Northover et al. BMC Evolutionary Biology (2020) 20:24
https://doi.org/10.1186/512862-020-1585-y BMC Evolutionary Biology

RESEARCH ARTICLE Open Access

Characterizing lineage-specific evolution ®
and the processes driving genomic
diversification in chordates

David E. Northover', Stephen D. Shank' and David A. Liberles'?"

Check for
updates

Abstract

Background: Understanding the origins of genome content has long been a goal of molecular evolution and comparative
genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences
about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary
trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically
indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families
within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate
species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid
changes which occurred on high dN/dS lineages have been mapped to protein structures.

Results: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-
specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways
most commonly found to have elevated rates of evolution included those involved in metabolism, immunity,
and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the
database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented
on proteins most likely to undergo directional selection. A set of gene families which experience increased
numbers of duplications within short evolutionary times are associated with pathways involved in metabolism,
olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint
in 3-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed
sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for
polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid
sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement.
Conclusion: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication

and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for
facilitating this understanding of lineage-specific evolution.
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Background
As closely related species diverge after a speciation
event, their genomes begin to accumulate changes that
lead to molecular and phenotypic divergence. Speciation
itself is a complex process in chordates that results from
the gradual cessation of gene flow. As the isolated popu-
lations become separate species, mutations of different
magnitudes affect the protein coding repertoire of the
two diverging genomes. These changes include syn-
onymous changes that only affect the nucleotide sites,
nonsynonymous changes that affect the amino acid sites,
and gene duplication and loss events, among other types
of changes. A resource comparing chordate genomes in
a phylogenetic context, The Adaptive Evolution Data-
base (TAED) has recently been re-generated [33] ex-
tending previous versions that were released [46, 66].
The latest version of TAED contains gene families
constructed systematically across chordate species as de-
scribed in Hermansen et al. [33]. Gene families have
been filtered for alignment quality and to prevent syn-
onymous site saturation, with the oldest nodes in each
rooted gene tree reflecting a speciation event of max-
imum age being the root of the chordate divergence. All
pairwise alignments within each multiple sequence
alignment had no more than 10% gaps and were at least
80% identical in non-gapped positions. This then created
a trade-off between gene family ages (many had root
nodes younger than the last common ancestor of chor-
dates) and alignment quality, although homologous gene
family relationships can still be identified through
TAED. Gene families have been reconciled to the NCBI
taxonomy [67] as a reference species tree and events of
positive directional and diversifying selection detected
using nonsynonymous to synonymous nucleotide substi-
tution rate ratios in the branches model averaged across
sites [83]. Gene families have also been used to identify
duplication events using the SoftParsMap parsimony-
based gene tree-species tree reconciliation software [9].
In addition to previous iterations of TAED, other stud-
ies have also sought to characterize the lineage-specific
evolution of chordate genomes. This includes the gener-
ation of the Selectome Database [51] from Ensembl [2]
data. Selectome extends gene family data automatically
generated through the Ensembl pipeline which contains
sequences from 68 different genomes. Gene families in
Selectome are passed through stringent quality control
steps following which tests of selection using branch-site
models are implemented against tree topologies from
Ensembl. While both Ensembl and Selectome examine
evolution in a lineage-specific context, the method by
which selection is detected varies, with Ensembl using
pairwise analyses to calculate the normalized rate of
nonsynonymous to synonymous substitutions (dN/dS)
and Selectome using branch-site models of selection
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based on phylogenetic trees. Pairwise estimates of dN/dS
do not account for phylogenetic information which
limits the ability to understand evolution in a lineage-
specific context, and prohibits detection of directional or
diversifying selection on internal lineages. Branch-site
models and branch models differ in their sensitivity
(power) and selectivity (detection of false positives) [5,
25]. dS saturation is a potential problem for these ap-
proaches, with accuracy declining at dS ~ 3 [6].

Gene duplication is another important process to con-
sider when assessing lineage-specific processes of evolu-
tion. As genes duplicate, they may undergo different
evolutionary pressures and be either neofunctionalized,
subfunctionalized, or pseudogenized [42]. In the classical
model [55], duplicate gene copies can acquire mutations
that lose (pseudogenize), change or gain (neofunctiona-
lize) function mutations when the other copy retains the
original function. Neofunctionalization, which can also
occur to a gene subsequent to initial subfunctionaliza-
tion, emerges as the dominant driver of evolution in du-
plicated genes in this model [35, 65]. As such it is one
driver of lineage-specific differences in genome content.
Subfunctionalization, the subdividing of functions from
an ancestral state, can also lead to lineage-specific func-
tional divergence of genes, without the gain of new func-
tions in the genome as a whole. Without gene
duplication as a source of genetic content unconstrained
by negative selection, evolution tends to act in a conser-
vative fashion [55].

TAED also presents a picture of lineage-specific evolu-
tion using pathway and structural information in
addition to selection on individual protein encoding
genes and gene duplication. Pathway level analyses of
proteins may lead to understanding how proteins evolve
in the context of a cell or organism, since proteins typic-
ally interact together in a pathway or network to achieve
biological functions (phenotypes). Simulations have sug-
gested that rate limiting steps are not evolutionarily
stable over longer evolutionary periods [56, 57] and pro-
teins currently involved in rate limiting steps may not
remain so over long evolutionary periods. This suggests
patterns that might be expected for gene-specific select-
ive pressures in a pathway and how they relate to pheno-
typic evolution.

Two models for the evolution of pathways have been
presented, the retrograde evolution model [34], propos-
ing evolution to build a pathway backwards from the se-
lected final product based upon affinity for related
transition states at neighboring positions of a pathway
and the patchwork model [38] suggesting that gene du-
plication retains catalytic mechanisms on widely distrib-
uted substrates that are dispersed throughout the
network of pathways. A driver of mutational opportunity
in both models is gene duplication. Analysis of protein
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function can identify which model is best associated with
the evolution of a given pathway, with evidence suggest-
ing that the patchwork model is more common [48].
TAED compiles duplication and selection data compiled
for pathways in a lineage-specific manner that can be
viewed in this light.

Understanding the structural context of substitutions
within a protein may elucidate the role of individual
amino acid changes in potential functional shifts under
positive selection, differentiating them from compensa-
tory or stabilizing substitutions within the protein. Mod-
eling the effects of amino acid substitutions can
demonstrate changes in structure, dynamics, allosteric
regulation, and ligand binding that can be used to iden-
tify functional shifts ([19]; see also [16]). Such modeling
is limited however as the process is difficult and compu-
tationally intensive, with identification of fitness effects
based upon biophysical models inexact. Measurements
and models based on experimental work can also con-
tribute to our understanding [14].

The structural context of mutations also impacts the
substitution rate via negative selection. Requirements for
folding stability drive lower substitutions in the protein
core, while binding requirements on the ligand interface
slow mutation as compared to the protein surface [28].
These constraints extend to functional requirements to
avoid certain alternate states, including both selection
against alternate folding states and substrates that result
in deleterious interactions [47]. As protein structure di-
verges less observably than protein sequence over
equivalent units of evolutionary time [36], similar struc-
tural constraints can be assumed to be approximately
equivalently applicable to sequences diverged over rela-
tively short evolutionary times.

Understanding how genes evolve and the processes by
which they lead to novel adaptations in species is funda-
mental to understanding the genotype-phenotype map.
Here we present some new characterizations of lineage-
specific evolution utilizing the TAED database; we
examine specific hypotheses across lineages, as well as
characterizing processes at the levels of gene duplication,
pathway evolution, and of protein structure.

