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Abstract 

Background: An accurate timescale of evolutionary history is essential to testing hypotheses about the influ-
ence of historical events and processes, and the timescale for evolution is increasingly derived from analysis of DNA 
sequences. But variation in the rate of molecular evolution complicates the inference of time from DNA. Evidence 
is growing for numerous factors, such as life history and habitat, that are linked both to the molecular processes of 
mutation and fixation and to rates of macroevolutionary diversification. However, the most widely used methods rely 
on idealised models of rate variation, such as the uncorrelated and autocorrelated clocks, and molecular dating meth-
ods are rarely tested against complex models of rate change. One relationship that is not accounted for in molecular 
dating is the potential for interaction between molecular substitution rates and speciation, a relationship that has 
been supported by empirical studies in a growing number of taxa. If these relationships are as widespread as current 
evidence suggests, they may have a significant influence on molecular dates.

Results: We simulate phylogenies and molecular sequences under three different realistic rate variation models—
one in which speciation rates and substitution rates both vary but are unlinked, one in which they covary continu-
ously and one punctuated model in which molecular change is concentrated in speciation events, using empirical 
case studies to parameterise realistic simulations. We test three commonly used “relaxed clock” molecular dating 
methods against these realistic simulations to explore the degree of error in molecular dates under each model. We 
find average divergence time inference errors ranging from 12% of node age for the unlinked model when recon-
structed under an uncorrelated rate prior using BEAST 2, to up to 91% when sequences evolved under the punctu-
ated model are reconstructed under an autocorrelated prior using PAML.

Conclusions: We demonstrate the potential for substantial errors in molecular dates when both speciation rates and 
substitution rates vary between lineages. This study highlights the need for tests of molecular dating methods against 
realistic models of rate variation generated from empirical parameters and known relationships.
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Background
Understanding the timescale of evolution is critical to 
researching the processes that generate and shape the 
diversity of life on Earth. Analysis of DNA sequences 
offers the possibility of investigating the tempo and mode 
of evolution of all extant lineages, not just those that 
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have a detailed fossil record. The earliest molecular dat-
ing analyses concluded that the average rate of molecu-
lar evolution was relatively constant over time in some 
proteins because of an apparently linear accumulation 
of amino acid differences when compared between spe-
cies [1, 2]. However, it has since become apparent that 
the average rate of molecular evolution can be influenced 
by a wide range of species traits, such as generation time, 
body size and longevity [3, 4], by macroevolutionary pro-
cesses such as net diversification rate [5–10] and poten-
tially also by environmental features like temperature 
[9–11]. If the average rate of molecular evolution varies 
substantially and consistently between lineages, then we 
may need to incorporate this rate variation into models 
of molecular evolution in order to accurately infer diver-
gence times among species [12].

A wide variety of models have been developed to 
account for different patterns of among-lineage molecu-
lar rate variation [13–16]. In the first instance, these 
models differ in how many different evolutionary rate 
parameters are estimated for different parts of the phy-
logeny. For example, a ‘strict clock’ model estimates 
only one rate parameter that applies to every branch in 
the tree, while a ‘local clock’ model estimates additional 
rate parameters for subsets of branches [17–19], and 
a ‘relaxed clock’ provides for a separate rate on every 
branch [20]. Models also differ in how the rates on dif-
ferent branches are related to one another. Some models, 
notably in the penalized-likelihood framework, aim to 
minimize the overall variation of branch-specific rates or 
the differences between adjacent branches [21, 22]. For 
Bayesian phylogenetic methods [23, 24], branch-specific 
rates are drawn from a prior probability distribution that 
determines which rates and patterns of relative rate vari-
ation are considered a priori more probable (we refer to 
this prior as the rate prior). Common variants include 
uncorrelated models, in which each branch-specific rate 
is an independent draw from a distribution with a com-
mon mean [20], and autocorrelated models, in which the 
mean of the distribution for each branch-specific rate 
depends on the rate drawn for its parent branch [25, 26].

Testing over the last two decades has generally sup-
ported the robustness of divergence time estimates under 
the Bayesian methodology to the choice of rate prior, pro-
vided that enough separate rate parameters are allowed 
and sufficient calibrating information is provided [27–
33]; but see [34]. However, these studies rely heavily on 
simulated data or on specific and usually well-calibrated 
empirical examples, whereas simulations have indicated 
that different rate priors may give different results when 
calibrating information is poorer [30]. Changing the rate 
prior in these circumstances could lead to differences 
in empirical dates and associated causal hypotheses. 

Examples of empirical studies where the choice of rate 
prior appears to be a factor in differing age estimates 
include influenza viruses [35], the age of grasstrees [36] 
and the origins of Metazoa [37].

Currently used models of rate variation are generally 
either uncorrelated, so that each lineage-specific rate is 
drawn independently from a common distribution, or 
autocorrelated so that lineage-specific rates evolve from 
the rates of their parent lineages according to a stochas-
tic, random walk. However, the factors shaping variation 
in rate of molecular evolution are complex: in addition 
to random variation in rates between lineages, there is 
clearly also systematic variation influenced by many fac-
tors including species traits, population dynamics, envi-
ronment and evolutionary history [38]. Evolutionary 
rates can be faster at lower elevations and latitudes [9, 
39, 40] but slower in arid climates [41]. Life history can 
covary with molecular rates across multiple axes, includ-
ing body size [42–45], fecundity [46], generation time 
[47] and longevity [48, 49]. Associations have also been 
observed between substitution rates and more complex 
species traits, such as parasitism [50], flightlessness [51] 
and sexual competition [52]. Furthermore, substitution 
rates are the result of underlying microevolutionary pro-
cesses, and may therefore be affected by population size 
[53–56].

In addition to covarying with other evolving traits, 
there is evidence that variation in molecular rates can be 
associated with macroevolutionary patterns. Relation-
ships between the relative size of sister clades, represent-
ing their net diversification rates, and their molecular 
rates have been detected in several studies, include in 
reptiles [8, 57], birds [7, 58], flowering plants [6, 59, 60] 
and across Metazoa [61]. Several studies have also noted 
relationships between the genetic divergence of species 
in a phylogeny and the number of intervening speciation 
events, which may also represent examples of this phe-
nomenon [62–64].

The mechanism behind observed correlations between 
diversification and molecular evolution remains a mat-
ter of debate. One line of argument proposes that higher 
molecular rates could promote speciation by speeding 
the development of reproductive isolation [65]. In this 
hypothesis, subpopulations become sporadically iso-
lated over time and may accumulate alleles that may be 
effectively neutral on their own but deleterious in com-
bination [66, 67]. In this case, greater rates of molecular 
evolution could lead to faster development of reproduc-
tive isolation during periods of isolation, leading to a 
greater average rate of speciation [68, 69]. Alternatively, 
higher substitution rates could reduce extinction rates by 
accumulating more standing genetic diversity which pro-
vides a buffer against changing environment by allowing 
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more rapid selective response [70]. Speciation rates and 
molecular rates could also be related through a common 
driving factor, such as climate or environmental produc-
tivity [5, 10]. In the other causal direction, speciation 
itself could increase average rates of molecular evolution 
by producing rapid bursts of evolution [62, 63, 71]. Sug-
gested mechanisms for an increase in substitution rates 
during speciation include an increase in fixation rates of 
mildly deleterious alleles and linked neutral mutations 
due to drift, or large-scale genomic divergence caused by 
an increase in the frequency of disruptive genomic events 
such as polyploidy or chromosomal rearrangements [71].

