single strain with both methods, only three 
had stronger signals (i.e., a higher proportion of reads) 
with GBS, indicating that the impact of false positives on 
GBS-based relative abundance estimates is lower than 
LM. The only mock sample with a low number of reads 
that we included in the analysis, sample 21, had a moder-
ate correlation with GBS, demonstrating that sequencing 
depth can influence GBS-based estimations.

Discussion
This study aimed to evaluate msGBS to estimate the rela-
tive abundances within the N. palea species complex, 
as a possible first step toward developing a quantitative, 
high-throughput molecular approach for the quantifica-
tion of diatom communities for freshwater quality assess-
ments. The varieties described from waters with different 
pollution levels (N. palea and N. palea var. debilis) have 
considerable overlap in their morphological characteris-
tics, making the species complex taxonomically challeng-
ing [12, 38, 40]. Ciftci et al. [41] recovered three strains 
analyzed in this study (TCC523, TCC641, and TCC852) 
in one molecular clade with lanceolate morphology. In 
contrast, two of the remaining three strains (TCC13901 
and TCC13903) had narrower linear-lanceolate morphol-
ogy. It has been demonstrated that there is a recent gene 
flow between these clades with different valve outline 
characteristics and a resulting putative hybrid (TCC907). 
Understanding the distribution and abundance of 
intraspecific lineages in these taxonomically challenging 
species might be important if they have distinct habitat 

preferences due to ecological affinities associated with 
varying environmental conditions, as demonstrated for 
other Nitzschia species [42]. For this purpose, we evalu-
ated msGBS compared to conventional light microscopy 
counts to identify and quantify six N. palea strains in 
mock mixtures.

GBS‑based relative abundance estimates show stronger 
correlations than LM with mock abundances
The morphometric ranges measured with LM overlapped 
for three strains that were morphologically and phyloge-
netically closest (TCC523, TCC641, and TCC852) [41]. 
These were smaller than the ranges indicated for the 
species due to size reduction in long-term cultures [43], 
and some of their valves had deformities due to culture 
conditions. Therefore, it was challenging to distinguish 
these strains using LM, and their mock relative abun-
dances were underestimated with weak to moderate 
correlations. GBS-based estimates were more strongly 
correlated with the mock abundances for two of these 
morphologically similar strains (TCC523 and TCC852), 
and LM performed better for TCC641. Also, the rela-
tionship between GBS-based estimates and mock abun-
dances did not follow a close relationship to the ideal 
1:1 ratio for these three strains. The relative abundance 
of TCC641 was under-estimated, whereas TCC523 and 
TCC852 were over-estimated. This might be due to their 
close phylogenetic relationship which would cause incor-
rect mapping of the reads originating from TCC641 to 
the reference clusters of the other two strains. However, 
we obtained a stronger correlation for TCC641 before 
removing TCC13903 from the GBS dataset, indicating 
that better estimates could be obtained with the original 
dataset. The number of clusters removed due to non-tar-
get mappings between pairs of monoclonal samples was 
also higher for TCC523, TCC641, and TCC852 (Table 2, 
Additional file 1: Table S1), confirming their close phylo-
genetic relationship. Nevertheless, we obtained stronger 
correlations using msGBS for four out of five strains, 
highlighting that molecular methods should be used to 
capture the underlying phylogeny when morphologically 
similar taxa are analyzed.

TCC13901 is a distinct lineage with the highest stria 
density among the strains analyzed in this study. How-
ever, striae are usually not visible with LM in N. palea. 
Therefore, this distinguishing feature could not be exam-
ined, and the valves originating from other strains were 
probably assigned to TCC13901 with LM, causing an 
overestimation of its relative abundance. The correla-
tion of GBS-based estimates with the mock abundances 
for TCC13901 was stronger than LM, and its regression 
slope was closer to the ideal 1:1 ratio, indicating a higher 
precision.
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GBS-based estimates were more strongly correlated 
than LM with mock abundances for a higher proportion 
of the mock samples. However, on average, 6% percent of 

the reads were assigned to absent strains in the msGBS 
setup, creating a low but persistent false positive sig-
nal (Table  3). This signal did not significantly impact 

Fig. 2  Composition and relative abundance estimates of mock Nitzschia palea samples obtained by using Genotyping by Sequencing (GBS) and 
Light Microscopy (LM) methods. Correlation coefficients were calculated using the Pearson correlation test. The green text indicates a strong 
correlation (> 0.7), the orange text indicates a moderate correlation (0.5–0.7), and the red text indicates a weak or no correlation (< 0.5)
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the relative abundance estimates as we obtained strong 
correlations. However, this issue and a large number of 
sequence clusters mapping to phylogenetically similar 
taxa highlight that genetic variation among the popula-
tions of the target diatom species should be considered 
for the msGBS design. It might be possible to further 
minimize this impact by changing the parameters in the 
data analysis pipeline or by introducing additional steps.

