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Abstract 

Background: Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and 
ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model 
for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the sub-
family Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest 
group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterra-
nean lifestyle in several phylogenetically independent lineages.

Results: We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae 
species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence varia-
tion, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating 
selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among 
phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein 
complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative 
to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subter-
ranean species.

Conclusions: Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae 
subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future 
characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-
encoded proteins involved in oxidative phosphorylation.
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Background
Understanding mechanisms involved in the formation 
of adaptations at the molecular level is among the main 
challenges of evolutionary biology. The occurrence of 
similar adaptations in pairs of phylogenetically related 
or distant organisms provides a good opportunity to test 
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hypotheses about the mechanisms of natural selection in 
evolution at the molecular level.

Subterranean rodents represent a good model for 
testing hypotheses on adaptive evolution driven by 
important ecological shifts. They live in a subterranean 
environment characterized by high levels of carbon diox-
ide, low levels of oxygen, and a relatively constant tem-
perature and humidity [1]. Being subjected to the drastic 
change in energy requirements [2] associated with colo-
nization of the subterranean niche, in particular the 
transition from oxygen-rich to hypoxic atmospheres [3, 
4], it was supposed that selective regimes of the proteins 
involved in respiration may have experienced positive 
directional selection in response to their entry into the 
subterranean habitat [5].

Voles and lemmings of the subfamily Arvicolinae are 
remarkable as it is the youngest group among rodents, 
is rapidly evolving, and is one of the most diverse groups 
that have colonized almost all landscapes and habitat 
types in the Northern Hemisphere. Arvicolinae display 
the fastest documented adaptive radiation among mod-
ern mammals. The earliest arvicolids are known from the 
Late Miocene (ex. gr. 7–8 Ma) both in Eurasia and North 
America [6, 7]. The subfamily consists of about 150 spe-
cies grouped according to various opinions into 28–30 
genera belonging to 8–10 tribes [8]. The number of extant 
arvicoline rodents is eight times greater than in the sis-
ter taxon Cricetinae, the most recent common ancestors 
(MRCA) of both are known in the fossil record from the 
Late Miocene, ca 10 Ma [7]. Arvicolinae emerged during 
the series of repeated events of rapid speciation with at 
least three “explosive” periods of rapid divergence during 
its evolutionary history [9].

Within this group, at least 5 phylogenetically dis-
tant lineages counting altogether nearly 10 species 
show independent transition to the subterranean 
lifestyle. The long-clawed mole vole, Prometheomys 
schaposchnikowi Satunin, 1901 represents the earli-
est evolutionary lineage among all recent arvicolids 
and is the only subterranean form among the so-called 
first radiation of voles [9]. This early split between Pro-
metheomys and all other voles according to molecular 
dating was estimated around 7 Ma [9, 10]. Other sub-
terranean lineages appear much later and are related to 
the most speciose and recent radiation wave. Among 
these lineages are the highly specialized subterra-
nean mole voles of the tribe Ellobiusini with the only 
genus Ellobius Fisher, 1814 that counts 5 species in 
two subgenera. Fossil remains of mole voles are known 
from the boundary of Pliocene–Pleistocene, approxi-
mately 2.5  Ma [11, 12], molecular dating estimates of 
the mole voles lineage split are approx. 4.5–4.8  Ma 
[9, 13]. Several species from different genera within 

the most diverse and species-rich tribe Arvicolini 
(encountering 60–62 species) also show the various 
extent of adaptation to subterranean lifestyle, particu-
larly: Terricola subterraneus de Selys-Longshamps, 
1836, Microtus pinetorum Le Conte 1830 and Lasio-
podomys mandarinus Milne-Edwards, 1830. These 
species belong to different nodes within the tribe [14] 
and are not descendants of the MRCA. The sister taxa 
of each species are surface-dwelling which indicate 
the independent multiple transitions to subterranean 
lifestyle within this tribe. The basal radiation of all 
microtines (including and Lasiopodomys) crown line-
ages may be estimated as 2.1 Ma so far as according to 
known fossil record multiple rootless forms assigned 
to Microtus appear throughout the Northern Hemi-
sphere at 1.9–2.1  Ma [15, 16]. Despite this ecological 
and phylogenetical diversity, molecular signatures of 
selection associated with mastering various ecological 
niches, including subterranean environment are poorly 
studied.

