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Variation in pigmentation gene expression
is associated with distinct aposematic color
morphs in the poison frog Dendrobates
auratus
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Abstract

Background: Color and pattern phenotypes have clear implications for survival and reproduction in many species.
However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level.
Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting
color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color
morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated
differential gene expression, with an emphasis on examining candidate color genes from other taxa.

Results: Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte
differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed
genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart).

Conclusions: Our results provide evidence that several gene networks known to affect color and pattern in
vertebrates play a role in color and pattern variation in this species of poison frog.
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Background
Color and pattern phenotypes have long been of interest
to both naturalists and evolutionary biologists [1, 2]. Part
of this interest derives from the association of this phe-
nome with selective pressures such as mate choice [3]
and predation [4]. Species with morphological pheno-
types directly tied to survival and reproduction provide
excellent opportunities to study the genetic underpin-
nings of color and pattern, precisely because these
phenotypes are so obviously linked to survival.
Aposematic species rely on color and pattern to warn

predators, but in many cases these color and pattern
phenotypes are extremely variable, often changing over
short geographic distances or even exhibiting

polymorphism within populations [5, 6]. Theory has
long predicted that aposematic species should be mono-
morphic because predators learn a common signal, and
thus aposematic individuals with a different phenotype
should be selected against [2, 7]. While predator vari-
ation and drift alone may be sufficient to create pheno-
typic variation, a variety of alternative selective pressures
can act on the aposematic signal to produce and
maintain this variety (reviewed in [8]).
Research on the production of color and pattern early

in life in polytypic species (those that vary in discrete
phenotypes over geographical space) has been limited,
especially in vertebrates. Differences in color and pattern
in some highly variable aposematic species seem to be
determined by a small number of loci [9–12]. However,
the majority of the research on the underlying genetic
architecture associated with varied color and patterns in
aposematic species has been done in the Neotropical
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butterflies of the genus Heliconius. While this work has
been highly informative, it remains unclear whether
these trends are generally applicable to other systems,
including in vertebrates.
Many of the Neotropical poison frogs (family Dendro-

batidae) exhibit substantial polytypism throughout their
range [6, 13]. Despite being one of the better character-
ized groups of aposematic species, our knowledge of the
mechanisms of color production in this family is quite
limited. In addition, there is little information on the
genetics of color pattern in amphibians generally. While
modern genomic approaches, especially high-throughput
sequencing, have recently provided extensive insights
into the genes underlying color pattern variation in fish
[14, 15], reptiles [16], birds [17] and mammals [18–20],
there have been few genomic studies of the genetic basis
of color patterns in amphibians. This is in part because
amphibian genomes are often large and repetitive. For
example the strawberry poison frog (Oophaga pumilio)
has a large genome (6.7 Gb) which is over two-thirds re-
peat elements [21]. The dearth of amphibian data is an
important gap in our knowledge of the genomics of
color and pattern evolution, and the genetic and bio-
chemical pathways underlying color pattern variation
across vertebrates.
Amphibians exhibit extremely varied colors and pat-

terns, and these are linked to the three structural chro-
matophore types (melanophores, iridophores, and
xanthophores) and the pigments and structural elements
found within them (e.g. melanins, guanine platelets, and
pteridines; Mills & Patterson 2009). Melanophores and
the melanin pigments they contain are responsible for
producing dark coloration, particularly browns and
blacks, and are also critical to the production of darker
green coloration [22]. Blue and green coloration in am-
phibians is generally produced by reflectance from struc-
tural elements in iridophores [23]. Iridophores contain
guanine crystals arranged into platelets that reflect par-
ticular wavelengths of light, depending on platelet size,
shape, orientation and distribution [16, 23, 24]. Gener-
ally speaking, thicker and more dispersed platelets re-
flect longer wavelengths of light [16]. Combinations of
iridophores and xanthophores or erythropores contain-
ing carotenoids or pteridines (respectively) can produce
a wide diversity of colors [16]. Xanthophores are thought
to be largely responsible for the production of yellows,
oranges, and reds in amphibians. The precise coloration
exhibited is linked to the presence of various pigments
such as pteridines and carotenoids that absorb different
wavelengths of light [22].
In order to better understand the genetic mechanisms

affecting the development of color and pattern, we ex-
amined four different captive bred color morphs of the
green-and-black poison frog (Dendrobates auratus). The