GBS provides sufficient resolution for the detection 
of intraspecific hybrids
In the analyses for the study presented here, the putative 
hybrid (TCC907) was the most falsely detected strain 
using LM. Moreover, we obtained no correlation between 
mock relative abundances and microscope counts for 
TCC907. Part of the problem with the morphological 
identification of TCC907 might be the dominance of ter-
atological forms in the cultures of this strain. Addition-
ally, identification from valves can get complicated in the 
case of hybrids, as demonstrated for other diatom species 
[44–46]. GBS-based relative abundance estimates, on the 
other hand, were moderately correlated with the mock 
abundances for TCC907, indicating that thousands of 
gDNA clusters generated from a monoclonal culture can 
provide the necessary phylogenetic resolution to detect 
intraspecific hybrids. Sequencing depth can also be an 
important factor in this sense, as deep sequencing would 
provide a larger number of unique clusters and increase 
resolution.

The calibration procedure prevents biases related to gene 
copy number variation
The number of reads in our calibration samples varied up 
to 32-fold among strains but were consistent across sam-
ples indicating strain-specific biases in the final sequenc-
ing library (Additional file 1: Table S1). Variations in the 
DNA contents per cell of these strains might explain this 
difference. However, little is known about the DNA con-
tent per cell for diatoms. It has been suggested that there 
is a proportional relationship between cell size and DNA 
content in algae and eukaryotes in general [47, 48]. How-
ever, the highest proportion of reads in both monoclonal 
and calibration samples originated from the strain with 
the smallest cells in our sample set (TCC523, Additional 
file  1: Table  S1 and S3). Therefore, the variation of the 
number of reads in calibration samples might be intro-
duced during sample processing (e.g., DNA extraction or 
library preparation) or originate from gene copy number 
variation. Either way, the impact of these biases is mini-
mized in msGBS, because the number of reads in mock 
samples for each strain is calibrated based on the relative 
number of reads obtained from these calibration samples.

msGBS compared to current quantitative molecular 
approaches
Previous studies compared species-specific qPCR assays 
with LM to detect and quantify the relative abundances 
of populations of Navicula phyllepta [19] and Pseudo-
nitzschia pungens [13]. nrITS genotypes analyzed in these 
studies had subtle consistent morphological differences, 
but identification was problematic with LM in both 
cases. ddPCR methods have also been used in quantita-
tive studies and proved to be more precise and accurate 
than qPCR [20, 49]. However, both qPCR and ddPCR 
methods rely on species-specific primers that can only 
amplify a few selected genes that span a few thousand 
base pairs combined. Therefore, these methods provide 
limited scalability and phylogenetic resolution. gDNA 
clusters generated in this study for the meta-reference, on 
the other hand, included more than 5,000,000 reads with 
an average length of 150 base pairs from both coding and 
non-coding regions of nuclear, plastid, and mitochondrial 
genomes. Moreover, the unique clusters of each mono-
clonal sample were retained during the meta-reference 
construction and a calibration key is used to convert read 
counts to relative abundances. These features allowed the 
GBS-based method to eliminate some critical drawbacks 
of the currently used quantitative molecular approaches 
[28, 50], as (1) monoclonal samples can be identified by 
taxonomists resulting in a more robust and locally rep-
resentative reference database compared to publicly 
available data, (2) thousands of gDNA clusters originat-
ing from different cell compartments provide sufficient 
taxonomic resolution for strain-level identification, and 
(3) calibration samples eliminate the biases introduced 
due to factors such as variations in gene copy numbers 
or DNA content. Nevertheless, using msGBS on differ-
ent groups of organisms would require optimization of 
the methods. Therefore, qPCR/ddPCR methods are still 
more practical for small-scale quantitative experiments. 
Metabarcoding, on the other hand, is not developed for 
quantitative assessments and recent review studies sug-
gest that additional research is required to reliably use it 
in quantitative applications [29, 50] (see Table 4 for fur-
ther comparisons).