An association between substitution rates and diver-
sification rates could affect the performance of existing 
divergence time estimation methods (e.g. [72]). In par-
ticular, Bayesian methods divide their specification of 
prior beliefs about the evolutionary process between the 
rate prior, the prior on divergence times and tree topol-
ogy (sometimes referred to as the tree prior or node 
time prior), and calibrating distributions on the ages of 
individual speciation events [23, 73]. These priors are 
essential to estimating divergence time, because genetic 
distances between sequences are the product of rate and 
time (the total number of character differences between 
related sequences). This means that even if genetic dis-
tances are correctly inferred on a phylogeny, rate and 
time are unidentifiable without additional constraints on 
joint values they can hold [74, 75]. The rate prior, node 
time prior and calibrating distributions place either soft 
or hard constraints on these values, allowing research-
ers to infer evolutionary history on an absolute timescale. 
However, this means that inferred divergence times are 
always subject to the choice of rate, time and calibration 
priors even with large amounts of sequence data [76, 
77]. Most commonly used Bayesian molecular dating 
methods do not propose a priori relationships between 
the rate prior and the tree prior, so the joint distribution 
implied by these priors will assign relatively higher prob-
ability to long branches with high substitution rates and 
short branches with low substitution rates than would be 
expected when rates and times are related. It is therefore 
possible that an unmodelled relationship between rates 
and times could produce distributions of molecular rates 
and speciation times that differ substantially from those 
implied by common Bayesian priors, leading to wide-
spread error in estimates of evolutionary dates.

Here, we investigate the potential influence of specia-
tion-related rates of molecular evolution on the reliability 
of molecular dating studies. Rather than assuming only 
one specific model of the association between diversifica-
tion rates and rates of molecular evolution, we model a 
range of possible causal links. We include three alterna-
tive models of the association between rates of molecular 

evolution and speciation rates. In the first, both specia-
tion rates and substitution rates vary over the phylog-
eny, but neither influences the other. In the second, we 
model continuous variation in a linked manner, which 
might represent either direct influence of one on the 
other [65] or an indirect association between speciation 
rates and substitution rates, for example if they are both 
influenced by environmental factors [5, 10]. The third 
model is a punctuated model in which bursts of substitu-
tion are associated with speciation events [62, 63, 71, 78]. 
The proportion of all substitutions associated with such 
bursts has recently been shown to impact Bayesian infer-
ence of clade crown ages under an uncorrelated lognor-
mal rate prior [72].

In this study, we simulate the evolution of molecular 
sequences under all three models of the link between 
speciation and rate of molecular evolution—unlinked, 
continuous coevolution and punctuated models—and 
observe the average effects on errors in Bayesian diver-
gence time estimates. Most simulation studies use arbi-
trarily chosen values to parameterize the simulations. In 
order to make our test have real-world significance, we 
base our simulations, as far as possible, on empirically 
determined relationships between rates of molecular 
evolution and diversification rate. As a convenient well-
studied case study, we parameterize our models using 
values taken from empirical inferences on bird data [79, 
80], or by using parameter values which reproduce estab-
lished empirical relationships between rates of molecular 
evolution and diversification rate in birds [81]. We have 
chosen birds as a convenient exemplar since an associa-
tion between rates of molecular evolution and rates of 
diversification has been reported for birds [58], and there 
are few if any other taxa whose rates of molecular evolu-
tion and diversification have been as well-described. We 
test the performance of three commonly used “relaxed 
clock” molecular dating methods: since the choice of rate 
prior and methodological details may affect the results 
of phylogeny reconstruction [34], we have tested uncor-
related and autocorrelated rate models in two different 
molecular dating programs. We reconstruct divergence 
times on these simulated data sets and examine the 
effects of different forms of correlated molecular and 
speciation rates on the performance of molecular diver-
gence time reconstruction.

Results
Validation of tree simulations
In order to ensure our simulations are as close as pos-
sible to real-world data, we chose to parameterize the 
simulations using empirical estimates of parameters 
from bird data, because birds are one of the most well-
studied groups for both substitution rate variation 
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and diversification rate. While these parameters might 
not exactly capture processes in other taxa, and dif-
ferent values could alter results, we believe that bas-
ing the simulations on a real case study lends a degree 
of realism that would be lacking if we arbitrarily 
chose convenient parameter values. We checked that 
the simulation procedure produced trees with aver-
age characteristics similar to the avian clades used to 
parameterize the study (Additional file  1: Additional 
data], [80, 82]). Across all data sets, the mean root date 
of simulated trees was 28.4 million years, compared to 
a range of 23.8–35.6 million years for bird clades with 
70–80 taxa. Simulated lineage-specific speciation rates 
at the tips were on average slightly lower than the spe-
ciation rate of similar clades in the bird tree [80]. The 
range of simulated speciation rates on log scale was 
0.009–0.92 compared to a range of 0.034–2.25 average 
log lineages/million years for bird clades with 70–80 
taxa, similar taxon numbers to our simulated trees. 

The range of speciation rates within each tree was also 
similar to the range across the avian clades with similar 
taxon numbers, with an average magnitude of 0.44 log 
lineages/million years compared to 0.32–2.21 for avian 
clades with 70–80 taxa. These observations suggest that 
the simulations produce realistic phylogenies, similar 
to those associated with real taxa.

Error in reconstructed trees
Trees were simulated under three models: Unlinked (spe-
ciation rates and molecular rates vary independently), 
Continuous (speciation rates and molecular rates covary), 
and Punctuated (molecular change occurs in bursts asso-
ciated with speciation events as well as continuously 
within lineages) (Table 1). We used three different met-
rics, plus the gamma statistic and a sister pair analysis, to 
assess the accuracy of the reconstruction of trees simu-
lated from the Unlinked model, the Continuous model, 
and the Punctuated model, under uncorrelated lognor-
mal (UCLN) and autocorrelated lognormal (ACLN) 
models of among-lineage rate variation (Table 2).

Node dates were then inferred using three different 
reconstruction methods: BEAST 2 [83, 84] using the 
uncorrelated lognormal rate prior (UCLN); PAML [85] 
using the autocorrelated lognormal rate prior (ACLN); 
and PAML using UCLN. To compare the reconstructed 
molecular dates to the true dates from the simulated 
data, we calculated three metrics for each tree and sum-
marised these over each simulation type (Table  2). The 
metrics were median absolute percentage error of node 
ages (MAPE), topological error (Topo. Error) by number 
of true bipartitions not reconstructed, and uncertainty 
by mean highest posterior density interval width as a 
percentage of reconstructed node age (HPD width %). 
We compared the gamma statistics of the reconstructed 

Table 1 Simulation design

We lay out the conditions for each set of simulated trees. Each set consisted 
of 50 trees. Lineage-specific speciation rates and substitution rates evolve 
continuously through time via Brownian motion in all three studies. The 
three simulations differ in whether the covariance between speciation and 
substitution rates is greater than zero in the Brownian motion and whether an 
additional burst of substitutions occurs at nodes of the tree (speciation events)

Simulation 
type

Speciation 
rates 
covary with 
substitution 
rates?