San Felix and super blue morphs both have a brown
dorsum, with the former having green spotting, and the
latter typically having light blue markings (often circular
in shape), sporadically distributed across the dorsum.
The microspot morph has a greenish-blue dorsum with
small brownish-black splotches across the dorsum. Fi-
nally, the blue-black morph has a dark black dorsum
with blue markings scattered across the dorsum that are
typically long and almost linear. Photographs of frogs
from these morphs in captivity are found in Fig. 1. We
used an RNA sequencing approach to examine gene ex-
pression and characterize the skin transcriptome of this
species. In addition to assembling a de novo skin tran-
scriptome of a species from a group with few genomic
resources, we compared differential gene expression be-
tween color morphs. We focused on differential gene ex-
pression in a set of a priori candidate genes that are
known to affect color and pattern in a variety of differ-
ent taxa. Finally, we examined gene ontology and gene
overrepresentation of our dataset. These data will pro-
vide useful genomic and candidate gene resources to the
community, as well as a starting point for other genomic
studies in both amphibians and other aposematic
species.

Results
Transcriptome assembly
We used the Oyster River Protocol [25] to assemble a
transcriptome; this protocol uses a series of different
transcriptome assemblers and kmer lengths, ultimately
merging them into a single transcriptome. After con-
ducting the Oyster River Protocol for one random indi-
vidual per color morph and merging them together, we
were left with a large transcriptome containing 597,697
transcripts. We examined the BUSCO and transrate
scores for each morph’s transcriptome, as well as for the
transcriptome created by orthomerging these four as-
semblies (Table 1). BUSCO and transrate scores were
computed using the full, cleaned read dataset from all
samples. Given the poor transrate score of our final,
merged assembly we selected and used the good contigs
from transrate (i.e., those that are accurate, complete,
and non-redundant), which had a minimal effect on our
overall BUSCO score. In total, our assembly from the
good contigs represents 160,613 individual transcripts
(the “full assembly” in Table 1). Overall, our annotation
to the combined Xenopus, Nanorana, Rana, and
UniRef90 peptide databases yielded 76,432 annotated
transcripts (47.5% of our transcriptome).

Differential expression and fixed variants
Our results indicate that there are distinct differences in
expression between color morphs (Fig. 2). Principal
component 1 explained 37.3% of the variation and
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principal component 2 explained 21.0% of the variation.
We successfully mapped 81.6% ± 1.6% of our reads to our
reference transcriptome. When we tested for differential ex-
pression, we found a total of 2845 differentially expressed
transcripts among color morphs (1.77% of our transcrip-
tome; Additional file 1: Table S1). We identified a total of
2172 SNPs on 1151 contigs. Of these, we found 28 SNPs
on a contig with an annotated color gene and also alter-
nately fixed among color morphs; these represent 16
unique candidate color genes (Additional file 2: Table S2).

Pathway analyses
From our list of candidate color genes, we found 58 dif-
ferentially expressed transcripts (q value < 0.05)

associated with 41 candidate color genes in total (see
Table 2 and Figs. 3 and 4). Many of these genes are in-
volved in typical vertebrate pigmentation pathways,
which we highlight in Fig. 5. In our analyses of gene
function using all differentially expressed genes in PAN-
THER, we found that most of these genes were associ-
ated with either metabolic or cellular processes (Fig. 6).
Similarly, most of these genes contributed to either cell
part or organelle cellular components (Fig. 7). The mo-
lecular function was heavily skewed towards catalytic ac-
tivity and binding, both of which are likely a result of
the huge developmental reorganization involved in
metamorphosis (Fig. 8).

Discussion
The genetic mechanisms of color variation are poorly
known, particularly in amphibians. Here, we address this
deficiency by providing some of the first genomic data
relevant to color production in amphibians, with a focus
on gene expression in the skin during development. Our
model system and strategy support the identification of
genes likely to regulate color and pattern elements
across different morphs of a highly variable species. By
combining analyses of differential expression with a tar-
geted search based on an extensive list of candidate
genes for developmental control of coloration (approxi-
mately 500 genes), we identified multiple genes that

Fig. 1 Normative depictions of the four captive morphs used in this study. Color morphs clockwise from top left: microspot, super blue, blue and
black, San Felix. Microspot and super blue photographs courtesy of ID, blue-black and San Felix photos were provided by Mark Pepper at
Understory Enterprises, LLC. Pictures used with permission

Table 1 Assembly metrics for each of our assembled
transcriptomes. Metrics for the full assembly were calculated
using the full, cleaned dataset. BUSCO scores represent the
percentage of completion (i.e., 100% is an entirely complete
transcriptome)