Implications of msGBS for biomonitoring
The next step would be to develop and test GBS for 
field samples collected from freshwater habitats. 
Theoretically, the relative abundances of the most 
common diatom species in a given water body or sys-
tem can be estimated for hundreds of environmental 
samples in a single msGBS analysis, allowing simul-
taneous calculation of diatom-based biotic indices. 
Previous studies on relative abundance estimation of 
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diatoms highlighted several problematic species that 
cause significant abundance discrepancies, including 
N. palea [24, 32, 50]. In another recent example, sig-
nificant relative abundance discrepancies due to gene 
copy number variation were detected when calculating 
a commonly used index for benthic diatoms from DNA 
metabarcoding data of the rbcL gene [28]. Taxonomy-
free approaches based on OTUs are also available and 
infer a molecular index directly from sequencing data 
[28, 51, 52]. In contrast, msGBS relies on thousands of 
gDNA clusters that provide an improved taxonomic 
resolution, and higher precision in quantification than 
light microscopy counts. Calibration samples correct 
for biases related to variations in typical DNA yields 
between taxa. Therefore, a single calibration key can 
be used for a given set of taxa in msGBS and it is not 
necessary to include calibration samples in further 
sequencing runs. As the msGBS setup is highly scal-
able in terms of the number of species that can be 
analyzed in a single run, it has great potential in calcu-
lating indices based on benthic diatoms and develop-
ing automated quantification methods for microalgae 
in general. One of the critical drawbacks of msGBS 
is its reliance on monoclonal cultures which are not 
easy to obtain and maintain for diatom species. Cul-
ture collections are critical resources in this sense as 
the application of such new high-throughput methods 
will require sampling additional genomic loci from dif-
ferent diatom species. In this regard, it is important to 
note that preserved DNA extracts are equally valuable 
for applications such as msGBS because the use of the 
same restriction enzymes, sequencing depth, and clus-
tering parameters is expected to result in identical ref-
erence data. Although msGBS has already been tested 
on field samples for plant roots [35], it is also neces-
sary to further test it for diatoms before confidently 
utilizing it.

Conclusions
Our evaluation of msGBS shows that it can resolve closely 
related lineages within a non-model diatom species and 
provides improved precision compared to conventional 
light microscopic surveys. However, we detected a low 
and persistent false positive signal which suggests that 
the genetic variation among the populations of the target 
diatom species should be considered to obtain accurate 
relative abundance estimates when phylogenetically close 
taxa are studied. Nevertheless, msGBS performed better 
than LM counting for identifying and quantifying a puta-
tive hybrid, indicating that it provides unprecedented 
resolution compared to surveys targeting a few phylo-
genetic markers. In this sense, we highlight sequencing 
depth as a critical factor because phylogenetic resolu-
tion depends on the number of unique clusters in the 
meta-reference, and deeper sequencing would further 
increase the resolution. The calibration procedure mini-
mizes the impacts of biases related to variations in gene 
copy numbers or DNA contents, which is another critical 
advantage of msGBS over the currently used molecular 
approaches. Therefore, we suggest that genome-based 
HTS approaches, such as msGBS, can have significant 
implications for the quantification of microalgae.

Methods
Algal cultivation and preparation of mock communities
We acquired six N. palea strains from Thonon Cul-
ture Collection, France (TCC) [53] (Table  5). The cul-
tures were grown in WC medium [54] at 19  °C and on 
a 16  h light/8  h dark cycle. We routinely examined the 
live cultures under a Zeiss Axio Imager M2 microscope 
and transferred the cells every 1–2  weeks based on the 
observed growth rates of individual cultures. Several har-
vests from each strain were collected at their exponential 
growth. These cells were concentrated in 2 ml tubes and 
counted using a Zeiss Axio Imager M2 microscope under 
brightfield (DIC) and a Neubauer counting chamber 

Table 4  Comparison of msGBS to currently available molecular methods for species identification and quantification

msGBS qPCR/ddPCR Metabarcoding

Quantitative information Quantitative through the use of 
calibration samples

Fully quantitative through standard 
curves

Possibly semiquantitative (further 
research is required)

Scalability (number of species) High (depending on sequencing 
depth)

Low (i.e., only a few species) High (depending on sequencing 
depth)

Sensitivity (i.e., detection capability) Further research is required on field 
samples

High—very high, (i.e., depends on 
the primer efficiency)