Brownian 
motion 
covariance

Punctuated 
burst of 
substitutions at 
nodes?

Unlinked No 0 No

Continuous Yes 0.0044 No

Punctuated No 0 Yes

Table 2 Summary of results

Summary of reconstructed tree characteristics. Trees simulated under three models: Unlinked, Continuous, and Punctuated. Molecular dates were then reconstructed 
using three different methods: BEAST 2 (uncorrelated lognormal model, UCLN), PAML (autocorrelated lognormal model, ACLN), and PAML (UCLN). For each 
reconstructed tree we calculated median absolute % error of node ages (MAPE %), topological error (Topo. Error) by number of true bipartitions not reconstructed, 
and uncertainty by mean highest posterior density interval width as a percentage of reconstructed node age (HPD width %). We compared the gamma statistics 
of the reconstructed trees to the simulated trees and used sister pair analysis to test if we can detect the positive correlation between speciation rate in the 
reconstructed trees (None = no significant correlation)

Recon. method Simulation MAPE (%) Topo. error HPD width (%) Gamma statistic Sister pair analysis

BEAST 2 (UCLN) Unlinked 6.3–30.9 0–14 43–29 − 1.46–1.09 None

Continuous 6.7–30.3 0–16 35–605 − 1.52–0.20 None

Punctuated 8.8–80.4 0–8 42–154 − 2.16–3.92 Negative

PAML (ACLN) Unlinked 11.4–192.1 Fixed 62–178 − 5.32–9.77 Positive

Continuous 9.4–188.0 Fixed 57–151 − 5.15–6.25 Positive

Punctuated 15.4–438.9 Fixed 73–327 − 8.4–2.99 Positive

PAML (UCLN) Unlinked 22.7–245.2 Fixed 49–263 − 6.53–7.51 Positive

Continuous 26.2–227.5 Fixed 49–379 − 6.246.65 Positive

Punctuated 18.1–535.4 Fixed 102–301 − 8.43–4.83 Positive
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trees to the simulated trees in order to detect any sys-
tematic bias in node age error. As a way of evaluating 
the degree to which the modelled relationship between 
speciation and substitution rates is reflected in the phy-
logenies reconstructed from the simulated data, we also 
performed sister pair analysis to test if we can detect the 
positive correlation between speciation rate and substitu-
tion rate from the reconstructed trees.

First, we examined the median absolute percentage 
error (MAPE) in the ages of all nodes within each tree 
whose topology was correctly reconstructed (Fig. 1). For 
trees reconstructed using BEAST 2 (UCLN), the aver-
age (min–max) MAPE was 12.2% for Unlinked simula-
tions (6.3–30.9%). Errors for the Continuous simulation 
were similar at 14.2% (6.7–30.3%). Average MAPE for 
the Punctuated simulation was higher than for Unlinked 
trees at 20.3% (8.8–80.4%). For trees reconstructed using 
PAML (ACLN), MAPE values were higher and range of 
errors were larger than for BEAST 2 (UCLN). Average 
MAPE for Unlinked trees was 66.0% (11–192%), com-
pared to 60.6% (9.4%–188%) for Continuous trees and 
91.1% (15.4–438.9%) for Punctuated trees. For recon-
structions with PAML (UCLN), average MAPE was even 

higher than PAML (ACLN) at 77.0% (22.7– 245.2) for 
Unlinked trees, for Continuous trees 69.6% (26.2–227.5), 
but lower for Punctuated trees at 74.9% (18.1–535.3). 
Because these errors can only be calculated for nodes 
that are shared between the true and reconstructed 
trees, we also examined an alternative error metric using 
the branch score (Kühner-Felsenstein) distance, which 
is based on the sum of squared branch length errors, 
includes all nodes, and treats branches that are incor-
rectly reconstructed as length zero, thus accounting for 
topology errors [86]. This metric led to similar patterns 
and is included as online (Additional file 1: Fig. S1).

Second, for trees reconstructed using BEAST 2 
(UCLN), we also investigated the degree of topological 
error via the Robinson-Foulds distance between the true 
and estimated tree [87]. This measure can only be used 
for BEAST 2 because the ‘mcmctree’ program in PAML 
does not infer topology. The median background topo-
logical error for the Unlinked simulations was 6 out of 74 
bipartitions (0–14), compared to 5 (0–16) for the Contin-
uous model (Fig. 2). Error was lower for the Punctuated 
model with a median distance of 2 bipartitions (0–8).
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Fig. 1 Median absolute percentage error of node times (on log scale) reconstructed from data sets simulated under three simulation types with 
different relationships between molecular evolution and speciation. The mean error is calculated only for branches whose bipartitions are shared 
between the true and inferred trees, and therefore ignores errors in topology which may occur in the BEAST 2 analyses. The three simulation 
models are Unlinked (instantaneous covariance of molecular rates and speciation rates = 0), Continuous (instantaneous covariance = 0.0044), and 
Punctuated (instantaneous covariance = 0, bursts of substitutions added at speciation events). Topologies and node times were reconstructed 
using three different analytical methods, with an uncorrelated lognormal ‘relaxed clock’ rate prior (UCLN) in BEAST 2, the autocorrelated lognormal 
rate prior (ACLN) in PAML, and the UCLN in PAML
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Third, we calculated the uncertainty of node age 
reconstruction as reported by the method via the width 
of 95% highest posterior density intervals as a pro-
portion of node age. Division by node age is required 
because the infinite-sites model of molecular evolution 
predicts that the relationship between posterior mean 
node age estimates and 95% credible intervals should 
approach a straight line with sufficient molecular data 
[75, 77]. Using BEAST 2 (UCLN) (Fig.  3), the average 
HPD width for the Unlinked trees had a width 60% of 
the reconstructed age of its associated node (43–29%). 
For the Continuous trees this was 108% (35–605%), 
and for the Punctuated trees it was 70% of node age 
(42–154%). Using PAML (ACLN), the average HPD 
width for Unlinked trees was 107.0% of node age (62.2–
178.4%); for Continuous trees, 100.4% (57.2–151.5%); 
and for Punctuated trees, 112.4% (73.4–327.0%). Using 
PAML (UCLN), the average HPD width was greater 
than for PAML (ACLN) for all three simulation models, 
at 160% (49.5–263.4%) of node age for Unlinked trees; 
158% (48.7–379.5%) for Continuous trees; and 165% 
(102.4–301.2%) for Punctuated trees.