Transrate score Transrate optimal score BUSCO score

Blue-black 0.05446 0.40487 96.3%

Microspot 0.04833 0.35907 94.0%

San Felix 0.0556 0.35718 88.1%

Super blue 0.0521 0.38094 96.0%

Full assembly 0.01701 0.13712 95.8%
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were differentially expressed among morphs which have
been demonstrated to play important roles in the pro-
duction of color in other taxa.
We found differential expression of multiple genes in

two major suites of color genes, those that influence
melanic coloration (black, brown, and grey) and irido-
phore genes (blue and green coloration). Additionally,
we found a few key pteridine pigment genes that are
known to influence primarily yellow amphibian color-
ation that were differentially expressed between morphs.
Given that our color morphs had a black versus brown
color coupled with either blue or green pattern elements
on top of the background, these results seem biologically
relevant and indicative of genes that control color and
pattern in Dendrobates auratus. As a result, we divide
our discussion into three main parts, focusing on the
genes that influence dark background coloration, purine
synthesis, and iridophore biology. We then discuss a few
genes that are part of other pathways (e.g. pteridine syn-
thesis), before proposing genes that have not previously
been implicated in the production of color but are plaus-
ible candidate genes.

Melanin-related gene expression
Our study frogs have skin with either a black or brown
background, both of which are forms of melanic color-
ation, which provides the basis for contrasting patterns
in many vertebrates as well as non-vertebrate taxa [63].
Melanin is synthesized from tyrosine in vertebrates, via
the action of a set of key enzymes (e.g., tyrosinase,
tyrosinase-like protein 1 and 2). We identified a suite of
differentially expressed genes that are involved in the
production of melanophores and melanin in this study

(Figs. 6 and 8), many of which have been tied to the pro-
duction of relatively lighter phenotypes in previous stud-
ies. Intriguingly, our results parallel similar findings in
Oophaga histrionica, a species of poison frog in which
mutations in the mc1r gene affecting melanogenesis have
produced a lighter, more brownish background in some
populations [64]. In a pattern reminiscent of their re-
sults, we found that mc1r was only lowly expressed in
one super blue frog, and that a variety of other genes
linked to lighter phenotypes followed a similar pattern
of expression.
For example, many of the differentially expressed color

genes in our dataset are active contributors to the tyro-
sinase pathway (tyrp1, mitf, sox9, lef1, mlph, leo1,
adam17, egfr, ednrb). This pathway is enzymatically reg-
ulated by tyrosinase as well as other enzymes and cofac-
tors and is key to the production of melanin [65]. The
tyrp1 enzyme catalyzes several key steps in the melano-
genesis pathway in melanosomes (and melanocytes), has
been shown to affect coloration in a wide variety of ver-
tebrates [65, 66], and is important for maintaining the
integrity of the melanocytes [67]. In some mammals
tyrp1 has been shown to change the relative abundances
of the pigments pheomelanin and eumelanin, thereby
producing an overall lighter phenotype [68]. Our data
mimic this pattern as tryp1 is not expressed in the
blue-black morph, and only expressed at low levels in
some San Felix individuals. Comparing the photos of the
four morphs (Fig. 1), it can readily be seen that blue and
black morph has substantially darker (black) background
coloration, compared to the other three, which all have a
lighter, brownish background coloration. Pheomelanin
has only been identified in the skin of one species of frog

Fig. 2 Principal component analysis indicating general within-morph similarity in transcript abundance within our dataset. PCA computation was
normalized as transcripts per million. Each dot indicates one individual and the percentage of variation explained by the axes are presented
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Table 2 Differentially expressed candidate color genes in our transcriptome. Parentheses in the gene symbol column indicate the
number of transcripts that mapped to a particular gene. The pathway column indicates what color or pattern production pathway
this gene is a part of

Gene symbol q value Pathway Citation

adam17 (2) 0.0163; 0.0469 Melanocyte development [20]

arfgap1 (2) 0.00362; 0.0267 Putative guanine synthesis in iridophores [26]

arfgap3 (4) 0.00739; 0.0000123; 0.00132; 0.0282 Putative guanine synthesis in iridophores [26]

airc 0.0126 Guanine synthesis [27]

atic 0.0447 Guanine synthesis in iridophores [26]

atox1 0.00124 Melanogenesis [28]

atp12a 0.0296 Melanogenesis [29]

bbs2 0.0300 Melanosome transport [30]

bbs5 0.0447 Melanosome transport [30]

bmpr1b 0.0118 Inhibits melanogenesis [31]

brca1 0.0455 Alters pigmentation, produces piebald appearances in mice [32, 33]

ctr9 0.0280 Melanocyte assembly [34, 35]

dera Guanine synthesis in iridophores [26]

dio2 (3) 0.0338; 0.0256; 0.000866 Thyroid hormone pathways, tenuous [36]