Results

The Adaptive Evolution Database (TAED) contains ~ 3.2
million sequences from 3214 different chordate species.
The database contains 143,806 individual genes families
which are mapped to the chordate species tree. Twenty-
three thousand nine hundred seventy gene families con-
tained one or more branches with dN/dS > 1, indicating
positive or directional selection acting on these lineages.
When the dN/dS rates are high after controlling for dS
saturation, the lineages are candidates for having under-
gone functional shifts. It is expected that the larger the
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dN/dS value for a given branch, the stronger the putative
selective forces were to cause functional changes to the
ancestral protein [73]. A list of the lineages with the lar-
gest dN/dS values where dS>0.01 was generated, as
these proteins constituted potential strong candidates
for having undergone positive selection (Table 1). Of the
top 30 lineages with the largest dN/dS values, values
were found to range from 88.78 to 26.57. The families
that these proteins come from are putatively involved in
multiple different biological processes, many of which
do not map to a KEGG pathway. Interestingly strong se-
lection was found to have occurred on the branch lead-
ing from Boreoeutherian mammals in 9 of the top 30
instances of high dN/dS. This lineage constitutes species
before the split of Laurasiatheria and Euarchontoglires,
following the divergence of mammals. Additionally,
strong selection was seen repeatedly on the lineage lead-
ing from Laurasiatheria which is the superorder contain-
ing cetaceans, carnivores, chiropterans, and ruminants.
Functional shifts in these proteins may be responsible
for some of the physiological and habitat differences be-
tween these groups and shared ancestors with carnivores
and primates. Strong selection was seen to occur on the
lineage leading from Neognathae which comprises most
avian species. Pathways under selection along this
lineage may indicate some of the functional differences
between flightless birds which comprise the sister order
Palaecognathae and other avians. KEGG pathway map-
pings for the top 30 lineages with high dN/dS showed
that selection may have acted on several different path-
way types including metabolic pathway interactions, re-
ceptor signaling pathways, and immune response
pathways. Selection can act directly on many different
levels within an organism. It can occur at the DNA level,
the protein level, the pathway level, and the phenotypic
level. Understanding pathway evolution may ultimately
be a better way to assess selection than current codon
based methods [32].

Enrichment analysis

To gain a better understanding of pathways within
TAED that are more common targets of directional se-
lection, a test to determine which pathways were over or
under represented for instances of putative positive se-
lection was undertaken. Table 2 shows the list of the top
25 enriched KEGG pathways within TAED for direc-
tional selection. From the top 25 pathways that are over-
represented in the database, 8 of the pathways are in-
volved in metabolic reactions (the pathway labeled
“Metabolic pathways” contains proteins from all meta-
bolic pathways, and therefore is not a unique pathway).
Metabolism, or the process of constructing useful cellu-
lar molecules, is essential for life. Given the vast array of
different physiological and environmental conditions
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Table 1 TAED gene family lineages with the largest dN/dS values where dS > 0.001
TAED Gene Families with high dN/dS

Family dN/dS  Mapped Location on Family description KEGG Pathways
Value  Chordate Species Tree (Start to End)
151,  88.7785 Boreoeutheria to Laurasiatheria splicing factor arginine/ Herpes simplex infection; Spliceosome
766 serine-rich 4/5/6
30 764909 Cercopithecidae to Cercopithecidae transmembrane protein 91
isoform X1
60,787 63.0029 Euarchontoglires to Simiiformes fucose-1-phosphate Metabolic pathways; Fructose and mannose metabolism;
guanylyltransferase Amino sugar and nucleotide sugar metabolism
23,133 619262 Aves to Aves galanin receptor 1 Neuroactive ligand-receptor interaction
296, 55.184  Eutheria to Delphinidae LOW QUALITY PROTEIN:
346 probable N-acetyltransferase
16
21,900 45.0176 Boreoeutheria to Boreoeutheria X-linked interleukin-1 recep-
tor accessory protein-like 2
52,181 44575 Boreoeutheria to Laurasiatheria unnamed protein product
8186 443077 Sauria to Anolis carolinensis protein Simiate
9378 403796 Neognathae to Neognathae palmitoyltransferase
ZDHHC17 isoform X4
22,600 39.9557 Boreoeutheria to Laurasiatheria potassium voltage-gated
channel subfamily G member
3 isoform X1
4144 389415 Hystricognathi to Hystricognathi pygopus homolog 1
14,875 38.1267 Laurasiatheria to Laurasiatheria kinesin-like protein KIF16B
12,213 380258 Camelidae to Camelus LOW QUALITY PROTEIN: dnaJ
homolog subfamily B
member 3
12,593 37.1258 Boreoeutheria to Boreoeutheria tRNA (guanine(10)-N2)-
methyltransferase homolog
20,708 36.782  Amniota to Amniota heparan sulfate 2-O- Glycosaminoglycan biosynthesis - heparan sulfate / heparin
sulfotransferase HS2ST1
32,532 36.0215 Boreoeutheria to Carlito syrichta interleukin 8 AGE-RAGE signaling pathway in diabetic complications; NOD-
like receptor signaling pathway;Influenza A; Phospholipase D
signaling pathway; Chemokine signaling pathway;Hepatitis B;
Toll-like receptor signaling pathway; Legionellosis;RIG-I-like
receptor signaling pathway; Rheumatoid arthritis; Malaria; NF-
kappa B signaling pathway; Shigellosis;Hepatitis GN on-
alcoholic fatty liver disease (NAFLD); Pathways in cancer;
Epithelial cell signaling in Helicobacter pylori infection;
Amoebiasis; Bladder cancer; IL-17 signaling pathway; Chagas
disease (American trypanosomiasis); Pertussis; Transcriptional
misregulation in cancer; Salmonella infection; Cytokine-
cytokine receptor interaction
4273 354369 Laurasiatheria to Laurasiatheria myelin protein zero Cell adhesion molecules (CAMs)
21,944 350114 Boreoeutheria to Boreoeutheria adrenergic receptor alpha-2C  cGMP-PKG signaling pathway; Neuroactive ligand-receptor
interaction
14,303 346434 Neognathae to Neognathae ATP-dependent DNA helicase
PIF1 partial
14,588 34.0198 Neognathae to Neognathae organic solute transporter
subunit alpha-like partial
12,299 34.0037 Neognathae to Neognathae phosphatidylinositol glycan  Glycosylphosphatidylinositol (GPl)-anchor biosynthesis;
class H Metabolic pathways
8762  33.6089 Myotis to Myotis doublesex- and mab-3-
related transcription factor 2
isoform X1
55,196 312663 Murinae to Mus musculus Isx protein
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Table 1 TAED gene family lineages with the largest dN/dS values where dS > 0.001 (Continued)

TAED Gene Families with high dN/dS

Family dN/dS  Mapped Location on Family description KEGG Pathways
Value  Chordate Species Tree (Start to End)

14,119 31.0551 Passeriformes to Passeriformes cardiolipin synthase CMP- Glycerophospholipid metabolism; Metabolic pathways
forming

39 3043  Boreoeutheria to Boreoeutheria large subunit ribosomal Ribosome
protein L4e

23,596 30.0168 Neognathae to Neognathae diacylglycerol Phosphonate and phosphinate metabolism;
cholinephosphotransferase Glycerophospholipid metabolism; Metabolic pathways; Choline

metabolism in cancer; Ether lipid metabolism

10,501 29.8433 Homo sapiens to Homo sapiens smoothelin isoform X5

157, 276427 Neognathae to Haliaeetus albicilla nucleolar protein 7 partial

103

3717 274352 Boreoeutheria to Boreoeutheria glypican 4 Whnt signaling pathway

9725 265684 Eutheria to Boreoeutheria cilia- and flagella-associated

protein 221-like partial

that exist within chordate species, it is plausible that de-
veloping different metabolic strategies is a primary way
for organisms to cope with their surroundings. As such,
seeing that these pathways are often targets for direc-
tional selection is not surprising. Furthermore, it is evi-
dent from the list that pathways involved in immune
response and cellular health have also been directly im-
pacted by selection. Over-represented pathways involved
in immune response included: Herpes simplex infection,
Influenza A, Toxoplasmosis, and Th17 cell differenti-
ation. It has been documented in the literature that se-
lection against pathogens is a constant arms race that
requires novel adaptations to overcome the constant
pressures of pathogenic infection [15, 44, 78]; that these
pathways should be over-represented for putative posi-
tive selection is not surprising. Additionally, pathways
which alleviate physiological stress also appear to be
over-represented for directional selection as seen in the
pathways: fluid shear stress and atherosclerosis, non-
alcoholic fatty liver disease, and chemical carcinogenesis.
Cellular components were also found to be under select-
ive pressure to evolve as seen in the pathways, protein
processing in endoplasmic reticulum, RNA transport,
lysosome, and peroxisome. Lastly, many lineages were
found to have evolved under directional selection relat-
ing to olfactory transduction. Olfactory genes are the
most duplicated genes within the human genome and
are known to be largely expanded in other chordate spe-
cies [54]. Olfactory sense is a primary means of commu-
nication, predation, and foraging for many species and
thus is unsurprising that many lineages relating to this
pathway have instances of dN/dS > 1.