Distribution of reconstructed vs simulated node ages
If the difference in gamma values between reconstructed 
and true trees is negative, the reconstructed tree has 
nodes distributed more towards the root, while if it is 
positive the reconstructed tree has nodes distributed 
more towards the tips than the true tree. Using BEAST 
2 (UCLN), gamma values for the reconstructed Unlinked 
trees were distributed evenly around the gamma 
value of the simulated tree with a mean shift of + 0.11 
(−  1.46– + 1.09; Fig.  4). This distribution was skewed 
negative (towards the root) relative to the simulated 
tree for Continuous trees with a mean of − 0.44 (− 1.52 
– + 0.20). This negative skew was more pronounced for 
the Punctuated trees at −  0.94 (−  2.16– + 3.92). Using 
PAML(ACLN), the relative change in gamma was on 
average negative across all three simulation models. For 
the Unlinked trees it was − 0.28 (− 5.32– + 9.77), while 
for the Continuous trees it was − 0.76 (− 5.15– + 6.25), 
and the Punctuated trees were again skewed negative 
with a mean of − 2.87 (− 8.40– + 2.99). In contrast when 
using PAML (UCLN), the relative change in gamma 
was on average positive for the Unlinked trees at + 0.57 
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Fig. 2 Topological error of trees reconstructed from data sets simulated under three simulation types with different relationships between 
molecular evolution and speciation (see Table 1). Topological error is given by the Robinson-Foulds distance (number of non-shared bipartitions). 
The three simulation models are Unlinked (instantaneous covariance of molecular rates and speciation rates = 0), Continuous (instantaneous 
covariance = 0.0044), and Punctuated (instantaneous covariance = 0, bursts of substitutions added at speciation events). Topologies and node 
times were reconstructed using the uncorrelated lognormal ‘relaxed clock’ rate prior in BEAST 2 (UCLN). No results are available for PAML because 
the topology was fixed for these analyses
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(−  6.53– + 7.51) and for the Continuous trees at + 1.07 
(− 6.24– + 6.65). It was slightly negative for the Punctu-
ated trees at − 0.16 (− 8.43– + 4.83).

Detection of rate differences on reconstructed phylogenies
Sister pairs analysis have been used to detect an associ-
ation between diversification rates and rates of molecu-
lar evolution in a wide range of datasets [6–8, 48, 88]. 
In order to determine whether the simulated relation-
ship between molecular rates and diversification rates 
could be detected in reconstructed trees, we regressed 
log clade size contrasts against contrasts in log median 
branch length estimates in the data set of sister pair 
analysis generated from reconstructed trees. We pre-
sent the p-value and sign of slope for each regression 
(Fig. 5). First, we asked whether the sister pairs analy-
sis suggest a relationship between rates of molecular 
evolution and speciation rate in the simulated data 
(that is, in the true trees). As expected, Unlinked sim-
ulated trees show no significant relationship between 
clade size and branch length. Significant positive rela-
tionships are found for the Continuous and Punctu-
ated simulations; note that this was a condition for 

selection of the Continuous data set (Additional file 1: 
Methods). Second, we asked whether the relationship 
between rates of molecular evolution and diversifica-
tion rate could be detected in the reconstructed phy-
logenies. When reconstructed using BEAST 2 (UCLN), 
the Unlinked data set and the Continuous data set show 
no significant relationship, while the Punctuated data 
set gives a significant negative relationship, the oppo-
site to what we expect. When reconstructed under 
PAML(ACLN) and PAML (UCLN), all three of the 
Unlinked, Continuous and Punctuated data sets have 
significant positive relationships between clade sizes 
and median branch length estimates.

Discussion
Dating errors associated with variation in speciation 
and substitution rate
The addition of rate-variable ‘relaxed clock’ models 
represents a significant extension to the sophistica-
tion of modern molecular dating methods [15]. While 
there is a wide variety of rate-variable molecular dating 
methods, all of them to date rely on stochastic models 
of rate variation, such that rates of molecular evolution 
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Fig. 3 Uncertainty of trees reconstructed from phylogenies simulated under three models with different relationships between molecular 
evolution and speciation, in width as a percentage of reconstructed node age. Precision is measured by averaging the width of 95% highest 
posterior density intervals as a proportion of reconstructed node height across each tree, with a larger score indicating less precise estimates (HPD 
width). The three simulation models are Unlinked (instantaneous covariance of molecular rates and speciation rates = 0), Continuous (instantaneous 
covariance = 0.0044), and Punctuated (instantaneous covariance = 0, bursts of substitutions added at speciation events). Topologies and node 
times were reconstructed using three different analytical methods, the uncorrelated lognormal ‘relaxed clock’ (UCLN) rate prior in BEAST 2, the 
autocorrelated lognormal rate (ACLN) prior in PAML, and the UCLN in PAML
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are expected to evolve randomly over the phylogeny. 
However, it is clear that real substitution rates do not 
always vary randomly. Instead, rates of molecular evo-
lution can be influenced by species life history, niche 
and environment and macroevolutionary processes. It 
is important to examine whether the stochastic models 
of rate variation can adequately model realistic biologi-
cal patterns of rate variation [3, 4, 62, 65]. In the case of 
substitution rates, this means that we must test molec-
ular dating methods using rate simulations that are 
empirically based and incorporate the effects of other 
biological processes. Here we have focused on testing 
the impact of widely reported correlations between 
molecular rates and diversification on the accuracy of 
molecular date reconstruction [5–8].

We used three models, Unlinked, Continuous and 
Punctuated, to reflect different possible links between 
substitution rates and diversification rates—either 
varying independently; covarying continuously, linked 
directly by common mechanisms or indirect through 
shared influences on rate variation; or linked by punc-
tuated bursts of increased substitutions related to 
speciation events. Rather than choosing parameters 

arbitrarily, we parameterised our models using realis-
tic values from the literature, or found plausible values 
by tuning the models to produce data sets that repro-
duce empirical findings (Additional file  1: Methods; 
[7, 79, 80]). To make sure that we had realistic param-
eters for simulations, we based our parameter values 
on empirically derived values for birds. This approach 
produces more realistic simulations than the com-
mon approach choosing arbitrary values for conveni-
ence. Although these values may not represent all taxa, 
they are still more likely to be a realistic representation 
than random values, and here are used only to explore 
whether molecular dating methods are accurate given 
simulated datasets that mimic, as much as possible, a 
real case study. Exploring the performance of methods 
on simulations modelled on other case studies would 
be desirable, if appropriate parameters were available. 
Modelling population genetic processes and multi-
ple loci could also add real-world error sources such 
as gene tree discordance, coalescent error and incom-
plete lineage sorting, many of which would be affected 
by variation in substitution rates and branch times. 
Our framework focuses on the most common use 
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cases for macroevolutionary studies, which generally 
involve analyses of few loci at broad taxonomic scales 
for which these problems may be less prevalent. How-
ever, this would be a useful path for future research.

Similarly, we use three examples of ‘relaxed clock’ 
molecular dating methods: BEAST 2 (using an uncor-
related rates model, UCLN) and PAML (using either 
the autocorrelated rates model, ACLN, or the UCLN). 
Clearly, these methods and models do not represent all 
possible approaches to inferring molecular dates using 
a rate-variable method, but they were chosen because 
they are widely used and differ in some key respects, 
and therefore present two useful test cases for the 
accuracy of “relaxed clock” methods in the face of sys-
tematic rate variation.