dtnbp1 (2) 0.00120; 0.0456 Melanosome biogenesis [37]

ednrb (2) 0.0035; 0.0005 Guanine synthesis in iridophores, melanoblast migration [26, 38]

egfr (2) 0.0197; 0.000566 Melanocyte pigmentation and differentiation [39]

fbxw4 (2) 0.00268; 0.0183 Melanophore organization [40, 41]

gart 0.0000494 Purine synthesis, affecting iridophores, xanthophores, and melanophores [42]

gas1 (2) 0.0264; 0.0191 Guanine synthesis in iridophores [26]

gne (2) 0.00571; 0.0361 Sialic acid pathway [43]

hps3 0.0202 Melanosome biogenesis [18]

itgb1 (2) 0.0191; 0.0469 Guanine synthesis in iridophores [26]

lef1 0.0190 Melanocyte differentiation and development, melanogenesis [44]

leo1 0.0000381 Melanocyte assembly [45]

mitf 0.0466 Melanocyte regulation [46]

mlph 0.00568 Melanosome transport [47]

mthfd1 0.0430 Purine synthesis [48]

mreg 0.0156 Melanosome transport [49]

notch1 (3) 0.00681; 0.0139; 0.0487 Melanocyte production [50, 51]

prtfdc1 0.00000672 Guanine synthesis [26]

qdpr 0.0372 Guanine and Pteridine synthesis [52, 53]

qnr-71 (2) 0.0316; 0.0262 Melanosomal protein [54, 55]

rab3d 0.0321 Putative guanine synthesis in iridophores [26]

rab7a 0.0319 Putative guanine synthesis in iridophores [26]

rabggta 0.000864 Guanine synthesis [56]

scarb2 0.0329 Putative guanine synthesis in iridophores [26]

shroom2 0.0142 Pigment accumulation [57, 58]

sox9 0.0228 Melanin production [59]

tbx15 0.00838 Pigmentation boundaries [60]

tyrp1 0.0200 Melanogenesis [61]

xdh (2) 0.0346; 0.0384 Pteridine synthesis [62]
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[69], and it is unclear whether pheomelanin is present
outside of mammals and birds. Further, mutations in
tyrp1 change melanic phenotypes through different
mechanisms in fish (and possibly other ectotherms) than
in mammals [66, 70], and the mechanisms by which
tyrp1 one affects pigmentation in amphibians are still
being elucidated.
The mitf (microphthalmia-associated transcription fac-

tor) locus codes for a transcription factor that plays a
dominant role in melanogenesis, and has been called the
“master regulator” of melanogenesis [71]. In our study,
mitf expression was lowest in the microspot population,
the population with the least melanic coloration, and
most highly expressed in the blue-black morph (al-
though it is worth noting that blue and green colors are
also influenced by melanin to some degree). The mitf
locus is, itself, targeted by a suite of transcriptional fac-
tors including two which were differentially expressed in
our dataset: sox9 and lef1. The sox9 gene is upregulated

during melanocyte differentiation, can promote melano-
cyte differentiation, and has been demonstrated to be an
important melanocytic transcription factor [72]. Further,
sox9 is up-regulated in human skin after UVB exposure
and has been demonstrated to increase pigmentation.
Sox9 was not expressed in the microspot morph and was
only expressed (at a low level) in one San Felix individ-
ual. Another important transcription factor is the
lymphoid enhancer-binding factor locus (lef1), which
mediates Wnt signaling in the context of melanocyte dif-
ferentiation and development, with important effects on
melanogenesis [44]. Upregulation of this gene has been
found to reduce synthesis of the darkest melanic pig-
ment eumelanin, resulting in lighter coloration in mink
and other vertebrates [44]. In our study, lef1 showed
very low expression in the blue and black morph, com-
pared to the other three morphs, indicating that lef1 is a
likely contributor to the background dorsal coloration
between color morphs in Dendrobates auratus.