Mitochondrial genes have often been assumed to 
be under strong purifying selection because they 
encode proteins involved in oxidative phosphorylation 
(OXPHOS) that can directly influence metabolic perfor-
mance. However, lifestyle shifts that imply an alteration 
in metabolism might be associated with changes in the 
selection pressure of those proteins that participate in the 
biochemical pathways of cellular respiration. Cytochrome 
b (cytB) is a key component of bc1, one of the protein 
complexes involved in oxidative phosphorylation in the 
mitochondrial membrane. It catalyzes the reversible elec-
tron transfer from ubiquinol to cytochrome c coupled 
to proton translocation (Q-cycle [17, 18]). Despite cytB 
having been extensively used for phylogenetic and phy-
logeographic studies as a neutral evolutionary marker, 
many studies provide support for instances of adaptive 
selection in mammalian mitochondrial protein-coding 
genes and cytB. After [5] several papers gave evidence in 
favor of signatures of positive selection in the evolution 
of this gene [19–21]. Subsequent studies have suggested 
that, despite strong functional constraints, mtDNA may 
be subjected to positive directional selection in cases, 
for example, of energy-demanding lifestyles and/or the 
limited availability of oxygen [22–24]. In turn, Nevo [25] 
correlated sequence variation of a portion of the cytB 
gene with ecological differences between chromosomal 
races of blind mole-rats Spalax ehrenbergi Nehring, 1897. 
To date, the influence of these variations on respiratory 
function remains unclear. Da Silva et al. [5] found a sig-
nificantly higher estimated dN/dS ratio (ω)—the ratio of 
nonsynonymous to synonymous substitutions—in inde-
pendent lineages of subterranean rodents concerning 
their non-subterranean counterparts, suggesting a link 
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between the evolution of this gene and the colonization 
of a hypoxic environment. This observation was later 
confirmed [24] using a set of seven complete mtDNA 
genomes of octodontoids.

As cytB is an important component of the electron 
transport chain and thus respiratory processes of the 
cell, several attempts have also been implemented to 
find adaptive amino acid changes in partial and complete 
sequences of this gene. Some amino acid changes may 
improve aerobic capacity and adaptations to new ther-
mal environments [22, 26–29]. For instance, mutations 
in mitochondrial genes have been implicated in exercise 
intolerance in humans [28]. Da Silva et  al. [5] detected 
many amino acid substitutions in the cytB sequence in 
the tuco-tucos, coruro, pocket gophers and African mole 
rats, in both unique and in the same positions for all 
species.

In this study, we analyzed the between and within spe-
cies variation of the cytB gene among subterranean vole 
species, with special reference to signatures of positive 
selection on the background of a wider group of surface-
dwelling rodents from the Arvicolinae subfamily.

Earlier, an acceleration of substitution rates in cytB in 
subterranean rodents was shown [5]; however, authors 
carried out their analysis in a phylogenetic framework 
at the family level and over a large evolutionary period. 
Here, we tested the hypothesis of whether the phe-
nomenon [5] described is true at a significantly smaller 
evolutionary scale and within a lower taxonomic level. 
Comparing different genera within subfamily and differ-
ent species within one genus that independently mas-
tered the subterranean lifestyle, we aimed to determine 
whether the transition to the subterranean life is followed 
by positive selection in cytB and whether the substitu-
tions occur at homologous or different sites.

Results
In this study, we search the natural selection traces 
in subterranean species of the Arvicolinae subfamily. 
We analyzed sequences of protein-coding mitochon-
drial gene cytochrome b for 62 species shown on Fig. 1. 
Our study covers representatives of all main taxonomic 
groups and genera that allow us to study species with var-
ious times of divergence. We obtained a list of TreeSAAP 
significant substitutions (categories 6–8) for the studied 
species in a phylogenetic context since the sequences 
were analyzed with an account of the phylogenetic posi-
tion of the species on the tree. From the list of signifi-
cant substitutions, we selected those typical of at least 3 
subterranean species. We found three substitutions that 
satisfied our criteria: Ser57Pro, Asp214Asn and Ile338Val 
(Fig. 1). The same substitution type Asp214Asn was also 

found in specialized subterranean rodents belonging to 
other families.

Comparison of amino acid frequencies per site 
revealed (amino acid patterns) more than 80 sites being 
significantly different between subsets of subterranean 
and non-subterranean species (Additional files 1, 2b). 
The substitutions 57 and 338 were among these.

The serine to proline substitution at residue 57 in 
subterranean rodents potentially removes a phos-
phorylation site. We used two different methods to 
predict the phosphorylation of this site. NetPhos 3.1 
Server predicted phosphorylation with CDC2 kinase 
with score 0.518, GPS 5.0 predicted AGC, PKN, PKN1 
kinases with score 65.363. The predictions of the type 
of kinase do not agree with each other, however, all 
predictions assign high probabilities to this site being 
phosphorylated. The same methods did not predict 
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Fig. 1 Phylogenetic tree with observed substitutions unique for 
subterranean species. Fifty percent majority rule consensus tree 
from Bayesian inference analysis. Numbers are Bayesian posterior 
probabilities. Subterranean species are shown in blue. The size of 
the triangles corresponding to tribes and genera is proportional 
to the number of species sequenced. On the right, the amino acid 
substitutions in certain positions are shown. Below the tree, the 
amino acid substitutions in the same sites in specialized subterranean 
rodents from other families are shown
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phosphorylation for Asp214, and to our knowledge, 
neither Ile nor Val can be phosphorylated.

