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Abstract

Background: The study of speciation has expanded with the increasing availability and affordability of high-
resolution genomic data. How the genome evolves throughout the process of divergence and which regions of
the genome are responsible for causing and maintaining that divergence have been central questions in recent
work. Here, we use three pairs of species from the recently diverged bee hummingbird clade to investigate
differences in the genome at different stages of speciation, using divergence times as a proxy for the speciation
continuum.

Results: Population measures of relative differentiation between hybridizing species reveal that different chromosome
types diverge at different stages of speciation. Using FST as our relative measure of differentiation we found that the sex
chromosome shows signs of divergence early in speciation. Next, small autosomes (microchromosomes) accumulate
highly diverged genomic regions, while the large autosomes (macrochromosomes) accumulate genomic regions of
divergence at a later stage of speciation.

Conclusions: Our finding that genomic windows of elevated FST accumulate on small autosomes earlier in speciation
than on larger autosomes is counter to the prediction that FST increases with size of chromosome (i.e. with decreased
recombination rate), and is not represented when weighted average FST per chromosome is compared with
chromosome size. The results of this study suggest that multiple chromosome characteristics such as recombination
rate and gene density combine to influence the genomic locations of signatures of divergence.
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Background
A fundamental goal in evolutionary biology is to under-
stand how the process of speciation occurs. The increas-
ing availability of population genomic data has led to a
new understanding of speciation beyond the classical
categorization of sympatric, allopatric, and parapatric
modes [1]. The recently developed field of “speciation
genomics” has revealed that speciation with gene flow, a
phenomenon that was once thought to be highly

unlikely [2], is common [3–7], including between extant
and extinct taxa (reviewed in [8]). These revelations sug-
gest that the individual is not the unit of isolation, and
that there must be regions of isolation within the gen-
ome maintaining species boundaries. These sites are
called barrier loci: specific regions of the genome that
contribute to barriers to gene flow between populations
[9]. This research has revealed that there are many gen-
omic regions important to speciation, not just one or a
few regions of large effect. For example, Martin et al.
[10] found evidence of reduced introgression between
two species of Heliconius butterflies at many regions of
the genome, suggesting that many barrier loci of
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relatively small effect are responsible for maintaining
species boundaries. Ellison et al. [11] found evidence
that many genes of small effect are responsible for the
divergence of sexual behaviors between species of Lau-
pala crickets. Overall, investigating the genomic land-
scapes of differentiation between hybridizing species
using modern genomics techniques will enhance our un-
derstanding of speciation [1, 12].
The study of genomic divergence was initially focused

on the population statistic, FST, which is the standard stat-
istical measure for genetic divergence between two popu-
lations and is based on between-population variance in
allele frequencies compared to within-population variance
[13]. It was observed early on that FST is variable among
loci [14]. Studies have since shown that the variation in
FST creates a heterogeneous landscape across the genome.
This pattern has been observed in several diverse taxon
pairs, including Heliconius butterflies [15], mussels [16],
warblers [17, 18], and Ficedula flycatchers [19]. Originally,
it was thought that peaks of differentiation were indicative
of reproductively isolating genes [20], and were termed
“genomic islands of speciation” [21]. Further scrutiny re-
vealed that equating FST peaks to “islands of speciation”
(i.e. barrier loci) is premature, and additional investigation
is required to determine the true cause of FST heterogen-
eity [9, 22–24].
Though genome-wide average FST increases as diver-