Fig. 3 Log-fold expression (transcripts per million) levels of putatively melanin related genes that are differentially expressed between color
morphs in Dendrobates auratus. Each individual is represented on the x-axis, and the y-axis represents expression levels for each transcript that
annotated to an melanophore-related gene. Genes represented more than once mapped to multiple transcripts. Expression for this heatmap was
calculated using transcripts per million in Kallisto, to which we added 1 and log transformed the data (i.e., expression = log(transcripts per million
+ 1). Microspot and super blue photographs courtesy of ID, blue-black and San Felix photos were provided by Mark Pepper at Understory
Enterprises, LLC. Pictures used with permission
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Fig. 4 Log-fold expression (transcripts per million) levels of putatively iridophore-related genes that are differentially expressed between color
morphs in Dendrobates auratus. Each individual is represented on the x-axis, and the y-axis represents expression levels for each transcript that
annotated to an iridophore-related gene. Genes represented more than once mapped to multiple transcripts. Expression for this heatmap was
calculated using transcripts per million from Kallisto, to which we added 1 and log transformed the data (i.e., expression = log(transcripts per
million + 1)). Microspot and super blue photographs courtesy of ID, blue-black and San Felix photos were provided by Mark Pepper at Understory
Enterprises, LLC. Pictures used with permission

Fig. 5 Melanin pigmentation pathway in vertebrates. Here we highlight differentially expressed genes in our dataset with a red sun
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Just as mitf is a target of the transcription factors lef1
and sox9, mitf targets endothelin receptors, a type of G
Protein Coupled Receptor. Endothelin receptors mediate
several crucial developmental processes, particularly the
development of neural crest cell populations [73]. Three
paralogous families of these receptors have been identi-
fied in vertebrates: endothelin receptor B1 (ednrb1),
endothelin receptor B2 (ednrb2), and endothelin recep-
tor A (ednra). Ednrb is involved in producing the differ-
ent male color morphs of the Ruff (a sandpiper), and it
is only expressed in black males [17]. In our study, ednrb
is not expressed in the blue-black morph, and only one
of the ednrb transcripts is expressed in the San Felix
morph. Mutations in ednrb1 and ednrb2 have been

found to affect pigment cell development (especially me-
lanocytes and iridophores) in a variety of vertebrate spe-
cies [73]. These receptors show divergent patterns of
evolution in the ligand-binding region in African lake
cichlids, and appear to have evolved divergently in asso-
ciation with adaptive radiations in this group [15]. The
ednrb2 (endothelin receptor B2) locus encodes a trans-
membrane receptor that plays a key role in melanoblast
(a precursor cell of the melanocyte) migration [38]. This
receptor interacts with the edn3 ligand. Mutations af-
fecting this ligand/receptor system in Xenopus affect
pigment cell development [74].
The leo1 (LEO1 Homolog) and ctr9 (CTR9 Homo-

log) loci are both components of the yeast

Fig. 6 Gene ontology terms from PANTHER. Bars depict the number of differentially expressed genes in each biological process GO category

Fig. 7 Gene ontology terms from PANTHER. Bars depict the number of differentially expressed genes in each cellular process GO category
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polymerase-associated factor 1 (Paf1) complex, which
affects the development of the heart, ears and neural
crest cells in zebrafish, with dramatic downstream ef-
fects on pigment cells and pigmentation, as well as
on the Notch signaling pathway [34, 35]. Perhaps un-
surprisingly then, we found that notch1, a well-known
member of the Notch Signaling Pathway, was differ-
entially expressed between color morphs. Mutations
in this gene are known to affect skin, hair and eye
pigmentation in humans through effects on melano-
cyte stem cells [50]. This indicates that notch1 is a
good candidate gene for pattern development in
poison frogs.
A number of other melanogenesis-related genes were

found to be differentially expressed between morphs,
such as brca1. Mice with a homozygous mutation of the
tumor suppressing brca1 gene show altered coat color-
ation, often producing a piebald appearance [32]. The
precise mechanism behind this is ambiguous, and it may
involve either mitf or p53 [33, 75]. Bmpr1b is a bone
morphogenic protein which is known to inhibit melano-
genesis; when bmpr1b is downregulated via UV exposure
it enhances melanin production and leads to darker pig-
mentation [31]. Some of the other genes (e.g. mlph, or
melanophilin) show the same pattern of expression
across morphs as lef1, suggesting that multiple genes
may contribute to the difference between lighter and
darker background coloration in this species. The prod-
uct of the melanophilin gene forms a complex that com-
bines with two other proteins and binds melanosomes to
the cell cytoskeleton, facilitating melanosome transport
within the cell. Variants of this gene are associated with
“diluted”, or lighter-colored, melanism in a number of
vertebrates [47]. Similarly, the mreg (melanoregulin)

gene product functions in melanosome transport and
hence is intimately involved in pigmentation [49]. Muta-
tions at this locus cause “dilute” pigmentation pheno-
types in mice.
In summary, we have found a number of differentially

expressed genes that influence melanic coloration which
seem to be important between color morphs with a true,
black background pattern versus those with a more di-
lute, brown colored background pattern. Our results
parallel similar findings in Oophaga histrionica, a species
of poison frog in which mutations in the mc1r gene af-
fecting melanogenesis have produced a lighter, more
brownish background in some populations [64]. In
addition to mc1r, we have identified a suite of genes with
the same expression pattern that are ultimately influ-
enced by mc1r activity; many of these genes have been
linked to lighter phenotypes in other taxa.