A single nucleotide polymorphism at position 338 
(ATT > GTT) corresponding to Ile338Val substitution 
was detected as likely pathogenic in the ClinVar NCBI 
database and is associated with cancer processes: www. 
ncbi. nlm. nih. gov/ clinv ar/ varia tion/ 143898/.

We modeled the structure of cytB to examine 
the possible effect of three substitutions: Ser57Pro, 
Asp214Asn, and Ile338Val (Fig.  2a). Based on our 
model, Ser57 faces the intermembrane space of the 
mitochondria. It resides on an unstructured loop seg-
ment spanning residues 54–60. This loop contacts the 
same loop on the second cytochrome bc1 monomer in 
the complex (Fig.  2b). Unlike Ser57Pro, substitution 
Asp214Asn is located on a loop facing the matrix of the 
mitochondrion. It contacts the N-terminus of ubiqui-
nol-cytochrome c reductase complex III subunit VII 
(UQCRQ) (Fig. 2c). Substitution Ile338Val is located on 
the interface between α-helices in the transmembrane 

region of the complex (Fig. 2d). The modeled structure 
shows that this substitution favors a different rotamer 
of Ile350, which neighbors residue 58 of UQCRQ.

We observe a tendency towards weakening purify-
ing selection in subterranean rodents in branch analy-
sis. All species showed significant differences compared 
with the neutral model (b_neut [31]) on branches by 
LRT (Table 1) that indicate the signature of relaxe selec-
tion in cytB gene. Significant differences between fore-
ground branches (subterranean species) and background 
branches (surface-dwelling species) were indicated for 
Ellobius species, Lasiopodomys mandarinus and Ter-
ricola subterraneus according to LRT results comparing 
free-ratio (b_free) and one ratio (M0) models. The same 
result was obtained in the analysis total set of subterra-
nean species.

Branch-site analysis implemented in the Datamonkey 
server (aBSREL) found no evidence of episodic diver-
sifying selection in analyzed phylogeny. RELAX con-
firmed changes in natural selection level of subterranean 

IMS
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c d

b

Fig. 2 Structural model of substitutions in the cytochrome bc1 complex. a Overview of the cytochrome bc1 homodimer. Cytochrome b is 
cyan, UQCRQ is magenta. The second monomer of the complex is colored yellow. The substitution locations are highlighted with circles. IMS 
intermembrane space. b Overlaid structures of E. lutescens and L. sibiricus showing the Ser57Pro substitution. E. lutescens model is cyan, L. sibiricus is 
white. c The Asp214Asn substitution and its interaction with the N-terminus UQCRQ (magenta) d The Ile338Val substitution and the neighboring 
UQCRQ chain (magenta)
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rodents. So, K-values for three species (Ellobius sp., L. 
mandarinus and P. schaposchnikowi; Table  1) demon-
strated values < 1, which could indicate relaxed selection. 
Two of these species: Ellobius sp. and L. mandarinus, 
showed increased ω-values in branch analysis. K for T. 
subterraneus demonstrated a value much greater than 1 
that could be interpreted as “selection strength has been 
intensified and correlated with lower ω-value in compari-
son with surface-dwelling species.

Furthermore, the calculation of the distribution of 
nucleotide substitutions at each site of cytB separately 
and combined by domain coordinates manually showed 
the following: site analysis indicated four positions 
(Table 2) with significantly higher values of substitutions 
in cytB in subterranean species (sites 4, 236, 237, and 
241). The search of sites under positive selection, apply-
ing sites and branch-sites models, with programs: PAML 
(site model M2), FEL and MEME, taking into account 
all species and several clades separately has shown both 
unique and similar sites in different species (Table 2). The 
detected positions were further checked for variation 
in amino acid substitution pattern at intraspecific level 
(Additional file 1).

Despite programs giving different results in many cases, 
there are several sites consistent in several analyses: site 

241 was indicated both with FEL and manual search on 
full-species dataset and on separate clades with Ellobius 
sp. (FEL) and L. mandarinus (PAML). Position 329 was 
detected by FEL in L. mandarinus and P. schaposchnikowi 
clades. Site 238 indicated by PAML and MEME analysis 
in L. mandarinus clade. All these sites (238, 241, and 329) 
show a significant difference in amino acid patterns.

Comparison of substitutions in whole domains 
(Table  3, Fig.  4) uncovered significant differences in 
membrane domains 1, 2, 5, and 9 and transmembrane 
domains 5 and 7 for nonsynonymous substitutions 
(Fig.  4a); and membrane domain 6 and transmembrane 
domain 5 for synonymous substitutions (Fig.  4b). Its 
visualization (Additional file 2a) shows that the location 
does not correlate with special positions relative to other 
domains or complex components.