gence time increases [25, 26] it is clear that FST peaks
relative to the rest of the genome are not necessarily in-
dicative of barrier loci or reduced gene flow, and a var-
iety of processes may lead to these “outlier regions”.
Recombination rate variation across the genome predicts
much of the variation in nucleotide diversity [27] and
FST [28–30]. Reduced recombination rate, genetic drift,
local adaptation, and other evolutionary processes may
reduce local nucleotide diversity within at least one spe-
cies in the pair causing peaks in FST that are not indica-
tive of locally reduced gene flow [22, 23]. In contrast to
FST, an absolute measure of divergence between popula-
tions (dxy) is not inflated by reduced within-population
nucleotide diversity. FST peaks resulting from locally re-
duced gene flow are predicted to have elevated dxy, while
FST peaks resulting from low within-population diversity
are not. Thus, comparing multiple statistics together
may help elucidate the evolutionary mechanisms leading
to the genomic patterns we find. For example, measuring
nucleotide diversity (e.g. π) across the genome can indi-
cate specific regions of low diversity in one or both spe-
cies that result in an FST peak that is not due to reduced
gene flow, but rather due to species-specific selection at
that locus. Calculating dxy across the genome and locat-
ing FST peaks that are associated with elevated dxy can
help narrow down the potential causes of some islands
of divergence (e.g. [18, 31–34]).

Though much progress has been made in characteriz-
ing the heterogeneity in divergence using these statistics,
our understanding of how these patterns change over
time is still limited. Because speciation is often a process
with a duration of at least 1 million years [35], it is
nearly impossible to investigate the different stages of
speciation using only a single species pair. To help alle-
viate this problem, some studies have used independent
pairs of closely related species that have different diver-
gence times as a proxy for the different stages of speci-
ation (e.g. [15, 18, 26, 28, 31, 36–40]). This can provide
valuable insight into the genomic process of speciation
over time.
Variation in chromosome type may be important to

consider when investigating the speciation process. For
example, sex chromosomes play a disproportionate role in
reproductive isolation relative to the autosomes [41].
Greater differentiation on sex chromosomes relative to au-
tosomes has been broadly identified in both male-
heterogametic (XY/XX) and female-heterogametic (ZW/
ZZ) taxa [42]. Proposed reasons for this include the large
X-effect, reduced effective population size, and reduced
recombination rate of X or Z chromosomes [42].
Chromosome size variation across autosomes may also
contribute to the process of speciation. All birds and many
species of reptiles have a largely conserved karyotype
made up of large chromosomes (macrochromosomes) and
small chromosomes (microchromosomes) [43]. Often, the
karyotype contains up to 8 large chromosomes that are on
average an order of magnitude larger than the average
microchromosome [44]. Microchromosomes have a
higher recombination rate, gene density, and GC content
relative to macrochromosomes [43]. Low recombination
rates are predicted to lead to reduced genetic diversity due
to hitchhiking [45] and background selection [46, 47].
Consistent with this prediction, in birds larger chromo-
somes tend to have lower diversity [48, 49] and, in at least
one case, higher FST between lineages [50]. Whether
microchromosomes play a different role in speciation than
macrochromosomes, however, is still unknown.
In this study, we investigate 1) how genomic signatures

of divergence change as speciation proceeds, and 2) the
differences between micro-, macro-, and Z chromosomes,
how those differences compare across the speciation con-
tinuum, and what that tells us about the importance of
different chromosome types in speciation. We use three
pairs of hybridizing species from the bee hummingbird
clade: Calypte anna and C. costae (Anna’s and Costa’s
hummingbirds), Archilochus alexandri and A. colubris
(Black-chinned and Ruby-throated hummingbirds), Selas-
phorus sasin and S. rufus (Allen’s and Rufous humming-
birds; Fig. 1). Previous studies have used multiple pairs of
species with different divergence times as a proxy for the
speciation continuum (e.g. [15, 18, 26, 28, 31, 36–40]).
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However, recent studies on the phylogenetic relationships
among these hummingbirds have produced conflicting es-
timates of relative divergence times. According to
McGuire et al. [51] the species pairs S. sasin/S. rufus and
A. alexandri/A. colubris diverged more recently than C.
anna/C. costae, but numerical estimates of divergence
dates are not provided. Abrahamczyk and Renner [52] is
the only study to our knowledge to provide numerical es-
timates for the three species pairs included in this study:
C. anna/C. costae estimated at 2.52 million years ago
(mya), A. alexandri/A. colubris 1.5 mya, and S. sasin/
S.rufus 0.97 mya. Licona-Vera and Ornelas [53] used im-
proved within-species sampling (previous studies included
only a single representative of four [51] or six [52] of our
focal species), and did not recover monophyletic groups
for A. alexandri, S. sasin, or S. rufus. The latter study also
estimated an older divergence date for a node within A.
alexandri than the node separating C. anna and C. costae,
albeit with overlapping 95% HPD intervals. Because of the
lack of consensus in the literature on divergence times
and phylogenetic relationships among the three focal spe-
cies pairs of this study, we chose to use extent of repro-
ductive isolation (i.e., frequency of hybridization), rather