Purine synthesis and iridophore genes
The bright coloration of D. auratus is confined to the
green-blue part of the visual spectrum (with the excep-
tion of some brownish-white varieties) in most popula-
tions, and thus iridophores are likely to play a role in the
color variation displayed across different populations of
this species. Higdon et al. (2013) identified a variety of
genes that are components of the guanine synthesis
pathway and show enriched expression in zebrafish iri-
dophores. A number of these genes (hprt1, ak5, dera,
ednrb2, gas1, ikpkg, atic, airc, prtfdc1) were differentially
expressed between the different morphs of D. auratus
investigated here (Fig. 8). The gart gene codes for a
tri-function enzyme that catalyzes three key steps in the
de novo purine synthesis pathway [42]. This locus has
been associated with critical mutations affecting all three

Fig. 8 Gene ontology terms from PANTHER. Bars depict the number of differentially expressed genes in each molecular function GO category
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types of chromatophores in zebrafish, through effects on
the synthesis of guanine (iridophores), sepiapterin
(xanthophores) and melanin (melanocytes) [42]. Zebra-
fish mutants at this locus can show dramatically reduced
numbers of iridophores, resulting in a lighter, or less sat-
urated color phenotype. Similarly, the airc gene plays a
critical role in guanine synthesis, and yeast with muta-
tions in this gene leading to aberrant forms of the tran-
scribed protein are unable to synthesize adenine and
accumulate a visible red pigment [27, 76]. Similarly, the
mthfd (methylenetetrahydrofolate dehydrogenase, cyclo-
hydrolase and formyltetrahydrofolate synthetase 1) gene
also affects the de novo purine synthesis pathway [77].
The genes airc, gart, and mthfd had similar expression
patterns and were very lowly expressed in the mostly
green microspot population. The gene prtfdc1 is highly
expressed in iridophores, and encodes an enzyme which
catalyzes the final step of guanine synthesis [26]; prtfdc1
had very low expression in the dark blue-black morph,
which may be an indication that it plays a role in the re-
flectance from iridophores. Further, prtfdc1 was highly
expressed in the San Felix and super blue morphs, both
of which have visible small white ‘sparkles’ on the skin
which are likely produced by the iridophores.
How the guanine platelets are formed in iridophores

remains an open question. Higdon et al. (2013) proposed
that ADP Ribosylation Factors (ARFs) and Rab GTPases
are likely to play crucial roles in this context. ARFs are a
family of ras-related GTPases that control transport
through membranes and organelle structure. We identi-
fied one ARF protein (arf6) and two ARF activating pro-
teins (arfgap1 and arfgap2) that were differentially
expressed across the D. auratus morphs. We also identi-
fied four different Rab GTPases as differentially
expressed (rab1a, rab3c, rab3d, rab7a). Mutations at the
rabggta (Rab geranylgeranyl transferase, a subunit) locus
cause abnormal pigment phenotypes in mice (e.g. “gun-
metal”), are known to affect the guanine synthesis path-
way [18], and are similarly differentially expressed
between color morphs in our dataset. These genes are
likely candidates to affect coloration in Dendrobates aur-
atus given that both the green and blue pattern elements
are probably iridophore-dependent colors.

Pteridine synthesis
Above we have devoted a large amount of space to mela-
nophore and iridophore related genes. Here we will
briefly discuss pteridine synthesis genes, because there is
generally less known about them and there are fewer
pteridine genes differentially expressed between color
morphs in our study. A number of the genes identified
as differentially expressed are involved in copper metab-
olism (sdhaf2, atox1, atp7b). Copper serves as a key co-
factor for tyrosinase in the melanogenesis pathway and

defects in copper transport profoundly affect pigmenta-
tion [28]. Another gene, the xanthine hydrogenase (xdh)
locus, was also found to be differentially expressed be-
tween morphs, and this gene, which is involved in the
oxidative metabolism of purines, affects both the guan-
ine and pteridine synthesis pathways. Additionally, it has
been shown to be critically important in the production
of color morphs in the axolotl. When xdh was experi-
mentally inhibited axolotls had reduced quantities of a
number of pterins, and also showed dramatic differences
in color phenotype with xdh-inhibited individuals show-
ing a ‘melanoid’ (black) appearance [62]. Furthermore,
xdh deficient frogs show a blue coloration in a species
that is typically green [78, 79]. We note here that one
xdh transcript showed little (one individual) or no (2 in-
dividuals) expression in the bluest morph (blue-black).
Similarly, when pigments contained in the xanthophores
that absorb blue light are removed, this can lead to blue
skin [23]. We also found another gene involved in pteri-
dine synthesis, qdpr (quinoid dihydropteridine reduc-
tase), was only expressed in the populations with a
lighter blue or green coloration. Mutations in this gene
result in altered patterns of pteridine (e.g. sepiapterin)
accumulation [53]. We believe that xdh and qdpr are
good candidates for variability in coloration in poison
frogs.