Of the pathways found within TAED to be under-
represented for functional shifts, surprisingly photo-
transduction was found to be included within the top 25
(Table 3). The ability to visually see pigments is

important in both sexual selection and predation. In
birds [12, 84], fish ([72, 74, 79];) and cetaceans [24] in-
stances of positive selection have been discovered relat-
ing to selection on opsin and rhodopsin genes.
Therefore, it is surprising that selection on this KEGG
pathway would be under-represented within TAED.
However, KEGG pathways for zeatin biosynthesis, peni-
cillin and cephalosporin biosynthesis, bacterial secretion
systems, and MAPK signaling pathway — plant, should
be underrepresented in the database as these pathways
are primarily involved in either plant or microbial sys-
tems and do not constitute meaningful pathways in
chordates although orthologous proteins to some of the
components to these pathways do exist in chordates, but
may have different functions. RNA polymerase is a
highly-conserved protein found throughout all domains
of life, and therefore is unsurprising that the pathway for
RNA polymerase would be under-represented for func-
tional shifts within chordate species.

Another interesting question which was generated
from structural elements contained in TAED was if
some functional protein domains are more likely to ex-
perience elevated rates of evolution compared to others.
To determine if this is true a systematic search was per-
formed to determine what functional domain topologies
are enriched within lineages in TAED that have signals
for functional change (Table 4). Functional domains
were annotated from the CATH database which assigns
each domain a CATH classification. Annotations for this
analysis looked at the topology level as it contains a wide
array of functional domain annotations. The most over-
represented domain/fold within TAED was the Ross-
mann fold which constituted approximately a quarter of
all lineages in TAED with dN/dS > 1 that could map to a
domain (the analysis did normalize for abundance in the
database). The Rossmann fold is a common fold
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Table 2 Pathways present in lineages under positive selection
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Over-Represented KEGG Pathways TAED

KEGG Pathway Mapped Lineages Lineages Under Uncorrected FDR Bonferroni
Under Positive Positive Selection P-value P-value P-value
Selection Mapped
Metabolic pathways 7.63% 5.73% < 0.0001 < 0.0001 < 0.0001
Olfactory transduction 12.25% 267% < 0.0001 < 0.0001 < 0.0001
Biosynthesis of secondary metabolites 7.85% 1.90% < 0.0001 < 0.0001 < 0.0001
Biosynthesis of antibiotics 7.96% 1.11% < 0.0001 < 0.0001 < 0.0001
Neuroactive ligand-receptor interaction 6.45% 1.05% < 0.0001 < 0.0001 < 0.0001
Microbial metabolism in diverse environments 7.86% 0.85% < 00001 < 0.0001 < 0.0001
Protein processing in endoplasmic reticulum 6.97% 0.72% < 0.0001 < 0.0001 < 0.0001
Purine metabolism 6.63% 0.69% < 0.0001 < 0.0001 < 0.0001
Herpes simplex infection 6.18% 0.68% 0.0047 00128 1.0000
Carbon metabolism 8.63% 0.62% < 0.0001 < 0.0001 < 0.0001
RNA transport 6.45% 0.59% < 0.0001 < 0.0001 0.0056
Influenza A 6.74% 0.59% < 0.0001 < 0.0001 < 0.0001
Fluid shear stress and atherosclerosis 6.21% 0.54% 0.0061 0016 1.0000
Lysosome 6.72% 0.52% < 0.0001 < 0.0001 < 0.0001
Glycerophospholipid metabolism 7.61% 0.49% < 0.0001 < 0.0001 < 0.0001
Non-alcoholic fatty liver disease (NAFLD) 6.19% 0.47% 0.0128 0.0325 1.0000
Pancreatic secretion 8.86% 0.43% < 0.0001 < 0.0001 < 0.0001
Peroxisome 737% 0.42% < 0.0001 < 0.0001 < 0.0001
Toxoplasmosis 6.50% 041% 0.0001 0.0003 0.0341
Phosphatidylinositol signaling system 6.70% 041% < 0.0001 < 0.0001 0.0004
Glycerolipid metabolism 10.21% 0.39% < 0.0001 < 0.0001 < 0.0001
Drug metabolism - cytochrome P450 12.03% 0.39% < 0.0001 < 0.0001 < 0.0001
Th17 cell differentiation 6.38% 0.38% 0.0013 0.0039 0.4944
Valine_ leucine and isoleucine degradation 11.00% 0.38% < 0.0001 < 0.0001 < 0.0001
Chemical carcinogenesis 9.32% 0.38% < 0.001 < 0.0001 < 0.0001

The top 25 over-represented KEGG pathways with the highest % of lineages under positive selection mapping to a pathway. All pathways were significant at the
0.05 level after correction with the false discovery rate (FDR). Bold numbers indicate not significant at the 0.05 level. Lineages with dN/dS > 1 considered under

positive selection

comprised of a b-a-b-a-b (b — beta sheet, a — alpha
helix) subunit motif and is commonly found within
nucleotide-binding proteins [63]. Proteins that include
this fold type include kinases, guanine nucleotide bind-
ing proteins (G proteins), proteins that bind cyclic ad-
enosine monophosphate (cAMP), and NAD(P)-binding
proteins [31]. These proteins are abundant within a cell
and therefore proteins in which these domains reside are
likely candidates for directional selection. However due
to the nature and importance of nucleotide binding, it is
unlikely that the Rossmann fold is under selection, but
other domains within the same protein are as this do-
main is likely under strong negative constraint unless
there are selective pressures on binding affinity or speci-
ficity. More structural analyses of the lineages under se-
lection that contain the Rossmann fold would be
warranted to examine this in more detail. The second

most over represented domain topology was the Jelly
Rolls fold which a subset of the beta-barrels superfamily.
This fold type is composed of 8 beta-sheets which fold
into a roll shape [1]. These folds are commonly found in
viral capsid proteins [64]. It is possible that since these
folds are commonly found in viral proteins that they
evolve quickly and are prone to high mutation rates.
This would suggest that protein families which contain
this domain would be over-represented. The third most
over-represented domain topology was TIM barrel folds.
These are very common folds found with proteins that
share alpha-beta structures. The TIM barrel folds are
known to be highly promiscuous in sequence with many
different sequences able to generate the TIM barrel fold.
Therefore, there is biophysical flexibility for amino acids
within these domains to be substituted while still main-
taining the same domain structure [82]. These folds are
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Table 3 Pathways absent in lineages under positive selection
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Under-Represented KEGG pathways TAED

KEGG Pathway Mapped Lineages Lineages Under Uncorrected FDR Bonferroni
Under Positive Positive Selection P-value P-value P-value
Selection Mapped
Zeatin biosynthesis 0.53% < 0.01% 0.0001 0.0006 0.0562
D-Arginine and D-ornithine metabolism 1.12% < 001% 0.0016 0.0056 0.5896
Penicillin and cephalosporin biosynthesis 1.12% < 001% 0.0016 0.0056 0.5896
Indole alkaloid biosynthesis 0.89% < 001% < 0.0001 < 0.0001 0.0011
Bacterial secretion system 1.40% < 0.01% 0.0013 0.0047 0.4768
Toluene degradation 2.53% 0.01% 00138 0.0422 1.0000
Fluorobenzoate degradation 2.53% 0.01% 0.0138 0.0422 1.0000
Chlorocyclohexane and chlorobenzene degradation 2.53% 0.01% 0.0138 0.0422 1.0000
Styrene degradation 1.37% 0.01% < 0.0001 < 0.0001 < 0.0001
Tropane_ piperidine and pyridine alkaloid biosynthesis 3.25% 0.02% 0.0014 0.0052 0.5283
Cyanoamino acid metabolism 4.07% 0.06% 0.0023 0.0080 0.8550
Maturity onset diabetes of the young 4.11% 0.08% 0.0004 00014 0.1353
Phototransduction - fly 1.64% 0.09% < 0.0001 < 0.0001 < 0.0001
MAPK signaling pathway - plant 4.42% 0.11% 0.0014 0.0052 0.5399
Glycosaminoglycan biosynthesis - keratan sulfate 351% 0.11% < 0.0001 < 0.0001 < 0.0001
Glycosaminoglycan biosynthesis - heparan sulfate 4.06% 0.11% < 0.0001 0.0001 0.0061
/ heparin
Thyroid cancer 2.78% 0.12% < 0.0001 < 0.0001 < 0.0001
Mannose type O-glycan biosynthesis 4.56% 0.15% 0.0010 0.0037 0.3723
RNA polymerase 2.96% 0.15% < 0.0001 < 0.0001 < 0.0001
Glycosaminoglycan biosynthesis - chondroitin sulfate 4.95% 0.16% 0.0171 0.0506 1.0000
/ dermatan sulfate
Phototransduction 3.79% 0.17% < 0.0001 < 0.0001 < 0.0001
Nicotine addiction 4.07% 0.21% < 0.0001 < 0.0001 < 0.0001
Collecting duct acid secretion 5.06% 0.22% 0.0158 0.0472 1.0000
Pathogenic Escherichia coli infection 3.61% 0.23% < 0.0001 < 0.0001 < 0.0001
Hedgehog signaling pathway - fly 3.88% 0.23% < 0.0001 < 0.0001 < 0.0001