Unlinked model
The Unlinked model describes the error that can be 
expected from independent variation in speciation and 
molecular rates. Inference on trees simulated under 
this model produced median absolute errors in node 
age inference of about 12% on average using BEAST 2 
(UCLN), and high values of 66% using the PAML (ACLN) 
and 77% using PAML (UCLN) (Fig. 1). The largest errors 

were up to 30% for BEAST 2 (UCLN),while the worst 
instances for PAML (ACLN) had errors up to 192% and 
the worst MAPE for any individual tree was in PAML 
(UCLN) at over 500%. The Unlinked model produced 
lower errors using BEAST 2 (UCLN) than the other two 
models (Fig.  1). Gamma differences for the Unlinked 
model are distributed evenly around zero using BEAST 
2 (UCLN), so there is no overall tendency for nodes to 
be over- or under-estimated (Fig. 4). The sources of error 
in the Unlinked model are most likely to be violation of 
the assumptions of rate priors and node time (tree) pri-
ors. Variation in speciation rates violates the assump-
tions of the birth–death node time priors used in both 
BEAST 2 and PAML, which assume universally constant 
rates of speciation and extinction [89]. Speciation rate 
variation among lineages also induces more imbalanced 
trees on average [90], which can lead to bias and loss of 
precision in node age inferences [91]. While the degree 
and scale on which speciation and extinction rates vary 
remains contested [92–95], there is increasing evidence 
that radiations and other forms of variation are a factor 
in the evolution of many taxa, so that errors of this mag-
nitude may be widespread [96–99]. Substitution rates 
that evolve in an autocorrelated fashion also violate the 
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assumptions of the UCLN, which assumes that the evolu-
tionary rate of each lineage is independent [20], and this 
may also induce errors in inference [30, 34].

The causes of the extremely high errors of the 
PAML(ACLN) and PAML (UCLN) phylogenetic infer-
ence for the Unlinked trees (and throughout the study 
for the other models) are unclear. Examination of the 
output trees suggests that the most extreme errors are 
in trees with shallower calibrations, and that the ages of 
large uncalibrated clades are sometimes overestimated 
severely. The inferences from PAML and BEAST 2 are 
not directly comparable due to numerous technical dif-
ferences: for example, tree topology is fixed in PAML but 
estimated in BEAST 2; and BEAST 2 has prior distribu-
tions on speciation and extinction parameters, which are 
fixed in PAML. Nevertheless it is surprising that the per-
formance of the ACLN model in PAML was worse than 
the UCLN model in BEAST 2 even though the underly-
ing rate variation in these simulations is indeed autocor-
related. The fact that even higher errors and greater HPD 
widths are found when using PAML (UCLN) than using 
PAML (ACLN) (Figs. 1, 3) suggests that the choice of rate 
prior can have some ameliorating influence, but the dif-
ferences between the methods are not wholly due to the 

rates prior, because PAML (UCLN) still performs signifi-
cantly worse than BEAST2 UCLN, indicating that there 
must be additional differences in methodology impacting 
the accuracy of inference. One possibility is that the sen-
sitivity of the prior to model violation in PAML (ACLN) 
was enhanced by our use of the approximate likelihood 
function [100]. This is a second-order Taylor approxi-
mation to the likelihood evaluated at the maximum 
likelihood estimates of the branch lengths and other 
parameters. As discussed by dos Reis and Yang [100], 
while the approximation is very accurate under normal 
circumstances, when the branch lengths proposed during 
Bayesian inference are very far from the maximum likeli-
hood values the approximation becomes much less accu-
rate. This can happen when the rate or node time (tree) 
priors are misspecified. PAML also requires some param-
eters of the prior to be specified exactly, such as the spe-
ciation and extinction rates, whereas in BEAST 2 these 
values are usually given distributions. This could mean 
that PAML is not as robust to violation of the assumption 
of constant diversification rates. Nevertheless, absolute 
error rates in other simulation studies have been less than 
20% even with a deliberately misspecified rate prior and 
more limited calibrating information [30], and the high 
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error rates may be indicating that patterns of rate varia-
tion likely to exist in real data may reveal weaknesses in 
methods that were not obvious from simulating simpler, 
stochastic patterns of rate variation.

Continuous model
The Continuous model has substitution rates and specia-
tion rates that coevolve continuously rather than varying 
independently. Notably, we chose the degree of covari-
ance that reproduced two well-established empirical 
phenomena – the correlation of clade size and branch 
length contrasts detected in a sister pairs analysis by Lan-
fear et  al. [7], and the widespread relationship between 
branch lengths and tree nodes reported by Pagel et  al. 
[62]. On average, this model produced absolute node 
time inference errors of 14% using BEAST 2 (UCLN), 
slightly higher than the Unlinked model, but the worst 
errors were up to 30% (Fig. 1). Negatively-skewed gamma 
differences indicate that error generally leads to node 
ages being overestimated, pushing reconstructed nodes 
back towards the root (Fig.  4). In addition to the error, 
which is the difference between reconstructed time esti-
mates and the truth, we also examine how the recon-
struction methods report their uncertainty about the 
truth through 95% highest posterior density intervals. 
Although not greatly different in terms of absolute error, 
the reported uncertainty of node time estimates was very 
high for this model using BEAST 2 (UCLN), with average 
HPD widths more than 107% of node height (Fig. 3). This 
average is driven partly by some outlying trees with very 
high uncertainty, up to 600% of node height; the median 
is 75% of node height. Wide HPD intervals can be a sign 
of conflict between the prior and data, so it may be that 
covariance between diversification rates and substitution 
rates tends to produce patterns of branch lengths that are 
not well described by independent rate and time priors. 
The practical impact of this level of uncertainty could 
depend on how it is distributed within the tree and the 
nature of any downstream inferences; if the question at 
hand is the dating of major clades then high uncertainty 
in the age of tips may be tolerable, while the same level 
of uncertainty in internal branches would render the tree 
unusable. However, any macroevolutionary inference that 
relies on the distribution of nodes throughout the tree 
would likely be affected [59]. Error rates for the Continu-
ous simulations were similar to those for the Unlinked 
simulations using PAML (ACLN) (mean of 60.6%; Fig. 1) 
and PAML (UCLN) (mean of 69.6%). Similar error rates 
suggest that the accuracy of PAML analysis, while having 
low precision under all simulation models, was not sub-
stantially affected by the degree of correlation between 
substitution rates and diversification rates.

Punctuated model
Levels of absolute error were highest under BEAST 2 
(UCLN) when speciation events were associated with 
large punctuational bursts of molecular evolution (mean 
of 20.3%, up to 80.4%; Fig.  1). This implies that, if real 
evolutionary processes were to commonly involve such 
bursts of substitutions associated with speciation, or pro-
duce a similar distribution of evolutionary histories and 
rate variation through some other mechanism, median 
node age estimates reconstructed under the UCLN rate 
prior would be generally incorrect. Error rates were also 
extreme for PAML (ACLN) (mean 91.4%, max 438.9%; 
Fig. 1) and for PAML (UCLN) (mean 74.9%, max 535%). 
These rates were slightly higher on average than the 
rates for Unlinked and Continuous models, though also 
depending more on the specific tree. The finding of high 
error rates in the Punctuated model corroborates a recent 
analysis [72], which showed that greater proportions of 
branch length associated with speciation events lead to 
greater errors in the age of the root. Here, we show that 
the effect is strong enough to impact the median abso-
lute error of all node ages, even when the crown node is 
calibrated. The very negative skew of Gamma away from 
the simulated value shows that these internal node ages 
are severely overestimated, leading to very distorted trees 
with long tips (Fig. 4).