High (i.e., sometimes lower than 
qPCR/ddPCR)

Taxonomic resolution Subspecies, variety (i.e., depends on 
the number of reference clusters)

Species-level or above (i.e., might 
be difficult or impossible for very 
closely related species)

Species-level or above (i.e., might be 
difficult or impossible for very closely 
related species)

Laboratory work and data analysis Requires highly trained personnel Relatively easy owing to standard-
ized instruments and software

Requires highly trained personnel
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(Carl Roth, Germany). Three replicates were counted for 
each cell suspension (Additional file 1: Table S4), and we 
harvested additional cultures until a minimum of 6 mil-
lion cells per strain had been collected. Suspensions with 
concentrations above or below the recommended ranges 
for counting with a Neubauer counting chamber (i.e., 
250,000–2.5 million cells/ml) were either diluted in dH2O 
or concentrated by centrifugation. Finally, we prepared 25 
mock samples by mixing the volumes from each suspen-
sion that contained the required number of cells for the 
GBS setup (Additional file 1: Table S5). In the mock sam-
ple set, 18 samples were mixes of five strains, three were 
mixes of three strains, three were mixes of two trains, and 
one contained a single strain. Mock samples contained an 
estimated number of one million cells in total. In addi-
tion to these, we prepared five calibration samples that 
contained an estimated number of 990,000 cells in equal 
proportions from each strain (Additional file 1: Table S6). 
We used a much larger number of cells for monoclonal 
samples because we needed a sufficient number of reads 
and unique clusters in the meta-reference database. 
Therefore, the number of cells in monoclonal samples 
was not estimated by counting. All samples were either 
diluted or concentrated to a final volume of 2 ml. Finally, 
we aliquoted 100  µl from mock samples containing, an 
estimated 50,000 cells, for light microscopy counts by a 
diatom expert.

Light microscopy slide preparations and counts
We transferred the 100  µl aliquotes from each mock 
sample to glass tubes and oxidized these samples with 
hydrogen peroxide on a heat block for 30  min at 90  °C 
following Handboek Hydrobiologie [55]. The oxidized 
samples were washed twice with distilled water (centrifu-
gation for 5 min at 4000 g) and dissolved in 100 µl dis-
tilled water. Two slides were prepared per mock sample 
using Naphrax® as the mountant, and the slides with the 
better spread were selected for light microscopy analy-
sis on a Zeiss Axioskop 40 using phase contrast with a 
magnification of 1000x (n.a. 1,30). In total, 200 valves per 

mock sample were measured and identified per micro-
scope slide.

DNA extractions
Genomic DNA was extracted manually from all samples 
using a modified CTAB extraction procedure. In total, 36 
samples were used, including 25 mocks, five calibrations, 
and six monoclonal samples. Monoclonal samples were 
harvested by removing the excess medium from 100 ml 
cultures and concentrating the cells in 2 ml with repeated 
centrifugation steps for 10 min at 4000 g (4 °C). Calibra-
tion and mock samples were prepared in 2  ml volumes 
from these concentrated samples. All samples were ini-
tially concentrated to 50  µl through repeated centrifu-
gation steps (10 min., 15,000 g, 4  °C). Final suspensions 
were transferred to tubes containing 700  µl of CTAB 
lysis buffer (BioChemica) mixed with 10 µl of beta-mer-
captoethanol (Sigma-Aldrich) and 20 mg/µL of RNAseA 
(Sigma-Aldrich) and pre-soaked with 0.5 ml of zirconia/
silica beads (0.5  mm, BioSpec). Bead beating was per-
formed using a Qiagen Tissue Lyser II for 5 min, and the 
lysates were incubated at 65  °C for 45 min with shaking 
every 5 min. DNA was purified using 700 µl of Chloro-
phorm-Isoamyl Alcohol (24:1), and the upper phase was 
recovered after centrifugation (10  min, 15,000  g, 4  °C). 
This recovered phase was mixed with a double volume 
of cold 96% Ethanol and 225 µl NaOAc, and incubated at 
− 20  °C for 1 h. DNA was precipitated through centrif-
ugation for 15 min at 15,000 g (4  °C), cleaned with cold 
70% ethanol, and the dried pellets were dissolved in 30 
µL double-distilled H2O. DNA concentrations and purity 
was controlled on a DropSense96 (Trinean) System.