The KEGG pathways with the lowest % of lineages under positive selection mapping to a pathway. All pathways were significant at the 0.05 level after correction
with the false discovery rate (FDR). Bold numbers indicate not significant at the 0.05 level. Lineages with dN/dS > 1 considered under positive selection

in some cases known over longer evolutionary periods as
folds that are structurally adaptable and evolve under re-
laxed selective constraint [17, 27, 45], consistent with
their observation here in divergence among closely re-
lated species.

From the list of the top under-represented domain top-
ologies (Table 5), two of the most under-represented do-
mains were derived from the SMAD3 (mothers against
decapentaplegic homolog 3) protein (smad3 chain A and
Smad anchor for receptor activation chain B). The SMAD3
protein is involved in the signal trafficking of TGE-f which
plays an important role in cell growth and death. This pro-
tein structure is known to contain two different domains, a
DNA-binding domain and a protein-protein interacting do-
main. These two domains have been shown to be

conserved across many species and play an essential role in
the function of SMAD proteins [52, 53]. Accordingly, it is
expected that these domains would be very limited in the
rate at which they evolve and that they would evolve mostly
under strong negative selection. Another interesting protein
domain that was under-represented within the database
was the fold for cAMP-dependent protein kinase. The pri-
mary enzyme which contains this domain is protein kinase
A (PKA) which is involved in many different cellular path-
ways and plays a role in cell growth and differentiation, sig-
naling, and migration [21]. As a central hub protein within
a protein interaction network, it would be expected that
this would be highly negatively constrained [58] and there-
fore domains that are essential to this protein are also
under strong negative selection.
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Table 4 Domains present in lineages under positive selection
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Over-Represented CATH Domain Topologies in TAED

CATH domain topology Mapped Lineages Lineages Under Uncorrected FDR Bonferroni
Under Positive Positive Selection P-value P-value P-value
Selection Mapped
Rossmann fold 7.35% 25.55% < 0.0001 < 0.0001 < 0.0001
Jelly Rolls 7.30% 4.43% < 0.0001 < 0.0001 0.0013
Phosphorylase Kinase domain 1 9.51% 3.87% < 0.0001 < 0.0001 < 0.0001
TIM Barrel 7.52% 3.59% < 0.0001 < 0.0001 < 0.0001
Thrombin subunit H 11.13% 2.90% < 0.0001 < 0.0001 < 0.0001
Ubiquitin-like (UB roll) 7.06% 2.50% 0.0143 0.0355 1.0000
Glutaredoxin 9.53% 2.39% < 0.0001 < 0.0001 < 0.0001
Collagenase (Catalytic Domain) 9.70% 222% < 0.0001 < 0.0001 < 0.0001
DNA polymerase domain 1 8.26% 2.12% < 0.0001 < 0.0001 < 0.0001
OB fold (Dihydrolipoamide Acetyltransferase 7.32% 1.79% 0.0013 0.0039 0.8113
E2P)
Methane Monooxygenase Hydroxylase Chain 8.24% 1.55% < 0.0001 < 0.0001 < 0.0001
G domain 1
Cytochrome p450 9.11% 1.51% < 0.0001 < 0.0001 < 0.0001
Helicase Ruva Protein domain 3 9.86% 1.21% < 0.0001 < 0.0001 < 0.0001
Laminin 8.56% 1.03% < 0.0001 < 0.0001 < 0.0001
Glutathione S-transferase Yfyf (Class Pi) Chain 10.79% 1.01% < 0.0001 < 0.0001 < 0.0001
A domain 2
Kinesin 847% 1.00% < 0.0001 < 0.0001 < 0.0001
Glycosyltransferase 12.75% 0.92% < 0.0001 < 0.0001 < 0.0001
FAD/NAD(P)-binding domain 10.68% 0.87% < 0.0001 < 0.0001 < 0.0001
2-enoyl-CoA Hydratase Chain A domain 1 14.07% 0.80% < 0.0001 < 0.0001 < 0.0001
Erythroid Transcription Factor GATA-1 Chain A 9.34% 0.72% < 0.0001 < 0.0001 < 0.0001
Cyclin A domain 1 10.32% 0.71% < 0.0001 < 0.0001 < 0.0001
Alkaline Phosphatase subunit A 9.96% 0.69% < 0.0001 < 0.0001 < 0.0001
Butyryl-CoA Dehydrogenase subunit A domain 3 9.13% 0.68% < 0.0001 < 0.0001 < 0.0001
Carbonic Anhydrase |l 14.52% 0.66% < 0.0001 < 0.0001 < 0.0001

Enrichment analysis of CATH domain topologies in TAED showing CATH domains topologies present in highest % of lineages under positive selection. All
pathways were significant at the 0.05 level after correction with the false discovery rate (FDR). Bold numbers indicate not significant at the 0.05 level. Lineages

with dN/dS > 1 considered under positive selection

Duplication analysis

One important element of lineage-specific evolution is
the expansion and contraction of genes within the gen-
ome. As genes duplicate they may undergo different evo-
lutionary pressures and be either neofunctionalized,
subfunctionalized, or pseudogenize [42]. Following the
completion of the TAED database, it was interesting to
determine if some gene families are more likely to
undergo gene duplication events than others and what
pathways these genes reside in. Are some pathways more
flexible to gene duplication and dosage balance con-
straints [76] than others? A systematic examination of
TAED gene family duplications was performed by scal-
ing the number of duplication events detected within a
family by the amount of time over which the family

evolved. Three different proxies for time were used in
the analysis, the maximum phylogenetic tree length
measured in substitutions per site (Additional file 1:
Figure S1), the median tree length measured in substitu-
tions per site (Additional file 1: Figure S2), and the rela-
tive age of each family found by mapping the root of
each gene tree to the chordate species tree (Fig. 1). Each
analysis determined that there is a positive correlation
between the number of duplications within the family
and the amount of time over which the family evolved.
Outliers from the regression line identified families that
were highly duplicated over a shortened timespan. These
families are also those with a high rate of duplication
compared to other gene families. Table 6 shows the
Cook’s distance calculations for the analysis using family
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Under-Represented CATH Domain Topologies in TAED