than divergence time, as a proxy for the speciation
continuum.
Our species pairs are especially suitable for this study,

as A. alexandri/A. colubris and S. sasin/S. rufus are, to
our knowledge, the only two hummingbird species pairs
in the US with a quantified extent of hybridization. A.
alexandri and A. colubris have a narrow sympatric range
in southwestern Oklahoma, and an estimated 9.3% of
adult males are F1 hybrids [54]. S. sasin and S. rufus
have a broad hybrid zone in northern California and
southern Oregon where hybrids outnumber parental
species and there is clinal variation in species diagnostic
traits [55]. C. anna and C. costae inhabit a broad sym-
patric range in parts of California, Nevada, Arizona, and
Baja California. Though the frequency of hybridization
has not been quantified, hybrids are occasionally ob-
served [[56], pers. obs.], and this is the only species pair
in the United States listed as “extensive natural
hybridization reported” by [57]. Species pairs will here-
after be referred to by genus (Calypte, Archilochus,
Selasphorus).
We use these three independent but closely related

species pairs as a proxy for the speciation continuum.

Fig. 1 FST calculated in 100 kbp windows across the whole genome for three species pairs. Three pairs of hybridizing species have different
divergence times (estimated by [51]): top (Selasphorus; 0.97 my), middle (Achilochus; 1.5 my), bottom (Calypte; 2.52 my). Chromosomes alternate in
color. Z chromosome (right) has increased FST relative to autosomes for all three species pairs. Photograph credits: S. sasin by M. Shattock, CC-BY-
SA 2.0; S. rufus by Kaaren Perry, CC-BY 2.0; A. colubris by Dick Ledbetter; A. alexandri by Bill Shreve; C. anna by Becky Matsubara, CC-BY 2.0; C.
costae by Daniel Pierce
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First, we compare patterns of genomic differentiation
and diversity across these three levels of reproductive
isolation. Second, we compare these patterns across
three different chromosome types: microchromosomes,
macrochromosomes, and the sex chromosome, and ob-
serve how these comparisons differ across the three dif-
ferent levels of reproductive isolation. We found that
speciation seems to progress at different rates based on
chromosome type, with the sex chromosome diverging
first, the microchromosomes diverging next, and diver-
gence only appearing on the macrochromosomes in late
stages of reproductive isolation.

Results
Our least reproductively-isolated species pair, Selas-
phorus had the lowest average FST (0.041) and fewer

overall FST peaks than either of the other species pairs
(Fig. 1). Our most reproductively-isolated species pair,
Calypte had the highest average FST (Calypte, FST =
0.323; Archilochus, FST = 0.112), though Calypte and Ar-
chilochus had a qualitatively similar number of FST
peaks. For all three pairs, FST was higher on the Z
chromosome than on the autosomes, with a significant
overrepresentation of high-FST windows on the Z
chromosome (Calypte, χ2 = 40.975, P = 1.27 × 10− 9; Ar-
chilochus, χ2 = 292.91, P = 2.2 × 10− 16; Selasphorus, χ2 =
674.01, P = 2.2 × 10− 16; Supplemental Table 1), consist-
ent with the findings of Battey [58] in the Selasphorus
species pair and Elgvin et al. in Passer sparrows [59].
When comparing FST across chromosome types, Selas-
phorus, the least-reproductively isolated species pair only
had noticeably elevated FST on the Z chromosome, and