Fixed genomic variants
Similar to our analysis of differentially expressed color
genes, we found a number of SNPs in melanophore and
iridophore related genes with alternate fixation among
color morphs. For example, the cappuccino gene (cno) is
known to effect the maturity of melanosomes and can
also dramatically influence the size and number of mela-
nosomes, which produces dramatic changes in pheno-
types and can lead to albinism [80]. Intriguingly, cno
alleles are alternately fixed between the microspot and
San Felix populations, the latter of which has an almost
cappuccino-colored background coloration. Similarly,
type II iodothyronine deiodinase (dio2) is involved in
thyroid hormone conversion, and in flounders it is
thought that this conversion promotes pigmentation and
prevents albinism [81, 82]. Dio2 is also known to play a
role in vision via the pigmentation of the retinal pigment
epithelium [83, 84], as are a number of other genes with
alternately fixed alleles (rlbp1, ebna1bp2; [85, 86]). Given
the close link between eyesight and pigmentation
generally, these genes could undergo similar coevolu-
tionary paths in poison frog diversification. We also
found fixed differences in prtfdc1, a gene which is re-
sponsible for the final step of guanine synthesis and is
highly expressed in iridophores [26], and the fixed differ-
ence in this gene may be associated with darker versus
lighter blue frogs. Another iridophore gene, pgm2
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(Phosphoglucomutase-2), had the highest overall num-
ber of fixed SNPs in our study (8 SNPs), all of which are
fixed differences between the super blue morph and the
blue-black/microspot morphs. This gene is highly
expressed in iridophores when compared to melanin or
retinal pigment epithelium cells [26], so these variants
are plausible determinants of blue coloration in Dendro-
bates auratus. In addition to genes related to pigment
production, we also saw fixed genomic variants of genes
dealing specifically with patterning. For example,
spermidine (srm) exhibited fixed differences between
color morphs, and this gene is essential for pigment pat-
terning in zebrafish [87]. Further, we saw fixed differ-
ences in two SNPs of the gene rtf1, a gene which is
known to interact with the Notch signalling pathway
and modulate pigmentation and striping in zebrafish
[34]. We also found that notch1 was differentially
expressed between color morphs in our dataset. Thus,
the combination of srm and rtf1 SNPs and differential
expression of notch1 indicate that these genes may play
a role in the divergence of pattern elements among color
morphs. Most of the color morph specific SNPs we
found in candidate color genes appear to produce
non-synonymous changes in the amino acid sequence.
In fact, every color gene with a fixed difference in SNPs
had at least one non-synonymous change except for pts
and dio2, the latter of which we were unable to find a
matching amino acid sequence for. This provides further
evidence that these morph-specific fixed variants are
contributing to color and pattern differences in Dendro-
bates auratus. These fixed, non-synonymous changes
also indicate that these genes may be under positive se-
lection to be maintained within color morphs. However,
the possibility remains that patterns of alternate fixation
of alleles in our inter-population comparisons are due to
genetic drift, or selection on alleles due to their impact
on traits other than pigmentation.

Novel candidate genes for coloration
In addition to those genes that have previously been
linked to coloration which we have identified in our
study, we would like to propose several others as candi-
date color genes, based on their expression patterns in
our data. Although most research on blue coloration fo-
cuses on light reflecting from iridophores, this has gen-
erally not been explicitly tested and there is some
evidence that blue colors may arise through different
mechanisms (reviewed in [23]). In particular, there is
evidence that blue in amphibians can come from the
collagen matrix in the skin, as grafts in which chromato-
phores failed to thrive show a blue coloration [23]. Fur-
thermore, keratinocytes surround melanocytes, and they
play a key role in melanosome transfer [88]. In light of
this evidence, we propose a number of keratinocyte and

collagen genes which are differentially expressed in our
dataset as further candidate genes for coloration.
Amongst these are krt12, and krt8, col1a1, col5a1, and
col14a1. Indeed, alleles of one of these genes, krt8, are
differentially fixed between color morphs. These genes,
and those like them, may be playing a critical role in
coloration in these frogs.