CATH domain topology Mapped Lineages Lineages Under Uncorrected FDR Bonferroni
Under Positive Positive Selection P-value P-value P-value
Selection Mapped
Smad3 Chain A 0.08% < 0.01% < 0.0001 < 0.0001 < 0.0001
A middle domain of Talin 1 0.24% < 0.01% < 0.0001 < 0.0001 < 0.0001
Endonuclease - Pi-scei_ Chain A domain 1 0.27% < 0.01% < 0.0001 < 0.0001 < 0.0001
Undecaprenyl pyrophosphate synthetase 0.33% < 0.01% < 0.0001 < 0.0001 < 0.0001
Neurophysin Il Chain A 0.38% < 001% < 0.0001 < 0.0001 0.0002
Major Prion Protein 043% < 0.01% < 0.0001 < 0.0001 0.0010
Archaeosine Trna-guanine Transglycosylase Chain: 0.45% < 001% < 0.0001 < 0.0001 0.0023
A domain 4
Translation Eukaryotic Peptide Chain Release 0.52% < 001% < 0.0001 0.0002 0.0140
Factor Subunit 1 Chain A
PWI domain 0.53% < 001% < 0.0001 0.0003 0.0206
copper amine oxidase-like fold 0.57% < 0.01% 0.0001 0.0005 0.0472
ERH-like fold 0.58% < 001% 0.0001 0.0007 0.0608
Smad Anchor For Receptor Activation Chain B 0.61% < 001% 0.0002 0.0010 0.1011
protein kinase ck2 holoenzyme chain C domain 1 0.61% < 001% 0.0002 0.0010 0.1011
Elongin C Chain C domain 1 0.65% < 001% 0.0003 0.0017 0.1785
Conserved hypothetical protein from pyrococcus 0.90% < 001% 0.0042 0.0195 1.0000
furiosus pfu- 392,566-001 ParB domain
titin filament fold 0.92% < 0.01% 0.0048 0.0214 1.0000
Transcription Regulator spollAA 0.98% < 001% 0.0073 0.0311 1.0000
cAMP-dependent Protein Kinase Chain A 0.36% < 0.01% < 0.0001 < 0.0001 < 0.0001
Inorganic Pyrophosphatase 0.45% < 001% < 0.0001 < 0.0001 < 0.0001
subunit ¢ (vma5p) of the yeast v-atpase domain 2 0.51% < 0.01% < 0.0001 < 0.0001 < 0.0001
Deoxyuridine 5-Triphosphate Nucleotidohydrolase_ 0.88% < 001% < 0.0001 0.0002 0.0135
Chain A
50s Ribosomal Protein L19e Chain O domain 1 0.96% < 001% 0.0001 0.0005 0.0451
Glutathione Synthetase Chain A domain 3 1.15% < 001% 0.0006 0.0031 0.3377
Deoxyhypusine Synthase 1.18% < 001% 0.0007 0.0037 0.4263
DNA Excision Repair Uvrb Chain A 1.29% < 0.01% 0.0017 0.0084 1.0000

Enrichment analysis of CATH domain topologies in TAED showing CATH domains topologies present in lowest % of lineages under positive selection. All pathways
were significant at the 0.05 level after correction with the false discovery rate (FDR). Bold numbers indicate not significant at the 0.05 level. Lineages with dN/dS >

1 considered under positive selection

node age as a proxy for time and the corresponding
gene families that were calculated to be furthest from
the regression line. Cook’s distances for the maximum
tree length and median tree length are found in Add-
itional file 1: Tables S1 and S2, respectively. From the
families with the largest Cook’s distance the number
of times a highly duplicable family mapped to a give
KEGG pathways was counted (Table 7). Pathway
counts for the maximum tree length and median tree
lengths were also calculated (Additional file 1: Tables
S3 and S4).

The data shows metabolic pathways and olfactory re-
ceptors are consistently the top pathways where duplica-
tions occur. Olfactory receptors are known to be the

largest expanded gene family [26], aligning our study
with the currently known data.

Additionally, the top 25 most highly duplicable gene
families included serine/threonine-protein phosphatase
2A 56 kDa regulatory subunit epsilon isoform, abl inter-
actor 1 - partial, aldolase B, guanine nucleotide-binding
protein G(i) subunit alpha-1 - partial, and myosin regu-
latory light polypeptide 9. A further examination of the
structural components and pathway components of
these families may explain why they are more tolerable
to duplication events and the mechanisms that are caus-
ing large gene family expansions. Interestingly, many of
the most duplicated gene families mapped to KEGG
pathways involved in immunity (HTLV-I infection;
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Herpes simplex infection; Epstein-Barr virus infection;
Influenza A) and cancer (Pathways in cancer; Proteogly-
cans in cancer; Transcriptional misregulation in cancer;
Viral carcinogenesis), possibly suggesting that duplica-
tion plays a strong role in this arms race.

Protein structure based analysis

The combination of gene families and information from
the Protein Databank allows examination of how selec-
tion acts on a protein structural level. Gene families with
associated protein structures were collated and aligned
to the PDB alongside maximum likelihood ancestral se-
quences calculated by PAML.

The resulting profile is significantly different than the
profile of non-substituted sites in the background on
those lineages (Table 8). For both positively and nega-
tively selected lineages, fewer substituted sites are buried
relative to all sites on the protein; this is true both look-
ing at all sites, and sites of any specific secondary struc-
ture, except for [5-Sheet (p =0.0361) and B-Bridge (p =
0.0081) sites on positively selected lineages, which was
not significant after a multiple testing correction. The
result in B-Bridge sites may simply be a matter of lower
power due to the relatively small number of residues
compared to most other secondary structures. [3-Sheet
sites are the most commonly substituted buried site on
positive lineages (14.2744% vs 13.1684% for all helices),
though a-Helix sites, as well as helices in general, are
more common amongst all sites (15.9368 and 17.6017%
vs 14.5822% for [5-Sheet).

Negatively selected lineages consistently have an in-
crease in the prevalence of exposed residues across all
secondary structures, but this is not universal for

positively selected lineages. a-Helix sites are the most
frequent in the dataset and show no change in preva-
lence of exposed sites compared to non-substituted sites
under positive selection. 3;9 Helix sites show an overall
increase in substitution rates in negatively selected line-
ages, unlike other helixes but consistent with bends,
turns and coil sites. This is likely linked to their lower
stability and higher proportion of exposed vs buried
sites.

In terms of secondary structure when both exposed
and buried regions are considered together, substitutions
are more likely to occur across less structured regions
(Turns, Bends, and Coil areas) that are more likely to be
exposed than buried on both positively and negatively
selected lineages, but also 5-Sheet sites on positively se-
lected lineages and 3;, Helix sites on negatively selected
lineages. The changes in prevalence for each secondary
structure is strongly related to the buried/exposed ratio
of their own residues (particularly in negatively selected
sites), so solvent exposure, while a significant factor, is
not the only one. This corresponds with observations
seen in other studies ([18] and studies cited therein).

The lack of significant change in f-Sheet buried
sites on positively selected lineages, suggests that
positive selection is freer to act on it than comparable
a-Helix sites, which have a considerable drop in fre-
quency amongst substituted (13.1684%) rather than all
(17.6017%) sites. The B-Sheet site changes also point
at differences between positive and negative selection.
Unlike in positively selected lineages, in negatively se-
lected lineages, a smaller proportion of substituted
sites are buried S-Sheet sites compared to all sites.
This suggests the difference on positively selected
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Table 6 TAED gene families with many duplications based on family node age from summed branch lengths

Highly duplicable gene families - Family Age

Cook's Distance Family Description Family Age Number of Duplications
0.0599 serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform 684 729
0.0429 receptor-type tyrosine-protein phosphatase F isoform X1 684 632
0.0364 guanine nucleotide-binding protein G(i) subunit alpha-1, partial 684 590
0.0358 peptidyl-prolyl cis-trans isomerase A-like 684 586
0.0338 casein kinase | isoform gamma-2 684 572
0.0328 transcription factor AP-2-alpha isoform X1 684 565
0.0310 protein argonaute-3 684 552
0.0307 serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform 684 550
0.0303 casein kinase | isoform epsilon 684 547
0.0300 cytoplasmic polyadenylation element-binding protein 4 isoform X1 684 545
0.0283 late histone H2B.L4-like 684 532
0.0266 L-lactate dehydrogenase B chain-like 615 566
0.0264 mitogen-activated protein kinase 11 684 517
0.0262 septin-14 684 516
0.0257 serine/threonine-protein phosphatase 2B catalytic subunit beta isoform isoform X1 684 512
0.0247 alpha-enolase 684 504
0.0247 mitogen-activated protein kinase 10 684 504
0.0240 pre-B-cell leukemia transcription factor 1 684 498
0.0229 heat shock protein HSP 90-beta-like 684 489
0.0229 potassium voltage-gated channel beta subunit 684 489
0.0227 polyadenylate-binding protein 1 615 529
0.0209 protein yippee-like 2 684 471
0.0207 sodium/potassium-transporting ATPase subunit alpha-4 isoform X1 684 469
0.0202 myosin regulatory light polypeptide 9 684 465
0.0200 aldolase B 684 463

lineages is not simply due to lower fragility in -Sheet
structure, but an active role for 3-Sheet internal struc-
ture in driving evolution of new functionality. It
should also be considered that, in general, positively
selected lineages have fewer a-Helix (30.1108% vs
32.7617%) and more [-Sheet (21.7820% vs 19.8385%)
sites compared to negatively selected lineages. Since,
as discussed earlier, certain gene families and path-
ways are under more frequent positive selection than
others, the lower selective constraint on [-Sheet sites
has a long term impact on protein structure.