Fig. 2 Density of windows with different FST values separated by chromosome type
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not on autosomes, and no significant difference in num-
ber of elevated FST peaks on microchromosomes versus
macrochromosomes (χ2 = 0.09577, P = 0.757). The next
species pair, Archilochus showed elevated FST on the Z
chromosome and significantly more elevated FST win-
dows on the microchromosomes relative to the macro-
chromosomes (χ2 = 48.998, P = 2.56 × 10− 12). The most
reproductively-isolated species pair, Calypte had win-
dows with elevated FST throughout the entire genome,
including the macrochromosomes (Fig. 2), though the
microchromosomes had significantly more elevated FST
windows than the macrochromosomes (χ2 = 22.759, P =
1.27 × 10− 9). Genes found within the top 1% of FST
peaks are listed in Supplemental Table 2, although we
emphasize that not all high-FST regions should be inter-
preted as barrier loci, and this table likely includes many
genes that have no involvement in reproductive barriers.
For each species pair, FST and dxy were negatively cor-

related (Supplemental Fig. 1). The pattern held true
across all three chromosome types, but the strength of
the positive correlation did not vary consistently
(Supplemental Fig. 1). Within species pairs, there was al-
ways a positive correlation between dxy and mean π for
all three chromosome types (Fig. 3). The correlation was
strongest for the least reproductively-isolated species
pair (Selasphorus; Fig. 3a). The correlation was weaker
for the next species pair (Archilochus), with increased
dxy relative to π appearing only on the Z chromosome
(Fig. 3b). Increased dxy relative to π appeared on all
chromosome types in the most reproductively-isolated

species pair (Calypte; Fig. 3c). Windows with elevated
FST appeared in regions with higher dxy relative to π, or
where π was especially low (Fig. 3d-f). π was strongly
positively correlated between hybridizing species
(Fig. 4a-c). Elevated FST appeared mostly in windows
where both species in a pair had low π (Fig. 4d-f).
Across species pairs, FST from one pair was always

positively correlated with FST from either of the other
species pairs (Fig. 5a-c; Table 1), indicating that patterns
of FST peaks and valleys in one species pair can partially
predict patterns in another species pair. The pattern was
true for all chromosome types, but the strength in cor-
relation did not vary consistently (Table 1; Supplemental
Fig. 2). FST increased with chromosome size for the most
reproductively-isolated species pair (Calypte; Fig. 6),
with a weaker positive correlation for the less
reproductively-isolated species pairs (Selasphorus and
Archilochus; Fig. 6).

Discussion
In this study we compared the genomic differentiation
and diversity of three pairs of closely related humming-
birds at different stages of divergence (Selasphorus, ex-
tensive hybridization [55]; Archilochus, moderate
hybridization [54], Calypte, rare hybridization [56, 57];),
allowing us to investigate changes in the genome as di-
vergence progresses. Our estimates of FST are consistent
with one previously published estimate of divergence
times [52] for these three species pairs (Fig. 1), suggest-
ing that both average levels of FST and number of FST

Fig. 3 Absolute divergence (dxy) versus mean nucleotide diversity (π) calculated in 100 kbp windows. dxy and π were positively correlated in each
species pair and chromosome type (a-c). Windows with high FST tend to fall in regions with low π relative to dxy (d-e)
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peaks increase as extent of reproductive isolation and di-
vergence time increase.
Chromosome-wide average FST increased with

chromosome size for our most reproductively-isolated
species pair (Calypte; Fig. 6) as is theoretically expected
given the correlation between chromosome size and re-
combination rate in birds [22, 60] and empirically tested
in at least one other species [50]. Finding significance of
this pattern in Calypte and not in the other species pairs
suggests that it may be a pattern that appears late in

speciation. However, we cannot exclude that differences
in natural history among the species pairs contributes to
our results. For example, the Calypte species are the
only hummingbirds in this study that are not long-
distance migrants (sedentary populations of S. sasin
exist, but were not sequenced). How natural history
characteristics such as migration affect genomic patterns
of speciation is unclear.
When looking at FST in windows across the genome,

we did not find the expected pattern of increased FST

Fig. 4 π versus π between hybridizing species calculated in 100 kbp windows. π was strongly positively correlated with π of its hybridizing
species across all chromosome types (a-c). Windows with high FST are located where π for both species is low (light blue = high FST, dark blue =
low FST; d-e)