Discussion
Purifying selection is a predominant force in the evolu-
tion of mtDNA. But it is possible that weak and/or epi-
sodic positive selection occurs simultaneously during 
the shift to a lifestyle with greater energy demands or 
reduced availability of oxygen [23, 24]. We examined the 
possibility of it in subterranean lineages bearing in mind 
that colonization of the subterranean niche results in 

Table 1 Estimation of ω in ete-toolkit using a branch model and RELAX analysis results

Fg foreground branch (subterranean species), Bg background branch (surface-dwelling species). Subterranean species indicated by color on Fig. 3. P_LRT likelihood 
ratio test p-value for models comparison, M0 one-ratio model, b_fee free-branch model, b_neut neutral-branch model, K selection intensity parameter, P p-value, LRT 
likelihood ratio test, N/A not analyzed. Significant values indicated by bold

branch model analysis RELAX

Subterranean species Fg, ω1 Bg, ω0 P_LRT b_free and 
M0

P_LRT b_free and 
b_neut

K P LRT

All species 0.0566 0.0303 2.45E-06 1.46E-125 N/A N/A N/A

Ellobius sp. 0.0642 0.0243 2.33E-06 4.76E-81 0.52 0 23.97
L. mandarinus 0.1325 0.0269 4.69E-05 0.00024 0 0.001 11.78
M. pinetorum 0.0233 0.0224 0.9327 4.62E-24 1.05 0.804 0.06

P. schaposchnikowi 0.0617 0.0356 0.0711 1.26E-09 0.63 0.023 5.15
T. subterraneus 0.0071 0.0343 0.05 2.48E-17 23.22 0.014 6.02

Table 2 Sites in cytB gene under positive selection

Analyses were performed simultaneously on all species and separate clades shown on Fig. 3. N/A not analyzed, no sites analysis did not show sites with a significant 
difference, Manual manual searching of sites with higher substitution density, AA patterns amino acid substitution patterns at intraspecific level

PAML MEME FEL Manual AA patterns

All species No sites 234, 249 241 4, 236, 237, 241 4, 234, 237, 241, 249

Ellobius sp. No sites No sites 241 N/A 241

L. mandarinus 42, 238, 241 238 244, 329 N/A 42, 238, 241, 329

M. pinetorum No sites 313 60, 299 N/A 60, 299

P. schaposchnikowi No sites No sites 160, 266, 296, 329 N/A 160, 266, 296, 329

T. subterraneus 43, 303 No sites No sites N/A 43, 303
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exposure to environmental changes that may affect the 
function of mitochondrial genes. Among Arvicolinae, 
several independent, relatively recent, and non-simul-
taneous colonization of the subterranean niche can be 
examined for features consistent with convergent evolu-
tion under similar directional selection, using their non-
subterranean relatives for comparison.

By implementing the standard tests we show that (1) 
several phylogenetically distant subterranean species 
show similar amino acid substitutions in cytochrome b, 
and these substitutions are plausibly important for the 
protein complex structure, (2) cytB showed an increased 
ratio between non-synonymous and synonymous sub-
stitutions (ω) in subterranean lineages compared to 
non-subterranean with evidence that selection strength 
has been relaxed, and (3) eight protein domains possess 
increased substitution ratio in subterranean species as 
well several nucleotide positions. Taken together, these 
results are consistent with the hypothesis that coloniza-
tion of the subterranean niche promotes a new selective 
regime of positive, directional selection in protein-coding 
mtDNA genes. Below we discuss these findings to com-
pare our results with previous findings on subterranean 
and surface-dwelling species from other taxa.

Amino acid substitutions in cytB and their impact 
on the protein structure
Subterranean and surface-dwelling species of Arvicoli-
nae were examined for the presence of amino acid sub-
stitutions in the mitochondrial cytB that could separate 
both. When only one sequence per species was used in 
TreeSAAP analysis, three sites with similar amino acid 
substitutions in distantly related subterranean species 
compared to all of the analyzed non-subterranean spe-
cies were found, particularly Ser57Pro, Asp214Asn, and 
Ile338Val (Fig.  1). Using the results reported in [5], we 
compared substitution patterns in subterranean species 