Despite having the highest degree of branch length 
error using BEAST 2 (UCLN), the Punctuated model 
had the lowest degree of topological error (a median of 
2 bipartitions not correctly reconstructed; Fig.  2), com-
paring to the Unlinked and Continuous models (median 
of 5 and 6 respectively, Fig.  2). Intuitively, this could be 
because rapidly diversifying clades will normally have 
many short branches, making their internal relation-
ships more uncertain. The Punctuated model adds more 
substitutions to every branch regardless of its duration 
in time, and so helps resolve these rapidly diversifying 
clades. The precise impact of topological error is difficult 
to interpret, since our investigation does not distinguish 
among topological errors at different timescales and we 
do not designate any particular nodes as important. But 
the practical upshot of systematically lower topological 
error in the simulation with the most severe node age 
errors using BEAST 2 (UCLN) is that these errors will be 
difficult to diagnose. Major topological errors are easier 
to diagnose by checking against classical taxonomies or 
other information, while little is usually known about the 
dates of uncalibrated nodes ahead of time.

Given the errors in inference of phylogenetic branch 
lengths and topology under these rate models, and the 
aforementioned difficulty in diagnosing these errors from 
inferred phylogenies, would we expect to be able to detect 
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an association between diversification rates and substitu-
tion rates in these reconstructed phylogenies? We asked 
if the underlying relationship could be detected using a 
standard analytical approach with sister pairs (Fig.  5). 
Although the association between speciation rates and 
substitution rates was evident in the simulated trees, tree 
reconstruction using PAML(ACLN), PAML (UCLN) 
or BEAST 2 (UCLN) disrupts the relationship between 
clade size and branch lengths and clade sizes displayed 
by the underlying simulated trees (Fig. 5). In the BEAST 
2 (UCLN) phylogenies the relationship between spe-
ciation and molecular rates is inverted, giving a negative 
correlation between clade sizes and branch lengths. This 
could be related to the fact that lineages with many spe-
ciation events have higher variance in branch lengths in 
the BEAST 2 (UCLN) reconstruction [101] which means 
their total length could be more strongly constrained 
by the node time (tree) prior. Conversely, for the PAML 
(ACLN) and PAML (UCLN) reconstructed trees, we 
found significant positive relationships between inferred 
branch lengths and clade size for all three models, even 
the Unlinked model where speciation rates and sub-
stitution rates are not positively associated. A possible 
cause of this inference of a positive association between 
diversification rates and substitution rate, even in the 
absence of an underlying association between the two, 
is the node-density effect, which results from systematic 
underestimation of branch lengths with high uncertainty 
[102]. The influence of the node density effect should be 
reduced by our procedure of selecting an even number 
of samples in each sister clade, but may not be elimi-
nated by it due to the extremely high error rates in the 
PAML (ACLN) or PAML (UCLN) reconstructions. The 
node-density effect may not be observed in our BEAST 
2 (UCLN) because the aforementioned artefactual nega-
tive correlation overcomes any positive correlation due 
to node density. However the reasons why this does not 
occur using PAML (UCLN) are unclear and cannot be 
distinguished using our data. The failure to recover the 
empirical correlation from branch lengths reconstructed 
as part of a Bayesian dating analysis suggests that this is 
not a useful way to test for the presence of interactions 
between substitution rates and speciation rates. For some 
data sets it may be practical to check for such correla-
tions by reconstructing branch lengths in units of genetic 
divergence using a fast branch length reconstruction 
method that does not impose a model of timing or rate 
variation (e.g. [85, 103–105]). However, even if such cor-
relations can be diagnosed, there is currently no available 
method for correcting any associated bias. This should be 
an area of active research.

The true role of punctuational bursts or coevolution 
of speciation and substitution rates in macroevolution is 

currently a matter of debate. The primary empirical evi-
dence is the analysis of a large selection of empirical phy-
logenies in Webster et al. [63] and Pagel et al. [62]. These 
studies have found that the length of root-to-tip paths 
in the phylogenies in substitutions per site is frequently 
higher when there are more nodes on the path. The rela-
tionship remains even after removing the node-density 
effect that can generate spurious correlations between 
branch lengths and node densities across clades [102, 
106]. Regardless of the mechanisms, we have shown that 
if there were punctuated busts of substitutions associated 
with speciation events, we could expect it to impact the 
accuracy of molecular date estimates, since any mecha-
nism that leads to similar patterns of rate variation and 
apparent correlation between branch lengths and specia-
tion events would produce similar effects.

Molecular dating methodology
Our study contrasts two common reconstruction meth-
ods, rather than varying aspects of data choice. Many 
aspects of data choice and analytical method could 
exacerbate or reduce the errors found in this analy-
sis. For example, our alignments are shorter than many 
used in actual Bayesian phylogenetic analyses but also 
likely more informative due to being simulated without 
invariant sites or other more complex patterns of sub-
stitution. Shorter or less informative alignments could 
lead to greater or more widespread error. Perhaps the 
most important element that we did not explore was the 
influence of calibrations. Calibration choice and posi-
tioning, as well as the shape of the calibrating distribu-
tion used, is often the most influential factor influencing 
divergence time reconstruction (e.g. [32, 107]) and is the 
source of many disagreements in published molecular 
dating studies, including high-profile dating studies in 
birds [108–110] mammals [111, 112], and insects [113–
115]. Simulation studies have suggested that calibrations 
can rescue analyses strongly affected by rate prior mis-
specification [30], although others have found that suf-
ficiently misspecified rate priors cannot be rescued by 
more calibrations [34]. The largest and most data-rich 
molecular dating studies may have many more calibra-
tions than we implement (e.g. [116]). However, our trees 
are smaller than in these studies, and, unlike empirical 
studies, our calibrations are guaranteed to be correctly 
placed, have hard constraints, and are centered on the 
true value. We also ensure the root is calibrated, which 
has been shown to have the largest effect on accuracy in 
several studies [30, 34, 117]. We therefore believe that 
our method overall represents a balance between real-
ism and conservatism in determining the amount of cali-
brating information available to inform divergence time 
estimates. However, a useful extension of the analyses 
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undertaken in this study would be investigation of the 
effects of both alignment length and calibration numbers 
and positioning.

Conclusions
Our results here show the value of testing molecu-
lar phylogenetic and dating methods against complex 
simulation models informed by empirically determined 
patterns of rate variation. We have demonstrated that 
commonly applied Bayesian divergence time estimation 
methods can experience average errors of 12% in node 
dates under a model in which speciation and molecular 
rates vary independently, 14% when substitution rates 
are linked to speciation rates and 20% under a punc-
tuational model when analysed using an uncorrelated 
rates prior in BEAST (UCLN). Errors were much higher 
under all models when trees were analysed with an auto-
correlated rate prior in PAML (ACLN), and still higher 
with the uncorrelated lognormal rate prior in PAML 
(UCLN). As demonstrated by the negative skewness of 
gamma statistics, for trees with links between speciation 
and molecular evolution these errors could lead to sys-
tematic overestimation of node ages. Regardless of the 
mechanism generating the association between specia-
tion rates and substitution rates, we show that the poten-
tial for divergence time estimation error associated with 
known empirical relationships between molecular evolu-
tion (manifest in substitution rate) and macroevolution 
(manifest in the topology and branch lengths of phy-
logenetic trees) can be significant and should be taken 
into account. Future work should see a broader range 
of sophisticated divergence time estimation methods be 
tested against a wider variety of more empirically realistic 
simulated data, including geographic and environmental 
biases, concerted changes in population size, and direc-
tional changes in life history characteristics. Ultimately 
the goal should be to produce new models that relax the 
assumption of independence between priors on diver-
gence times and priors on substitution rates. These will 
lead to greater confidence in applications that depend on 
robust estimates from molecular dating procedures.