Fig. 5 FST for one species pair versus FST for another species pair calculated in 100 kbp windows. FST is positively correlated across all species
pairs and all chromosome types
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with increased chromosome size. Windows with high
FST accumulated on the microchromosomes earlier in
speciation than on the macrochromosomes (Fig. 2). This
pattern is unexpected given the reduced recombination
rate on macrochromosomes relative to microchromo-
somes, and it was not predictable from the correlation be-
tween FST and chromosome size. FST is expected to

increase in regions of the genome that have reduced rates
of recombination because the inheritance of linked loci re-
sults in locally reduced diversity within species over time.
Likewise, FST is expected to decrease where recombination
rate is high, because nucleotide diversity will increase in
these regions over time. These predictions bring to light
the peculiarity of our result that FST peaks seemed to ac-
cumulate on microchromosomes, where recombination
rate is high, earlier in the divergence process than macro-
chromosomes, where recombination rate is lower. Aver-
age FST did not increase on small chromosomes relative to
large chromosomes, but rather 100 kbp windows with ele-
vated FST were more common on microchromosomes
than on macrochromosomes in early stages of speciation.
The early accumulation of FST peaks on microchromo-
somes may be due to a combination of characteristics of
these small chromosomes. For example, higher gene dens-
ity on microchromosomes may provide more targets for
positive selection to act on, and higher recombination rate
may increase the efficiency of selection in fixing beneficial
mutations by reducing Hill-Robertson interference. If the
rate of adaptive evolution is higher on

Fig. 6 FST versus chromosome size. Mean FST increased with chromosome size only for the most divergent species pair (Calypte). Regression lines,
p-values and R2 are calculated for all autosomes, excluding the Z chromosome

Table 1 FST across species pairs is positively correlated for all
chromosome types

Genus 1 (x) Genus 2 (y) Chrom type R-squared

Archilochus Selasphorus Macro 0.0863347

Micro 0.0522726

Z 0.4069244

Calypte Archilochus Macro 0.3053203

Micro 0.2404795

Z 0.5296113

Calypte Selasphorus Macro 0.1883183

Micro 0.0801977

Z 0.2432459
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microchromosomes, this could lead to an earlier accumu-
lation of FST peaks either as a direct result of within-
species selective sweeps, or because some of these select-
ive sweeps result in reproductive barrier loci. High linkage
on macrochromosomes results in reduced diversity which
leads to the accumulation of FST peaks on macrochromo-
somes observed at later stages of speciation.
Elevated FST windows were especially common on the

Z chromosome in all three species, as expected based on
prior work in hummingbirds [58] and other taxa [42].
The large X-effect, or the observation that sex chromo-
somes play a disproportionate role in speciation, is
thought to be the overarching cause of the commonly
found pattern of elevated FST on sex chromosomes rela-
tive to autosomes. Hypothesized reasons for the large X-
effect include ploidy difference between sexes, faster
evolution of the sex chromosomes and higher density of
hybrid incompatibility loci on the sex chromosomes
(reviewed in [42]). Using our data, we cannot distinguish
between these processes nor determine whether the sex-
ual dimorphism observed in hummingbirds plays a
strong role in this genetic pattern.
Absolute divergence (dxy) and nucleotide diversity (π)