B-Bridge sites did not show a reduction in prevalence
for substitutions on positively selected lineages. As these
sites are used to hydrogen bond, particularly between S-
sheets, the most likely source for these substitutions is to
allow for protein restructuring. Purely compensatory
driven changes are a less likely explanation, as negatively
selected lineages where they are more likely than posi-
tively selected ones show a reduction in S-Bridge preva-
lence amongst substituted sites.

It should be noted that the same PDB structure is as-
sumed to be applicable to all sequences in a gene family.
As sequence pairs with divergence >20% were split into
separate families and as the median pairwise comparison
among family members was 85% identity, the slow diver-
gence of structural RMSD makes this a reasonable ap-
proximation [36]. Over longer evolutionary times [68,
69] and especially after lateral transfer events [60], re-
peated regions are known to lead to structural
divergence.

Gene family analysis of ornithine decarboxylase

Lastly TAED can be a valuable resource in understand-
ing the lineage-specific evolution of individual gene fam-
ilies. To examine this, one gene family was selected
based on criteria that it contained KEGG pathway map-
pings and structural information. The gene family that
was analyzed encoded a putative ornithine decarboxyl-
ase. Ornithine decarboxylase is responsible for the de-
carboxylation of L-ornithine to putrescine. L-ornithine is
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Table 7 TAED KEGG pathways based on duplication analysis
using family node age from summed branch lengths

KEGG Pathway mappings from high duplicable TAED gene families —
Family Node Age

KEGG Pathway

Number of mapping instances from
highly duplicable families

Metabolic pathways 558
Olfactory transduction 198
Pathways in cancer 171
PI3K-Akt signaling pathway 130
Endocytosis 130
HTLV-I infection 122
MAPK signaling pathway 121
Proteoglycans in cancer 106
Rap1 signaling pathway 98
Neuroactive ligand-receptor 96
interaction

Ras signaling pathway 93
Regulation of actin cytoskeleton 20
Epstein-Barr virus infection 87
Purine metabolism 86
RNA transport 85
Transcriptional misregulation in 83
cancer

Protein processing in endoplasmic 81

reticulum

Axon guidance 80
mTOR signaling pathway 79
Focal adhesion 79
Viral carcinogenesis 78
Herpes simplex infection 77
cAMP signaling pathway 77
Ribosome 75
Cytokine-cytokine receptor 72
interaction

a key component to the urea cycle and the decarboxyl-
ation of L-ornithine signals the irreversible reaction of
forming putrescine which is the first step in poly-
amine synthesis [59]. Polyamines are polycations able
to bind negatively charged molecules such as DNA
and RNA. Three primary polyamines are important
regulators of the MAPK pathway which plays a role
in cell proliferation: putrescine, spermidine, and
spermine. Spermidine is produced from putrescine
which can further impact apoptosis [50]. As these
molecules play an important role in cell growth and
cellular death, the committed step in the synthesis of
polyamines would be hypothesized to be evolving
under strong negative constraint.
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An analysis of the TAED gene family showed six line-
ages with dN/dS > 1. These rates varied from a dN/dS
rate of 2.0096 to 1.5451 (Table 9). Directional selection
was found to have occurred on the lineage leading to
Afrotherian mammals which are primarily localized to
the continent of Africa and include: moles, elephants,
manatees, and aardvarks. Other lineages with elevated
rates of evolution were found for both Macaca mulatta
(Rhesus macaque) and Dasypus novemcinctus (Nine-
banded armadillo). Lastly, three different lineages involved
cetacean species which may reflect the evolutionary pres-
sures of moving from a terrestrial to an aquatic lifestyle. It
was found that these instances of positive selection oc-
curred following a duplication event, suggesting that the
ornithine decarboxylase duplicate gene may have been
under relaxed selective constraint following the duplica-
tion and not under the same strong constraints imposed
by the polyamine synthesis pathway (Fig. 2). Although,
since this protein was maintained and not lost over the 34
MYA of divergence between Orcinus orca (Killer whale)
and Balaenoptera acutorostrata scammoni (Minke whale),
it is likely that it has retained some functionality within
these organisms.

To better understand the molecular mechanisms asso-
ciated with the increased rate of evolution detected
within the evolution of ornithine decarboxylase in ceta-
ceans an examination of the ancestral changes mapped
to the extant version of human ornithine decarboxylase
was performed. For the changes on the branch Cetacea,
it was seen that a nonsynonymous substitution occurred
at site 238 with an asparagine substituting to an aspartic
acid (N238D). This substitution is situated one residue
from site 237 which is a known pyridoxal phosphate
binding site [22] (Fig. 3. The decarboxylation of L-
ornithine to putrescine is known to be a pyridoxal 5'-
phosphate dependent reaction [37] and therefore
changes to this site in the protein may impact the rate
or ability to catalyze L-ornithine. The N238D substitu-
tion caused a substitution for an uncharged amino acid
to be replaced by a negatively charged amino acid which
could potentially impact the pyridoxal phosphate bind-
ing site (Fig. 3).

The active site of ornithine decarboxylase in humans
is at residue 357 (Cystine - 357) [3]. While no substitu-
tions were found at the active site, four different nonsy-
nonymous substitutions were localized on the beta-
sheets surrounding the active site. The substitutions
P368Q, R375C, 1376M, and R379H were all proximally
close to the active site and may have been involved in re-
modeling of the active site for the cetacean duplicate of
ornithine decarboxylase (Fig. 4). These mutations have
impacted the ability of the protein in several ways, by ei-
ther helping to stabilize the active site, change the speci-
ficity of the binding pocket, change the rate of the
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Table 8 Sitewise substitution rates in TAED lineages sorted by selective pressure and structural features

Positively Selected Lineages (dN/dS > 1)

Negatively Selected Lineages (dN/dS < 0.5)

Substituted Sites p All Sites Substituted Sites p All Sites
Helix 30.2826% <0.0001 34.0597% 35.2377% <0.0001 36.6327%
Exposed 17.1142% 0.0002 16.4580% 20.2511% <0.0001 17.3397%
Buried 13.1684% <0.0001 17.6017% 14.9866% <0.0001 19.2929%
a-Helix 26.1346% <0.0001 30.1108% 31.1229% <0.0001 32.7617%
Exposed 14.3764% 0.1659 14.1740% 17.5250% <0.0001 15.1730%
Buried 11.7582% <0.0001 15.9368% 13.5979% <0.0001 17.5887%
340 Helix 3.4956% 0.0098 3.3039% 35115% <0.0001 3.2213%
Exposed 2.3597% <0.0001 2.0045% 24163% <0.0001 1.8907%
Buried 1.1359% 0.0004 1.2994% 1.0952% <0.0001 1.3306%
m-Helix 0.6524% 0.8047 0.6449% 0.6033% <0.0001 0.6497%
Exposed 0.3780% <0.0001 0.2794% 0.3098% <0.0001 0.2761%
Buried 0.2743% 0.0005 0.3655% 0.2935% <0.0001 0.3736%
B-Sheet 23.2104% <0.0001 21.7820% 18.2981% <0.0001 19.8385%
Exposed 8.9360% <0.0001 7.1998% 7.3255% <0.0001 6.2661%
Buried 14.2744% 0.0361 14.5822% 10.9726% <0.0001 13.5724%
B-Bridge 1.1095% 0.7913 1.0984% 0.9888% <0.0001 1.0382%
Exposed 0.5644% 0.0004 0.4641% 0.4876% <0.0001 0.4194%
Buried 0.5451% 0.0081 0.6343% 0.5012% <0.0001 0.6188%
Turn 12.0729% <0.0001 11.0540% 123561% <0.0001 11.0859%
Exposed 9.7554% <0.0001 8.3283% 9.9588% <0.0001 8.1517%
Buried 23175% <0.0001 2.7257% 2.3973% <0.0001 2.9342%
Bend 10.4763% <0.0001 9.7416% 10.2628% <0.0001 9.698%%
Exposed 79179% <0.0001 6.8552% 7.8004% <0.0001 6.6547%
Buried 2.5584% <0.0001 2.8864% 24624% <0.0001 3.0443%
Coil 22.8482% 0.0006 22.2643% 22.8565% <0.0001 21.7058%
Exposed 152151% <0.0001 13.2976% 15.3522% <0.0001 12.7858%
Buried 76331% <0.0001 8.9667% 7.5044% <0.0001 8.9201%
Buried (All Sites) 40.4969% <0.0001 47.3970% 38.8245% <0.0001 48.3826%
Exposed (All Sites) 59.5031% <0.0001 52.6030% 61.1755% <0.0001 51.6174%