Methods
Simulation design
We refer throughout to simulated phylogenies, which 
are known without error, as the ‘simulated trees’, and to 
the phylogenies inferred from analyzing the sequences 
evolved along each of these simulated phylogenies as 
the ‘reconstructed trees’. Comparison of the recon-
structed trees to the simulated trees allows us to evalu-
ate the degree to which phylogenetic inference methods 

correctly infer the known evolutionary history of the 
simulated data.

Our overall design is summarised in Fig.  6. For our 
simulation study, we first generate phylogenetic trees 
in units of absolute time with evolving rates of specia-
tion and molecular evolution. We then simulate DNA 
sequences along these phylogenies. Finally, we infer dated 
trees from the alignment of these sequences using stand-
ard methods in Bayesian phylogenetics and compare the 
inferred tree to the simulated tree from the known evolu-
tionary history from each simulation.

We simulate sets of 50 phylogenetic trees and nucleo-
tide sequence alignments under each of three different 
models describing the association between speciation 
rates and rates of molecular evolution: one “Unlinked” 
model in which molecular and diversification rates each 
vary independently, as well as two alternative mecha-
nisms for an association between rates of molecular 
evolution and speciation rates (“Punctuated” and “Con-
tinuous”: see Table  1). We do not consider models in 
which molecular rates affect rates of extinction, so in 
our simulations, extinction rates remain constant over 
the tree. For all models, we first simulate the phyloge-
netic tree in continuous time, together with speciation 
and substitution rates that vary along the tree. From this, 
we derive branch lengths in expected genetic divergence 
(substitutions/site). Finally, we simulate the evolution of 
nucleotide sequences along these phylogenies.

In the Unlinked model, we simulate continuous varia-
tion in both substitution rate and speciation rate through 
time, but neither affects the other. Substitution and spe-
ciation rates evolve independently by Brownian motion, 
where each lineage continuously adds a separate random 
increment to its substitution rate and speciation rate in 
each of many small time intervals. The Unlinked model 
serves as a baseline to determine the level of uncertainty 
in molecular dates caused by the random variation in 
substitution and diversification rate when there is no 
mechanistic link between the two. In the Continuous 
model, speciation rates and substitution rates coevolve 
with each other continuously over time. The coevolution 
is simulated as a correlated Brownian motion, where the 
random increments in speciation and molecular rates 
added over time are dependent on one another. Con-
sequently, substitution rate and speciation rate tend to 
increase or decrease together. For this model, we also 
ensured realism simulated many data sets with differ-
ent covariance parameters, and selected a set of 50 trees 
that reproduced the empirical correlation of [7] between 
clade size and branch length (Additional file 1: Methods 
S1.1). In the Punctuated model, the genetic divergence 
along a branch is the sum of a gradual accumulation of 



Page 14 of 19Ritchie et al. BMC Ecology and Evolution           (2022) 22:61 

substitutions at a rate that evolves as in the Unlinked 
model, and a burst component at each speciation event. 
A speciation event occurs each time a new lineage is 
born, whether any of its descendants are observed in the 
present or not. The amount of additional branch length 
due to the burst is independently and randomly drawn 
for each speciation event. For this model, we condition 
our simulations to reproduce the relationship observed in 
[62]. There it was observed that the total number of sub-
stitutions occurring along root-to-tip paths in their sam-
ple of trees correlates with the number of nodes along the 
path. Although this relationship could also be produced 
by a mechanism similar to the Continuous model [118–
120], we model the mechanism proposed in [62] that the 
node-associated substitutions are produced in bursts 
associated with speciation events.

We derived plausible speciation, extinction and substi-
tution rates for our simulations using the avian phylogeny 
in [82]. We do not intend to make any inferences about 
the actual evolution of birds or the accuracy of inferred 
divergence times. Birds are chosen only because the rela-
tionships among traits, molecular rates and diversifica-
tion rates are well studied, so that we can use these to 
give us an empirical ground for choosing parameter val-
ues. Branch-specific diversification rates have been esti-
mated for many of the lineages in this tree in [80], while 
substitution rates have been inferred in [79] assuming 
covariation of molecular rates and life history. Speciation 
rate and molecular rate values taken from avian data have 
been previously used to inform realistic simulations on 
ecological assemblies for the purpose of estimating the 
effect of dating error on phylogenetic diversity estimates 
[121], and we make use of similar procedures here. A 
relationship between molecular rates and net diversifica-
tion rate has also been established for birds [7, 8]. We use 
this fact to select our Continuous data set by simulating 
multiple data sets and varying the covariance parameter 
until the relationship appears. Full details of how we used 
these studies to determine realistic parameterisations for 
our simulations are available as Additional file 1: Meth-
ods S1.1.

Simulation trees and alignments
To simulate the phylogeny, we adopt a forward 
approach, starting at the root of the phylogeny and 
moving forward in time, as lineages divide into two 
daughter lineages, go extinct, and evolve in speciation 
and substitution rate as a continuous time Markov pro-
cess. In each step, we draw the time until the next event 
from an exponential distribution with rate equal to the 
sum of the rates of all events in all lineages. Then, for 
every lineage l that is present at time t, one of the fol-
lowing three events may take place:

 i. The lineage gives rise to two daughter lineages with 
rate �(l, t) , the current speciation rate of lineage l 
at time t. Both daughter lineages initially retain the 
same speciation rate and trait values as their parent 
lineages.

 ii. The lineage becomes extinct with rate µ , which is 
constant over the tree.

 iii. The lineage updates its speciation rate and substi-
tution rate with rate q , which is constant through-
out the tree. The update process adds an increment 
to the current speciation rate, which is a random 
draw from a bivariate normal distribution with 
mean 0 and an instantaneous variance–covariance 
matrix � multiplied by the time since last jump.

Until one of these events happens, the lineage contin-
ues with the same speciation and molecular rates. High 
values of q make for longer simulations but produce a 
better approximation to Brownian motion. We found 
that q had no influence on observed speciation or sub-
stitution rate variance or average tree age for q > 10. 
For our final simulations, we selected q = 50 to allow a 
significant margin of safety.

Specifically, the instantaneous variance-covariance 
matrix takes the form:

where  σ 2
�

 describes how fast the speciation rate evolves 
and  σ 2

r  describes how fast the.substitution rate evolves. 
Cov(�, r) = ρσ�σr , where ρ is the correlation coefficient 
between speciation rate and substitution rate, so ρ = 0 
in the Unlinked Model and the Punctuated model. We 
employ the Generalised Sampling Approach [122] to 
ensure a correct distribution of trees with a given number 
of tips, which is set to 75, the approximate mean size of 
the avian clades taken from [80]. Details of the approach 
is in Additional file 1: Methods S1.2.