GBS library preparation and sequencing
The GBS protocol and sequencing followed Wagemaker 
et  al. [35] with minor modifications. In brief, extracted 
genomic DNA from the 36 samples was digested with 
two restriction enzymes (PacI and NsiI), and two indexed 
adapters were ligated to the digested DNA fragments. 
Each adapter incorporated a three base pair unique 

Table 5  Collection and isolation information of Nitzschia palea strains acquired from the Thonon Culture Collection (TCC) and 
sequenced in this study

Strain identifier Collection strain identifier Locality Isolation date

TCC13901 TCC139-1 Lake of Geneva, France 04/11/2009

TCC13903 TCC139-3 Lake of Geneva, France 03/12/2010

TCC523 TCC523 River, Saint-Denis, La Réunion 10/02/2010

TCC641 TCC641 River, Viichtbach, Boevange/Attert, Luxembourg 27/01/2010

TCC852 TCC852 Upland stream, Casal da Misarela, Portugal 10/04/2013

TCC907 TCC907 River, Northumberland, United Kingdom 01/01/2015
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molecular identifier (UMI) region to identify PCR dupli-
cates within each library. The libraries were pooled and 
aliquoted in three portions to further prevent PCR bias. 
These aliquots were purified using QIAquick (QIAGEN), 
size selected for > 150  bp fragments using AMPure XP 
beads (Beckman Coulter), and nick repaired using DNA 
polymerase I to repair nicks and improve PCR efficiency. 
The cleaned libraries were amplified (16 PCR cycles) 
using KAPA HiFi HotStart ReadyMix (Roche). The PCR 
reactions were combined, concentrated using QIAquick, 
size selected again for > 150 bp fragments using AMPure 
XP beads, and quantified using the KAPA Library Quan-
tification Kit for Illumina platforms (Roche). The final 
libraries were spiked with 10% PhiX DNA. Sequencing 
was performed by Novogene (Hongkong) on an Illumina 
(USA) NovaSeq 6000 platform generating 2 × 150  bp 
paired-end reads. Raw sequencing reads were depos-
ited in the Sequence Read Archive (SRA) database of the 
National Center for Biotechnology Information (NCBI) 
under BioProject accession PRJNA868318.

GBS data processing
Data analyses were performed on a local Linux cluster 
node of Radboud University in Nijmegen, The Nether-
lands, using the scripts provided by Wagemaker et  al. 
[35]. The processing of data followed these main steps: 
(1) read demultiplexing, adapter removal using Adap-
terRemoval [56], and merging paired-end reads using 
Ngmerge [57] with a minimum of 20  bp overlap and a 
maximum of 10% mismatches (or else joining), (2) meta-
reference creation by dereplicating (minuniquesize = 5) 
and clustering (95% identity) merged monoclonal reads 
using VSEARCH [58] and filtering non-Eukaryota and 
Fungi clusters using BLASTN with a minimum align-
ment length of 40  bp and an e-value of e−20, (3) map-
ping reads from all samples to the meta-reference using 
STAR [59] allowing multi mapping, (4) removing dupli-
cate reads and reads with low alignment scores (< 0.8), (5) 
removal of homologous clusters between strains from the 
meta-reference (see below), calculation of a calibration 
key from samples with equal diatom proportions, and 
estimation of relative abundances of the mock mixture 
samples. Homologous clusters were removed from the 
meta-reference if (1) more reads mapped to a non-target 
monoculture cluster (non-target reads > target reads), 
(2) an insufficient number of reads mapped to a target 
monoculture cluster (target reads < 8), and (3) the ratio 
of non-target to target reads of a cluster was below the 
threshold (non-target/target > 1/15). The filtered meta-
reference database file in fasta format from step (2), the 
mapping file in bam format from step (3), and a stats file 
in csv format showing the number of reads that mapped 
to the meta-reference clusters are deposited in the Dryad 

repository (https://​doi.​org/​10.​5061/​dryad.​gqnk9​8srr). 
Python scripts from the msGBS pipeline were used for 
the steps where no tool is specified. The parameters and 
more detailed information on the bioinformatic steps can 
be found in the supporting documents of Wagemaker 
et al. [35].

Statistical analyses
Microscope counts of the mock mixtures were compared 
to LM and GBS-based relative abundance estimates 
(Additional file  1: Table  S7) using a Pearson correlation 
test and linear regression analysis in R. Regression plots 
for GBS estimates and pie charts representing commu-
nity compositions of mock samples were produced using 
ggplot2 [60].
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