were strongly positively correlated and relative diver-
gence (FST) was negatively correlated with dxy in all
three species pairs. This suggests a pattern of selection
before divergence wherein pre-speciation selection
causes regions of reduced dxy and low diversity (π). Re-
peated linked selection at these regions before and after
speciation can cause locally elevated relative divergence
(FST) despite reduced absolute divergence (dxy) [23]. Al-
ternatively, this pattern could result from a global cross-
species selective sweep after divergence (“sweep-before-
differentiation;” [37]) at loci with elevated FST (e.g. [61]).
This pattern is consistent with some previous findings in
other species pairs of birds [62, 63]. However, given that
the species in this study are the result of a recent rapid
radiation and have recent common ancestors, a measure
of absolute divergence might be unreliable for determin-
ing the evolutionary history of species pairs with such
recent divergence times. dxy measures the nucleotide dif-
ferences that have accumulated since the divergence of
the two focal species, but also reflects ancestral poly-
morphism that was present before divergence. There-
fore, species pairs that have not been diverging for very
long (including all three focal pairs of this study) are ex-
pected to have nucleotide diversity that is at least par-
tially representative of ancestral polymorphism. Thus,
dxy that strongly correlates with π for these species pairs
may indicate that much of the polymorphism in the an-
cestor of each species pair is retained in the extant pop-
ulations [22].
The strong correlation between π and dxy was present

in all three species pairs, but the relationship weakened

as extent of reproductive isolation increased, indicating
that absolute divergence increases relative to levels of
within-species diversity over the course of the speciation
process. FST peaks appearing in windows that have
higher dxy relative to π is expected, given that FST is a
measure of differentiation relative to within-species poly-
morphism (Fig. 3d-f).
Nucleotide diversity (π) was strongly correlated be-

tween hybridizing species (Fig. 4a-c) and the relationship
was stronger for species pairs with less reproductive iso-
lation. In species pairs with greater reproductive isola-
tion the correlation weakened, with some genomic
windows showing reduced π in one but not both species
(Fig. 4b-c). Elevated FST in windows where one species
has low nucleotide diversity relative to its closest relative
is expected to be caused by within-species selection, ra-
ther than divergent selection between the species. How-
ever, we did not find strong evidence of elevated FST
being caused by reduced polymorphism in one species
within a pair as FST peaks appeared primarily on win-
dows where both species had reduced π (Fig. 4d-f). A
positive correlation of FST across species pairs might in-
dicate that the landscape is partially driven by genomic
features such as local recombination rate that are con-
served across a higher phylogenetic level [63].
Differences in the genetic signatures of speciation

across species pairs may be attributable to the natural
history and phenotypic differences among species. For
example, differences in plumage color are weak between
Allen’s and Rufous hummingbird (genus Selasphorus),
and these species are commonly misidentified. By con-
trast, the species pairs in Calypte and Archilochus have
distinct differences in male plumage color, especially in
the gorget feathers. Additionally, mating displays, habi-
tats and migration habits differ across the six species in
this study. Anna’s and Costa’s hummingbirds (genus
Calypte) have complicated and poorly known migration
patterns, with variation across populations and move-
ment that is likely driven by variation in availability of
food [64, 65]. Black-chinned (genus Archilochus), Ruby-
throated (genus Archilochus) and Rufous hummingbirds
perform complete migrations [66–68], while Allen’s
hummingbirds include both migratory and sedentary
populations [69]. Demographic differences across the
species, such as historical changes in population size and
distribution could also affect genetic signals that we in-
terpret as signatures of speciation. For example, Anna’s
hummingbird has drastically increased its breeding range
in the last 100 years, likely as a result of increased avail-
ability of food in the form of exotic plants and hum-
mingbird feeders [70]. In Allen’s hummingbird, the non-
migratory subspecies (S. s. sedentarius) has expanded its
breeding range into mainland southern California from
the Channel Islands [71]. While the breeding ranges for
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other species used in this study seem to have remained
unchanged over time, observations of birds wintering
over an expanded range have been observed [63–65].
These differences across the species used in this study
highlight that each species pair is subject to its own evo-
lutionary trajectory leading to a unique speciation event.
While this is a general caveat of using independent spe-
cies pairs as a proxy for the speciation continuum, we
believe that the differences we observe among chromo-
some types can inform the ongoing debate about the
roles of selection and recombination in the genetics of
speciation.