In the Punctuated model, we simulate an initial tree 
as per the Unlinked sample, but without removing 
extinct taxa. We generate a burst of substitutions fol-
lowing each speciation event. We generate Punctuated 
trees to match the formula found by [62], in which 16 
± 5.4% of the tree length (sum of all branch lengths) 
results from node-associated bursts (Additional file  1: 
Methods S1.3).

Once we have simulated a tree, we simulate the evolu-
tion of nucleotide sequences along the tree, given that 
branch lengths in the tree represent the expected num-
ber of substitutions per site along the branch. The branch 
lengths in this tree represent the expected number of 
substitutions per site along the branch. We simulate 

� =

[

σ 2
�

Cov(�, r)

Cov(�, r) σ 2
r

]
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alignments of 2000 nucleotide bases, which is roughly 
equivalent to a 6000-base coding alignment, since most 
substitutions in a coding alignment occur in the third 
codon sites. A 6000-base coding alignment is about the 
size of the concatenated coding sequences of a mitochon-
drial genome. Previous literature reviews have shown this 
to be a common length for phylogenetic data sets in pub-
lished ecological studies, and a tractable length for large 
Bayesian simulation studies [121]. We parameterize our 
sequence simulations using realistic among-site rate vari-
ation values from birds (Additional file 1: Methods S1.4).

Calibrations
In addition to the trees and sequence alignments, we 
need calibrations to provide information on absolute 
time to allow substitution rates to be identifiable from 
absolute ages of nodes. For simulated trees of similar size 
to ours, diminishing accuracy returns for adding new 
calibrations are achieved between 1 and 5 calibrations, 
especially if one is at the root [30]. Since our calibration 
dates are known with more accuracy than those in a real 
analysis, and we remove the possibility of incorrectly 
assigned calibrations, we choose to assign two calibra-
tions per tree. For each tree, we choose calibrations at the 
root node and at one randomly chosen internal node. To 
ensure that the calibration is randomly chosen across the 
nodes of the simulated trees, we first decide the level of 
the calibrated node as a random integer between 1 and 
the largest number of nodes along any root-to-tip path 
in the tree. Then we randomly pick the calibrated node 
from all the nodes at that level.

For analyses in both BEAST 2 and PAML, we apply a 
hard-bounded uniform prior for the age of each cali-
brated node. Both calibrations have bounds at the true 
age ± 15%. Note that this is a conservative test of molecu-
lar dating because in the simulated datasets we have accu-
rate knowledge of the true date of the speciation event. In 
reality, calibrations may be misplaced or incorrectly dated, 
and may only provide maximum or minimum bounds.

Phylogenetic inference
We generate a set of 50 trees under each of the Unlinked, 
Continuous and Punctuated simulation types. After 
sequence simulation, this gives us 50 sequence alignments 
for each of the three models.We infer divergence times 
from the simulated sequences using common Bayesian 
molecular dating procedures. First, we generate posterior 
distributions of tree topologies and divergence times using 
three common molecular dating methods: the uncorre-
lated lognormal rate prior (UCLN), as implemented in 
the software package ‘BEAST 2’ (BEAST 2; 83), in which 
rates for each branch are independent draws from a com-
mon lognormal distribution;the autocorrelated lognormal 

rate prior (ACLN), implemented in the ‘mcmctree’ pro-
gram in the PAML software suite [85], in which the rate 
of each branch is lognormally distributed with a mean 
equal to the rate of its parent branch; and the UCLN as 
implemented in ‘mcmctree’ in PAML. To speed analysis 
when using PAML, we used the approximate likelihood 
algorithm implemented in mcmctree. The PAML analyses 
also differ from the BEAST 2 analyses in that some model 
parameters are provided as fixed numbers rather than dis-
tributions, and that PAML requires a fixed tree topology. 
In this case the fixed topology was the topology of the true 
simulated tree. Therefore only BEAST 2 (UCLN) incorpo-
rates the possibility of topological inference errors. How-
ever, the three simulation models can be compared within 
each reconstruction method. Details of the inference 
method are available as (Additional file 1: Methods S1.5).

Error in reconstructed trees
For each reconstructed tree, we calculated accuracy in 
the estimation of node times using the median abso-
lute percentage error (MAPE) of inferred node times for 
clades that are present in both true and reconstructed 
trees. The median was chosen rather than the mean to 
reduce the impact of extremely high values for the esti-
mates of shallow nodes. Since these are only calculated 
for correctly reconstructed branches and do not cap-
ture errors in reconstructing topology, we also calculate 
the Robinson-Foulds distance or number of non-shared 
bipartitions, which only reflects topological error [87].

Model misspecification in Bayesian molecular dat-
ing methods can sometimes be associated with higher 
uncertainty in the reconstructed node ages, as measured 
by the width of Bayesian credible intervals. This is unde-
sirable because the reconstructed history is less useful as 
an explanatory tool and less informative in downstream 
analyses, but it can also be a simple way to diagnose 
problems with the specified model. We examined the 
uncertainty with which node ages were reconstructed by 
the two Bayesian molecular dating methods. We scored 
uncertainty by averaging the width of the reconstructed 
95% highest posterior density intervals as a proportion of 
reconstructed node height across each tree (HPD width), 
with a larger score indicating less precise estimates.

Distribution of reconstructed vs simulated node ages
We examine the direction of error by calculating the 
gamma statistic for each tree and comparing to the true 
tree [123]. The gamma statistic is a description of how the 
times between branching events in a tree whose tips are 
all extant taxa change as they become closer to the pre-
sent. It summarises information relating to the pattern 
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of diversification, following a standard normal distri-
bution for a tree with a constant rate of speciation and 
no extinction. Trees with higher values have a relatively 
greater proportion of their length in older branches, 
while those with lower values have relatively more of 
their length in younger branches. The statistic therefore 
tells us whether the ages of internal nodes within each 
tree tend to be older or younger on average than the true 
times while accounting for the different scale of this bias 
for older and younger nodes.

Efficacy of sister pair correlation on reconstructed branch 
lengths
We checked to see if we can use the reconstructed branch 
lengths, which are the median of posterior branch lengths 
calculated by BEAST 2 (UCLN), PAML (ACLN) or PAML 
(UCLN), to detect the correlation between branch lengths 
and clade sizes found by sister pair analysis on the simu-
lated trees (see Additional file  1: Methods available as 
additional information). This could be used as a rapid post-
hoc check to see whether published dated trees could be 
affected by reconstruction error that is associated with 
substitution and speciation rate covariation. Data sets for 
the sister pair analysis are generated from the 50 simulated 
trees under each of the three simulation models, where 
each tree gives a pair of sister clades and the sister clades 
are the two clades that split at the root. So, under each 
simulation model, we have a data set of 50 sister pairs. We 
then regress contrasts in log clade sizes against contrasts 
in the log of the median branch length estimates from 
BEAST 2 (UCLN), PAML (ACLN), and PAML (UCLN).
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