from different families. A substitution at site 57 was also 
detected in African mole rats (family Bathyergidae), and 
in 214 in African mole rats and tuco-tucos (genus Cteno-
mys). An analogous substitution at site 214 was found to 
be under positive selection in high-altitude subterranean 
zokors Eospalax fontanierii Milne-Edwards, 1867  [32]. 
It is remarkable that among subterranean voles, sub-
stitution Asp214Asn was found in Prometheomys 
schaposchnikowi, Ellobius fuscocapillus and Ellobius lute-
scens and the same amino acid substitution was found 
in most of the specialized subterranean rodent families 
(Fig.  1). Among the Arvicolinae, the three mentioned 
species referred to the lineages with relatively earlier 
shifts and longer evolution periods compared to other 
subterranean forms in the subfamily. Prometheomys 
schaposchnikowi, the oldest lineage within the subfam-
ily, represents the first wave of species radiation within 
Arvicolinae and is sister to all other recent lineages. The 
molecular time estimate for these split dates to approxi-
mate 7 Ma [33]. The putative origin of Ellobiusini is esti-
mated as ca. 4 Ma, and other subterranean arvicolids, T. 
subterraneus, M. pinetorum and L. mandarinus belong-
ing to the crown lineages within the Arvicolini tribe 
could not be earlier than 2 Ma. Thus, the occurrence of 
the same substitution in highly specialized species that 
originated at 2–5  Ma intervals, may indirectly indicate 
the importance of this substitution for adaptation to sub-
terranean life. Also, the substitution at site 57 from serine 
to proline removes the opportunity for phosphorylation. 
No substitution was detected at site 338 in Spalacidae or 
Bathyergidae families but could be associated with the 
cancer process according to the ClinVar database. The 
latter may confirm the importance of substitution, but its 
impact and adaptive significance remain unclear.

The wide distribution of cytB as a phylogenetic marker 
allowed us to test changes in amino acid usage across the 
full-length protein. We detected more than 80 positions 

Table 3 Domains in cytB gene with a significant difference in substitution frequency between subterranean and surface-dwelling 
species

NS nonsynonymous substitutions, S synonymous substitutions, Fs Fisher exact test, Holm correction p-values after Holm-Bonferroni correction, Memb membrane 
domain, TM transmembrane domain

Domains Subterranean Surface-dwelling Substitutions Fs Holm correction

Memb1 0.45 0.097 NS 0.00000033 0.000011

Memb2 0.33 0.043 NS 0.00001176 0.000365

Memb5 0.263 0.047 NS 0.00033176 0.008957

Memb9 0.52 0.15 NS 0.00005434 0.001522

TM5 0.64 0.10 NS 0.00000001 0.000000

TM7 0.29 0.06 NS 0.00004166 0.001208

Memb6 0.40 0.19 S 0.00000012 0.000004

TM5 0.42 0.19 S 0.00002733 0.000820
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with significant changes including part of TreeSAAP 
detected positions. Amino acids Pro and Val are not 
major in positions 57 and 338, respectively, but used 
more often. Our models of the structure of cytB suggest 
that the substitution Ser57Pro can alter the dimerization 
of the complex since it is located on a loop segment that 
resides on the interface of the two bc1 monomers (Fig. 2). 
The functional role of the substitutions Asp214Asn and 
Ile338Val is less clear. The loop spanning residues 54–60 
is rich in residues that potentially can form hydrogen 
bonds: Ser57, Asp58, Thr59, Thr60, Thr61 in Lemmus 
sibiricus. The Ser57Pro reduces the number of available 
hydrogen bonds, potentially weakening the interaction 
between loops. Additionally, this substitution eliminates 
a putative phosphorylation site, which can modulate the 
inter-loop interaction.

Both residues 214 and 338 of cytochrome b are in the 
vicinity of UQCRQ. In our model of Lemmus sibiri-
cus Kerr, 1792, Asp214 forms an ion pair with an Arg2 
of UQCRQ. This UQCRQ residue is conserved across 
multiple rodents (NCBI ID: RLQ55034.1, AAH28519.1, 
NP_777230.1, NP_001020305.1), and experimentally 
obtained structures from different mammals also dis-
play this interaction [32, 34]. Curiously, the Asp214Asn 
substitution in E. lutescens no longer interacts with Arg2 
of UQCRQ; however, a co-occurring substitution—
Asn212Asp—forms the ion pair instead of Asn214. The 
Ile338Val substitution may alter the binding of UQCRQ 
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indirectly, through Ile350. Greater insight into the func-
tion of these substitutions may come with the gene 
sequences of UQCRQ for surface-dwelling and subter-
ranean rodents. Taken together, structural modeling 
suggests the altered dimerization of cytochrome bc1 and 
UQCRQ binding.

Signs of positive selection in the cytB gene
As OXPHOS is a conservative mechanism that is essen-
tial for energy metabolism, purifying selection dominates 
the evolution of mtDNA [24]. MtDNA-encoded COX 
subunits and cytB are the most conserved genes in mito-
chondrial genomes [29]. Due to the functional impor-
tance of mitochondrial genes, purifying selection is the 
dominant force in their evolution; however, weak and/or 
episodic positive selection may occur in the background 
of strong purifying selection if selective pressures shift, as 
might happen when oxygen availability decreases. Given 
the drastic change in energy requirements [2] and the 
transition from oxygen-rich to a hypoxic subterranean 
habitat [3–5], it is likely that genes involved in respira-
tion experienced positive directional selection. Under 
this hypothesis, accelerated rates of functional (nonsyn-
onymous) substitutions, relative to silent substitutions in 
these genes, are expected in subterranean organisms [24].