The distribution of substituted sites by secondary structure and solvent accessibility binned by the nautre of selection are shown. Bolded items are significant (p <
0.00167 after multiple comparisons correction) based on parametric bootstrapping, n = 20000

reaction, or cause the active site to become inert. Fur-
ther experimental validation would be necessary to
understand how the N238D substitution and the puta-
tive remodeling of the active site may impact the func-
tion of the protein. However, evidence from TAED does
suggest that cetacean ornithine decarboxylase has under-
gone functional shifts in several different sites which
may impact the efficacy of the decarboxylation of L-
ornithine to putrescine. Why this enzyme would be
under selection within Cetaceans is also an unanswered
question, but understanding the lineage-specific evolu-
tion of ornithine decarboxylase may help to decipher the
mechanistic reasons for how cetaceans were able to re-
adapt to life in the water.

Discussion

Understanding the mechanistic reasons that species di-
verge is of central importance to the field of molecular
evolution. Gaining insight into how individual proteins
evolve in context of the pathways in which they occur
may help elucidate the underlying molecular mechanisms
of speciation. Placing evolutionary events in the context of
a species tree allows the interpretation of understanding
how selective forces have varied across species. Here we
have presented findings from The Adaptive Evolution
Database (TAED) that have attempted to characterize the
lineage-specific evolution of chordates. We know that se-
lection can act on multiple levels within an organism,
from the level of individual nucleotides to phenotypic
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Fig. 2 Gene tree for cetacean lineages of ornithine decarboxylase — Presented here is the gene tree taken from the TAED Tree Viewer for the
TAED gene family 557. Lineages not associated with Cetaceans are collapsed. Internal nodes labeled with a while box are duplication events
found within the tree. Nodes with solid grey dots represent speciation events. Nodes labeled in black indicate a leaf node. Lineages labeled in
red have a dN/dS > 1 and the numbers along each branch are the associated dN/dS value for the given branch. Image was generated from the
TAED Tree Viewer

Table 9 Lineages with dN/dS > 1 in Ornithine decarboxylase

family
Lineages with dN/dS > 1 in TAED family for Ornithine decarboxylase
dN/dS Branch Start  Branch End Mapped Branches
Value
2.0096 Eutheria Afrotheria Afrotheria
1.9244 Dasypus Dasypus Dasypus novemcinctus
novemcinctus novemcinctus
19712 Cetacea Orcinus orca Ocinus orca, Orcinus,
Delphinidae, Odontoceti
17717 Cetacea Balaenopter Balaenoptera acutorostrata
acutorostrata  scammoni, Balaenoptera
scammoni acutorostrata, Balaenoptera,
Balaenopteridae, Mysticeti
11272 Cetacea Cetacea Cetacea
1.5451 Macaca Macaca Macaca mulatta
mulatta

traits in a population. We therefore have examined the ef-
fects of directional selection at the domain level, gene
level, and pathway level to better understand the dynamics
of lineage-specific evolution. Examination of high level
trends within TAED have confirmed that some pathways
including those that are related to metabolism, immunity,
and cell signaling have been repeated targets for functional
change and may play important roles in species diver-
gence. Additionally, we have shown that some protein
families have undergone many duplication events which
have impacted the evolutionary constraints of the dupli-
cate pairs. These duplicated genes may evolve to new
functions within the genome and develop new links within
pathways. Tools developed on TAED can be utilized to
find gene families that have undergone instances of adap-
tive evolution and help to propose hypotheses for how
these genes have evolved.
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Fig. 3 Pyridoxal phosphate binding site for ornithine decarboxylase along the lineage of Cetacea — A protein homology model of the ancestral
protein leading to Cetacea was created. Template for the model was from human ornithine decarboxylase (PDB:2000; chain A). Ancestral changes
occurring on the lineage for Cetacea have been mapped to the model, sites colored in red indicate nonsynonymous changes in the ancestral protein,
sites colored in dark grey are synonymous site changes. The site indicated in green is the pyridoxal phosphate binding site 238. The site adjacent to
the binding site is the substitution N238D found on the ancestral lineage. Image was generated from Swiss-PdbViewer

Fig. 4 Active site remodeling for ornithine decarboxylase along the lineage of Cetacea — A protein homology model of the ancestral protein leading
to Cetacea was created. Template for the model was from human ornithine decarboxylase (PDB:2000; chain A). Ancestral changes occurring on the
lineage for Cetacea have been mapped to the model, sites colored in red indicate nonsynonymous changes in the ancestral protein, sites colored in
dark grey are synonymous site changes. The site indicated in gold is the active site cysteine-357. Remodeling of the active site can be seen in the
changes P368Q, R375C, 1376M, and R379H which are positioned around the loop containing the active site
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Not all parts of a protein are under the same selective
constraints and residues located on the outside or sur-
face of a protein may be more likely to evolve, and
evolve at a different rate, than a residue which comprises
the hydrophobic core of the protein. Our comparison of
the solvent accessible surface area (SASA) and dN/dS
showed that this holds for both positively selected and
negatively selected lineages. It distinguishes differences
between the action of the two kinds of selection beyond
this by showing that while solvent accessibility is more
exclusively the primary driver of changes in the nature
of substituted sites on negatively selected lineages, posi-
tively selected lineages show relaxed selective constraint
on B-Sheet and strengthen constraints on a-Helix sites.

Additionally, the relationship between the energetics
of different substitutions and how they interplay with
dN/dS could be explored by comparing dN/dS to the
change in the change of free energy (AAG) of a protein
when different substitutions are introduced. Studies of
this nature have examined how the thermodynamics of a
protein influence the rate of dN/dS and how compensa-
tory substitutions affect protein stability [61, 70].
Current evolutionary tests do not consider epistatic rela-
tionships within proteins, treating each site as acting in-
dependently from a statistical perspective.

Further, it is known that when N, is large, selection is
more efficient and the chance of an allele being lost
from the population is small. However, when N, is small
the effects of genetic drift are greater and selection is less
efficient [49, 75]. As such selection has limited ability to
eliminate deleterious variants in chordates or fix advanta-
geous changes, as chordate species have low effective pop-
ulations sizes. Weber, et al. [80] found an unexpected
negative correlation between N, and dN/dS in bird popu-
lations, but found expected signals when considering the
magnitude of biophysical effects of changes [80, 81].

TAED as a tool and resource in detecting episodes of
lineage-specific evolution may also be useful in helping to
understand the differences between directional selection
and intra- and inter- molecular forces. Not all amino acid
substitutions are the direct result of directional selection
acting on a protein to functionally evolve. When physical
changes within a molecule do occur, corresponding com-
pensatory changes can occur which alleviate the deleteri-
ous effects of a mutation. These compensatory changes
ensure that the newly substituted amino acid becomes the
preferred amino acid for the residue in which it is located
[61, 70]. Using traditional approaches of dN/dS it is diffi-
cult to differentiate between directional selection and
compensatory changes as both aggregate across the
branch. However, by examining changes in a lineage-
specific context and determining when each substitution
occurred along the lineage, it may be possible to begin to
differentiate between these two processes.
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The secondary structure analysis raises questions
about the nature of the selective pressures on a protein-
structure level, and points to the need for further inves-
tigation of B-sheet, a-helix, and 3;¢ Helix structures and
their role in protein evolution in particular.

Conclusions

TAED is a useful tool for understanding lineage-specific
evolution and provides a source of data to develop fur-
ther hypothesis-based inquiries into the mechanisms
that drive diversification. In addition to providing an ex-
ample of lineage-specific evolution in cetaceans, this
work examined gene family evolution through the lenses
of protein structure, co-evolution in pathways, as well as
characterizing the duplication process within families. At
the structural level, the study utilized the database to
understand the differential patterns of amino acid substi-
tution, including filtering by secondary structure, in
comparing proteins under negative and positive selec-
tion. Overall, this work provides a further empirical win-
dow into the lineage-specific processes of evolution.