Conclusions
In this study we found evidence for the earlier diver-
gence of microchromosomes than macrochromosomes
in speciation through comparing genomic differentiation
and diversity across the speciation continuum. Our study
is the first, to our knowledge, to compare genomic sta-
tistics across different categories of autosomes and
across independent, closely related species pairs with dif-
ferent levels of reproductive isolation. The results of this
study suggest that variation in chromosome size, or in
associated characteristics such as recombination rate
and gene density, plays an important role in determining
the genomic landscape of divergence at different points
along the speciation continuum.

Methods
Sampling, extractions and sequencing
We collected samples from populations of three species
pairs of hummingbirds for a total of six species and 59 in-
dividuals (Supplemental Table 3): (1) Allen’s and Rufous
(Selasphorus sasin, 9 samples; S. rufus, 7 samples), (2)
Anna’s and Costa’s (Calypte anna, 12 samples; C. costae,
12 samples), and (3) Black-chinned and Ruby-throated
(Archilochus alexandri, 10 samples; A. colubris, 9 sam-
ples). All populations were collected from allopatric re-
gions with the exception of the Calypte species pair which
was collected from the sympatric range in Riverside, CA.
C. anna and C. costae hybridize infrequently, but the sym-
patric sampling for this species pair may lead to an under-
estimate of genetic differentiation between these species.
Samples from Calypte and Selasphorus rufus popula-

tions were extracted from dried blood spots on filter
paper using the Qiagen DNeasy extraction protocol.
Samples from both Archilochus species were acquired
from Dr. Chris Clark’s collected samples stored at the
Yale Peabody Museum of Natural History, and samples
from Selasphorus sasin were provided by the California
Academy of Sciences. Small pieces of tissue were then
extracted using the DNeasy extraction protocol. All
DNA concentrations were quantified using a Qubit
fluorometer and then diluted to 4 ng/uL in preparation

for a modified Nextera Whole Genome Library prep
protocol [[72]; see Supplementary Material for our mod-
ifications to that protocol].

Alignment and SNP calling
We used the Burrow-wheeler aligner (BWA-mem [73];)
to align the sequences to an Anna’s Hummingbird refer-
ence genome [74, 75]. We called variants using Samtools
mpileup (v1.8 [76];) and filtered nucleotide positions for
missing data (20% per locus, −-max-missing 0.8), mini-
mum depth (−-minDP 2), biallelic sites (−-maxalleles 2),
and removed indels using VCFtools (v1.15 [77];), retain-
ing all positions passing these filters, including invariant
sites.

Population statistics
We used VCFtools to calculate allele frequency and
Weir and Cockerham’s [78] weighted FST. Allele fre-
quency was calculated for each nucleotide position pass-
ing our depth and missingness filters and FST was
calculated for each non-overlapping 100 kbp window
across the genome. From allele frequency, π and dxy
were calculated for each SNP following [37]. The result
per SNP was then averaged over 100 kbp windows to
match the windows in which FST was calculated. Separ-
ate files for π, dxy and FST were combined such that any
window with a missing value for any one of the statistics
was excluded from the final file.
We classified chromosomes 1, 2 and 3 as macrochro-

mosomes and chromosomes 4–33 as microchromo-
somes. Though size varies across all chromosomes, the
first three average an order of magnitude larger than the
rest of the autosomes, and combined account for nearly
one half of the entire genome size. For comparisons
across the different chromosome types after filtering and
SNP-calling, we separated the genome into three parts:
microchromosomes, macrochromosomes, and Z
chromosome. For analyses on the Z chromosome we
used only the male individuals for population statistics
calculations. Following Elgvin et al. [59] we compared
the distribution of high-FST regions (100 kbp windows in
the top 1% for each species pair) among macrochromo-
somes, microchromosomes, and the Z chromosome
using a chi-squared test in R v3.4.3. We used the Bed-
tools v2.28 [79] intersect command with the “-loj” op-
tion to obtain a list of annotated genes overlapping
windows in the top 1% of FST values for each species
pair.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12862-020-01674-9.

Additional file 1: Supplemental Fig. 1. dxy vs FST.
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species pair.

Additional file 4: Supplemental Table 2. List of genes associated with
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