Signatures of positive selection were identified in a 
series of branch analyses implemented for a subset con-
sisting of a subterranean species and a group of sisters 
surface-dwelling taxa and on the complete dataset. Both 
in comparing four Ellobius species against Arvicola, 
Eothenomys and Chionomys (Fig.  3) and L. mandarinus 
with other Lasiopodomys species and Neodon the ω-ratio 
was found to be significantly different between the fore-
ground branch of subterranean species against the group 
of non-subterranean taxa. A significant difference can be 
observed by analyzing T. subterraneus against other Ter-
ricola and Microtus species, but the dN/dS ratio is con-
versely less for subterranean T. subterraneus compared 
with surface-dwelling. Surprisingly, comparison of P. 
schaposchnikowi against species of first Arvicolinae radi-
ation (Ondatra, Dicrostonyx, Myopus, and Phenacomys) 
and M. pinetorum with other Microtus did not yield a sig-
nificant difference between ω-values. When ω-values are 
smaller than one, the study of a single gene does not allow 
us to reject alternative, non-selection explanations for the 
rate variation, such as a relaxation of purifying selection, 
variations in metabolic rate, body mass, population size, 
and generation time between lineages [35–37]. How-
ever, Da Silva et al. [5] found a significantly higher ω in 
the cytB among phylogenetically distant subterranean 
family-level taxa of rodents (tuco-tucos, coruros, pocket 
gophers, and mole rats) compared to their above-ground 

relatives, suggesting a link between positive directional 
selection in this gene in subterranean lineages. Both the 
data of RELAX analysis consistent with codeml branch 
model results and show many sites under positive selec-
tion favor the latter suggestion.

Interestingly, the same adaptations in COX and cytB 
genes were linked to increased evolutionary rates in sim-
ian primates [38, 39] and in mammalian species adapted 
to unusual oxygen requirements [21, 23, 29]. This con-
firms the adaptive property of the cytB gene. The fact that 
we could not observe this difference for all species with 
subterranean lifestyle and less level of ω for T. subterra-
neus than for phylogenetically close non- subterranean 
species sites may be related to less pronounced fossorial 
in the latter species than in highly specialized subterra-
nean forms such as Ellobius and L. mandarinus.

Substitution density across cytB
We examined the substitution frequencies by domains in 
subterranean and surface-dwelling rodents. Significant 
differences in frequencies were observed more often with 
nonsynonymous substitutions than with synonymous 
ones. This result is consistent with our data on dN/dS 
estimations (Fig. 4).

According to several studies [40–42], the three main 
structural domains of the cytB protein are character-
ized by pronounced differences in the levels of amino 
acid variation. Gering et al. [42] consider these to be an 
adaptation to high-altitude in Peromyscus manicula-
tus, as the matrix domain was the most variable and the 
intermembrane domain was the least variable. In the taxa 
that were studied and described here, we came across the 
opposite situation: from six domains with significant dif-
ferences in nonsynonymous substitutions, four belong to 
the membrane (intermembrane) domains and only two 
to the transmembrane domains. The influence of nonsyn-
onymous substitutions on the protein structure is unclear 
due to a substitution-compensating mechanism. How-
ever, the great difference in substitution ratio (especially 
nonsynonymous) provides evidence in favor of the relax-
ation of purifying selection revealed with ω estimations.

Conclusions
Our results indicate the signatures of positive selection 
in the evolution of mitochondrial DNA in Arvicolinae 
during colonization of subterranean environments. We 
observe relaxation of selection in cytB sequence using 
dN/dS calculation with branch, branch-site, and site 
models. Also, we detect significant differences in sub-
stitution distribution by domain structure and changes 
in amino acid usage for underground rodents. On top 
of this, we found similar amino acid substitution among 
phylogenetically distant subterranean lineages that could 



Page 9 of 12Bondareva et al. BMC Ecol Evo           (2021) 21:92  

affect protein structure. Our data corroborate the recent 
findings that suggest that the evolution of mitochondrial 
protein genes, in particular cytB, could be associated with 
metabolic adaptations to environments with low oxygen 
availability.