Methods

Database construction

The TAED database was constructed following the pipe-
line outlined in Hermansen et al. [33]. The pipeline in-
cludes generation of gene families from single-linkage
clustering of BLAST results from chordate genes found
on GenBank. A point accepted mutation (PAM) distance
threshold of 120 was used for gene family construction.
Gene families were refined for quality using an iterative
method controlling for pairwise percent identity (> 80%)
and the fraction of pairwise aligned gaps (< 10%). Gene
families where then aligned using MAFFT [41] and
phylogenetic trees were constructed using PhyML [30].
Gene tree — species tree reconciliation against the NCBI
chordate taxonomy was implemented to determine puta-
tive duplication events and gene tree roots using Soft-
ParsMap. Gene families were defined phylogenetically by
the species tree except in cases where alignment quality
prohibited this, as described here and in Hermansen
et al. [33] (see [4] for a recent discussion of gene family
construction methodology). Putative rates of evolution
were then calculated using the branches model from
PAML and dN/dS rates was computed. BLAST was then
performed on TAED gene families against the KEGG
database [40] to determine KEGG pathway relatedness
and against PDB [10] to determine protein structure for
each gene in TAED. All branches, including specifically
those found to have a dN/dS>1 (putatively evolving
under positive selection) were mapped to the corre-
sponding chordate species tree to determine along what
lineage the elevated rates of evolution occurred and
which proteins evolved rapidly on the same species tree
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lineage. Roots of all genes families were additionally
mapped to the chordates species tree. To determine the
approximate family root age for each gene family, infor-
mation from TimeTree [43] was collected and root ages
determined in MYA (millions of years ago). Domain
classification information was gathered from the CATH
database [71]. Putative functional annotations were
assigned to each gene family based on NCBI nomencla-
ture and KEGG pathway annotations when available.

Enrichment analysis

Over/under-represented KEGG pathway and domain
analyses were performed with a BLAST search against
the KEGG database of TAED gene families. KO numbers
were assigned to each individual protein in TAED that
contained a BLAST hit with an e-value <le™'°. This
threshold was set so that all putative hits would be the
result of orthologous descent instead of chance. The KO
number from the top BLAST result was assigned to each
TAED gene. KO numbers were then used to assess each
putative biological pathway in which the protein is
known to play a role. Over/under-representation of
these pathways was then calculated using Fisher’s Exact
test [23] and significance was estimated using an a-level
of 0.05. The resulting p-values were corrected for mul-
tiple testing by performing a false discovery rate (FDR)
analysis [8] with an FDR threshold of 0.05 and using a
Bonferroni correction [13]. The FDR calculation was
computed using the R statistical programming package
[62]. A similar method was used to determine the over/
under-representation of CATH domain topologies. The
topology level classification was used as it represented a
broad enough group that multiple topologies were found
throughout TAED.

Duplication analysis
For each gene family in TAED, the root node of the fam-
ily was mapped to its associated lineage on the chordate
species tree. Nodes were then given approximate dates
in MYA based on estimates from the TimeTree database
[43]. The number of duplication events that occurred in
each gene family was used as inferred by SoftParsMap
[9] through reconciliation with the NCBI taxonomy for
chordates. A linear regression was performed on the
resulting comparison between the family root node ages
and the number of duplication found within each gene
family. The Pearson’s r coefficient was calculated for the
resulting linear regression with a Pearson’s r = 0.59. Log
scaled transformations of the data did not yield a strong
regression coefficient.

Since families were sought that showed a high propen-
sity for duplicability in a short amount of time, families
that fell below the regression line were filtered out (Fig. 1).
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We also filtered out all families whose length was below
the 5th percentile, since evolutionary forces may not have
had time to act on families with so few substitutions. Out-
liers in the resulting set of families were detected using
Cook’s distance [20], which measures the change in re-
gression coefficients due to the removal of a data point,
and is often used as a proxy for the influence of that point.
Gene families were then sorted according to this distance
(Table 6). Finally, the top quartile of families was mea-
sured using this distance and the number of times they
occur in each KEGG pathway was counted (Table 7).

Additionally, to test how different proxies of time im-
pacted the duplication analysis, two additional proxies for
time were generated: the maximum tree length, and the
median tree length. The maximum tree length estimated
in substitutions per site was calculated for all gene tree
topologies by taking the maximal tree length from root to
leaf node for every TAED gene family as estimated by
PhyML. The median tree length was calculated in a simi-
lar manner by taking the median of all distances between
the root and leaf of the phylogenetic tree for each gene
family. Additional file 1: Figures S1 and S2 illustrate the
differences in the duplication distribution of the families
based on the change of the time component to the ana-
lysis. Each axis was of the analysis was given the trans-
formation y =1log (1+x) and the Pearson’s r coefficient
was calculated. The resulting best coefficients for both the
maximum tree length and the median tree were found
when both axes were log-transformed. Cook’s distance
was calculated for each proxy of time and the families with
pathways from the families with the largest Cook’s dis-
tance to the regression line were tabulated.

Protein structure based analysis

Protein information was determined from stored PDB
information associated with each gene family. To show
that sites in different locations and belonging to dif-
ferent structures evolve at different rates, DSSP [39]
values were used to ascertain the relative solvent ac-
cessibility (RSA) and secondary structure of individual
sites within the protein was obtained. While newer
and less approximate, but more computationally in-
tensive methods than DSSP are available, a pilot ana-
lysis suggested that DSSP and more computationally
intensive methods gave similar results for the pur-
poses of this study. Membrane proteins and multi-
mers were removed from the dataset based on
identifying information in the PDB data. Sites were
binned based on RSA using maximum surface areas
from Tien et al. [77]; sites with a ratio greater than
0.20 were marked as exposed and buried otherwise,
and then further categorized according to secondary
structure. PAML analysis was used to determine the
maximum likelihood ancestral sequence for each gene
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associated with a protein and the results controlled
for lineages with dN/dS>1 and lineages with a dN/
dS< 0.5. dN/dS values of 0 or between 0.5 and 1
were ignored, as were any sites that did not align
with the PDB sequence or were not one of the most
common 20 amino acids. To determine the signifi-
cance of the calculated values, two-tailed non-
parametric bootstrapping was performed. For each
lineage, simulated datasets of size matching the total
substituted residue count were generated, using the
distribution of all sites on the respective lineages as a
baseline.

Gene family analysis of ornithine decarboxylase

To demonstrate the application of lineage-specific ana-
lyses of evolution on specific gene families using TAED
data, a gene family was selected for analysis based on the
criteria that the gene family contained 3 or more lineages
with dN/dS >1 and it contained lineages that mapped to
KEGG pathways and to a PDB structure. Using these cri-
teria, the TAED gene family 554 (ornithine decarboxylase)
was selected for further examination of lineage-specific
evolution. dN/dS estimates of each lineage were taken
from the TAED database. A homology model was gener-
ated using Swiss-Model [11], with the automated build
method. The top template used in the homology model
was PDB entry 2000 chain A. Ancestral amino acids
were mapped to the model. Active site and binding site in-
formation was taken from the PDB website for the same
entry. Uniprot [7] data for ornithine decarboxylase was
also used to make inferences into important catalytic sites
within the molecule. Images of the homology model were
generated using Swiss-PdbViewer [29].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512862-020-1585-y.

Additional file 1: Figure S1. The logarithm of the maximum phylogenetic
tree length of TAED gene families, regressed against the logarithm of the
number of duplications in a given family. Maximum length consists of the
maximum cumulative branch length from the corresponding phylogenetic trees,
considering all paths from root to tips. A log-scale was chosen since it resulted in
a higher correlation coefficient. Figure S2. The logarithm of the median phylo-
genetic tree length of TAED gene families, regressed against the logarithm of the
number of duplications in a given family. Meidan length consists of the median
cumulative branch length from the corresponding phylogenetic trees, consider-
ing all paths from root to tips. A log-scale was chosen since it resulted in a higher
correlation coefficient. Table S1. TAED gene families with many duplications
based on maximum tree length. Table S2. TAED gene families with many dupli-
cations based on median tree length. Table S3. KEGG Pathways with many du-
plications based on maximum tree length. Table S4. KEGG Pathways with many
duplications based on median tree length.
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