Methods
Samples
In our analysis, we used 62 cytB sequences from Arvi-
colinae species that represent all major genera and 
tribes. Among these, several phylogenetically independ-
ent lineages including those adapted to existence in the 
subterranean environment. Here, we consider all spe-
cies of the genus Ellobius, monotypic Prometheomys 
schaposchnikowi, and the species Lasiopodomys man-
darinus, Terricola subterraneus and Microtus pinetorum 
as subterranean. We compared these taxa with non-sub-
terranean representatives of 22 genera: Alexandromys, 
Alticola, Arvicola, Blanfordimys, Chionomys, Clethriono-
mys, Craseomys, Dicrostonyx, Eolagurus, Eothenomys, 
Lagurus, Lasiopodomys, Lemmus, Microtus, Myopus, 
Neodon, Neofiber, Ondatra, Phenacomys, Synaptomys, 
Terricola, Volemys and used Cricetulus, Mesocricetus, 
Peromyscus and Phodopus as an outgroup. The full list 
of species and GenBank accession numbers are given in 
Additional file 3.

DNA extraction, amplification and sequencing
Muscle and skin tissue samples were collected between 
years of expeditions and stored in 96% ethanol at −  20 
degrees Celcius in a tissue and DNA collection of the 
Group of molecular systematics of mammals (Zoologi-
cal Institute RAS). Genomic DNA was isolated from 
ethanol-preserved muscle tissues using a standard salt 
extraction protocol [43]. For the better resolution of the 
Arvicolinae tree, alongside mitochondrial cytB, we used 
and seven nuclear genes: breast cancer 1 gene (BRCA1), 
exon 11; growth hormone receptor gene (GHR), exon 
10; a fragment of the lecithin cholesterol acyltransferase 
gene (LCAT ), exons 2–5 and introns 2–4; tumor sup-
pressor protein gene (TP53), exons 5–7 and introns 
5–6; interphotoreceptor retinoid-binding protein gene 
(IRBP); von Willebrand factor gene (vWF), exon 28; and 
acid phosphatase type V gene (Acp5), exons 2 and 3 and 
partial coding sequence, were amplified. All the primers 
used and references where the PCR conditions are given 
are listed in Table 4. All sequences obtained in this work 
are marked with bold in Additional file 3.

PCR cleanup was performed using the Omnix kit 
(Omnix, Russia). PCR products were sequenced in both 
directions using ABI BigDye version 3.1. Sequences were 
edited and aligned with Geneious R11 (https:// www. 
genei ous. com), we also checked that sequences obtained 

were coded correctly. Final alignments had the follow-
ing lengths: cytB 1143 bp, BRCA1 1022 bp, GHR 869 bp, 
LCAT  607 bp, TP53 949 bp, IRBP 1267 bp, vWF 1251 bp, 
and Acp5 454 bp. The sequences obtained in the current 
study were deposited in GenBank (Additional file 3).

Phylogenetic reconstruction
The full list of genes and GenBank accession numbers 
used are provided in Additional file  3. The best-fit of 
several substitution models for each gene (TVM:G:5 for 
Acp5, GTR:G:5 for BRCA1, HKY:G:5 for GHR, TN:G:5 
for TP53, J3:G:5 for LCAT, J2:G:5 for IRBP and vWF) 
was assessed using Treefinder [49] under the corrected 
Akaike information criterion (AICc). Bayesian analy-
sis based on the concatenated alignment of seven genes 
(partitioned by gene) was performed in MrBayes 3.2.6 
[50]. Each analysis started with random trees and two 
independent runs with 4 Markov chains Monte Carlo 
(MCMC) were performed for 5 million generations, with 
sampling every 1000th generation; the standard devia-
tions of split frequencies were below 0.01, potential scale 
reduction factors were equal to 1.0. Stationarity and con-
vergence of separate runs was examined in Tracer v1.6 
[51]. A consensus tree was constructed based on the 
trees sampled after the 25% burn-in.

Table 4 Primers used in the study

Internal primers for sequencing are marked with an asterisk (*)

Genes Primer names Primer sequence (5′–3′) Reference

cytB L14729 GAC ATG AAA AAT CAT CGT TGT TAT T [44]

H15985 TAG AAT GTC AGC TTT GGG TGCT [45]

BRCA1 F180_arv CGG AAC AGA TGG GCT GAA AGT AAA G [46]

R1240_arv GGC ATC TGC TGC AGG TTC TGTGT 

GHR arv_F GGC GTT CAT GAC AAC TAC AAA CCT GA [9]

arvic_R ATA GCC ACA CGA GGA GAG GAACT 

LCAT LCAT F CAC CAT CTT CCT GGA TCT CAA [9]

LCAT R AAG AAA TAC AGC ACA TGT AGGCA 

TP53 p53 2F TYC CCT CAA TAA GCT RTT CTG CCA [47]

p53 3R GTT TAT GCC CCC CAT GCA GA

IRBP A3 CTG ATG GGA ATG CAA GCA GC [47]

IPL* GAC ATC GCC TAC ATC CTC AAGCA 

IPR* CTC AGC TTCTGSAGG TCY AGG 

B2a ATG AGG TGY TCY GTG TCC TG

vWF V1’ TGTSAAC CTY ACSTGT GAA GCCTG [48]

VIF* CTA CCT CTG TGA CCT TGC CCC TGA 

VIR* TCA GGG GCA AGG TCA CAG AGG TAG 

W1 TGC AGG ACC AGG TCA GGA GCC TCT C

Acp5 AP5-120fwd AAT GCC CCA TTC CAC ACA GC [10]

AP5-564rev CCC GGG AAA TGG CCA ATG 

https://www.geneious.com
https://www.geneious.com
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Amino acid substitutions detection
Significant physicochemical amino acid changes between 
residues in cytB were identified using the modified 
MM01 model implemented in TreeSAAP v3.2 [30]. Eight 
categories (1–8) were used to represent the magnitude of 
radical substitutions, of which categories 6–8 indicate the 
most radical substitutions, by setting a sliding window 
of 20 codons and analyzing the properties of 31 amino 
acids [52]. Significant positive z-scores (categories 6–8, 
P < 0.001) were accepted as a sign of significant change in 
function.

The distribution of synonymous and nonsynonymous 
substitutions was calculated between subterranean 
and surface-dwelling species in each site separately and 
combined by domain coordinates. Domain coordinates 
used accordingly UniProt information of Mus musculus 
cytochrome b domains: https:// www. unipr ot. org/ unipr 
ot/ P00158.

Amino acid patterns for each position were deter-
mined using all sequences for selected species to con-
sider intraspecific variation. Altogether more than 6 200 
sequences were analyzed: 131 for subterranean species 
and 6 059 for surface-dwelling. This dataset includes all 
available in Genbank cytB sequences in August 2020. 
Amino acid patterns were calculated using the script on 
Python 3. Statistical test was selected considering une-
qual sample sizes for all analyses.

The significance of the substitution frequency and 
amino acids patterns were estimated using Fisher’s exact 
test and Holm multiple adjustment. All computations 
were performed in R software v.3.4.4 [53].

Synonymous and nonsynonymous substitution 
estimations
Variation in the estimates of dN, dS, and ω (dN/dS ratio) 
was explored using the codeml approach, as imple-
mented in ete-toolkit [54] For each subterranean spe-
cies (or group of species for Ellobius) branch analysis was 
implemented with free-branch model (b_free, were ωfrg 
and ωbkg are free), neutral-branch model (b_neut, were 
ωfrg is fixed to one) and M0 model, where all branches 
evolve at the same rate. Subdivision into analyzed groups 
was carried out according to the principle of selection of 
phylogenetic nearest surface-dwelling taxa for ω com-
parison and more distant as outgroup. Were calculated 
likelihood-ratio tests to compare different models. The 
comparison between free-branch and M0 showed if fore-
ground branches have an ω significantly different from 
the rest of the tree. And the comparison between free-
branch and neutral-branch models detect if the value of 
ωfrg is significantly higher than 1.

Several programs from DataMonkey web-server (data-
monkey.org) was used for search selection signatures: 
aBSREL (An adaptive branch-site REL test for episodic 
diversification [55]), FEL (Fixed Effects Likelihood [56]) 
and MEME (Mixed Effects Model of Evolution [57]). 
Also, we performed PAML [58] site analysis with M2 
model for looking sites under positive selection [59].

Modelling
We modeled homology-based structures of cytochrome 
b as part of the bc1 complex from L. sibiricus and E. lute-
scens. The overall architecture of the bc1 complex varies 
little in crystal structures from different organisms rang-
ing from yeast to several mammalian species [60, 61], 
justifying homology modeling. We based the model on 
the crystal structure and protein sequence of cytochrome 
bc1 complex from Bos taurus with a resolution of 2.4 Å 
(Protein Data Bank ID: 1NTM [32]). First, the homodi-
meric structure was recovered by exploiting the symme-
try of the crystallographic group. Next, we used modeller 
(release 9.22) [62] to create structures of the bc1 homodi-
mer by using the sequence of the cytochrome b from 
the corresponding organism but keeping the other parts 
of the complex from Bos taurus. We adopted the auto 
model protocol with default settings. The models were 
superimposed to 1NMT and substitutions were analyzed 
visually in PyMOL v.2.0 (Schrödinger, LLC), which was 
also used to produce figures. Transmembrane regions of 
the complex were estimated using the OPM web server 
[63].

Phosphorylation prediction
To predict phosphorylation sites, we used two different 
tools—NetPhos 3.1 Server (http:// www. cbs. dtu. dk/ servi 
ces/ NetPh os/) [64] and GPS 5.0 (http:// gps. biocu ckoo. 
cn/ online. php) [65].
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