Conclusion
The mechanisms that produce variation in coloration in
both amphibians and aposematic species are poorly
characterized, particularly in an evolutionary context.
Here we have taken a transcriptomics-based approach to
elucidating the genetic mechanisms underlying color
and pattern development in a poison frog. We found
evidence that genes characterizing the melanin and iri-
dophore pathways are likely the primary contributors to
color and pattern differences in this aposematic species.
Additionally, a handful of genes which contribute to the
pteridine pathway seem to be playing a role in differen-
tial color production as well. However, the specific
mechanisms by which these genes work, as well as how
they interact to produce color phenotypes, remains an
outstanding issue given the complex nature of each of
these pathways. Still, our data indicate that genes in-
volved at every step along the melanin and iridophore
pathways from chromatophore production, through pig-
mentation production and deposition, influence differ-
ences in coloration between these morphs. These results
make sense in the context of the overall color and pat-
tern of these frogs, and provide a number of promising
starting points for future investigations of the molecular,
cellular and physiological mechanisms underlying color-
ation in amphibians.

Methods
Color morphs
Captive bred Dendrobates auratus were obtained from
Understory Enterprises, LLC. We note that the breeding
stock of these different morphs, while originally derived
from different populations in Central America, have
been bred in captivity for many generations. As a result,
it is possible that color pattern differences between these
morphs in captivity may exceed those generally found in
the original populations. Nevertheless, the differences
between these morphs are well within the range of vari-
ation in this highly variable, polytypic species which
ranges from Eastern Panama to Nicaragua.

Sample collection
Frogs were maintained in pairs in 10 gal tanks with
coconut shell hides and petri dishes were placed under
the coconut hides to provide a location for females to
oviposit. Egg clutches were pulled just prior to hatching
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and tadpoles were raised individually in ~ 100 mL of
water. Tadpoles were fed fish flakes three times a week,
and their water was changed twice a week. Froglets were
sacrificed during the final stages of aquatic life (Gosner
stages 41–43; [89]). At this point, froglets had both hind
limbs and at least one forelimb exposed. These froglets
had color and pattern elements at this time, but pattern
differentiation and color production is still actively oc-
curring during metamorphosis and afterwards. Individ-
uals were anesthetized with 20% benzocaine gel applied
to the venter, followed by double pithing to ensure
death. After euthanasia, whole specimens (n = 3 per
morph) were placed in RNAlater (Qiagen) for 24 h, prior
to storage in liquid nitrogen. We then did a dorsal bisec-
tion of each frog’s skin, and prepared half of the skin for
RNA extraction.
RNA was extracted from each bisected dorsal skin

sample using a hybrid Trizol (Ambion) and RNeasy spin
column (Qiagen) method and total RNA quality was
assayed using the Bioanalyzer 2100 (Agilent). Messenger
RNA (mRNA) was isolated from total RNA with Dyna-
beads Oligo(dT)25 (Ambion) for use in the preparation
of uniquely-barcoded, strand-specific directional sequen-
cing libraries with a 500 bp insert size (NEBNext Ultra
Directional RNA Library Prep Kit for Illumina, New
England Biosystems). Libraries were placed into a single
multiplexed pool for 300 bp, paired end sequencing on
the Illumina MiSeq. Each sample had a total of 2–5.8
million reads, as a result sequencing depth is a limiting
factor in our analyses.

Transcriptome assembly
We randomly chose one individual per morph type and
assembled this individual’s transcriptome. First, we ag-
gressively removed adaptors and did a gentle quality
trimming using trimmomatic version 0.36 [90]. We then
implemented read error correction using RCorrector
version 1.01 [91] and assembled the transcriptome using
the Oyster River Protocol version 1.1.1 [25]. Transcrip-
tomes were assembled using Trinity version 2.4.0 [92],
two independent runs of SPAdes assembler version 3.11
with kmer lengths of 55 and 75 [93], and lastly Shannon
version 0.0.2 with a kmer length of 75 [94]. The four
transcriptomes were then merged together using Ortho-
Fuser [25]. Transcriptome quality was assessed using
BUSCO version 3.0.1 against the eukaryote database [95]
and TransRate 1.0.3 [96]. BUSCO evaluates the genic
content of the assembly by comparing the transcriptome
to a database of highly conserved genes. Transrate con-
tig scores evaluate the structural integrity of the assem-
bly, and provide measures of accurate, completeness,
and redundancy. We then compared the assembled,
merged transcriptome to the full dataset (every read in
our dataset concatenated together) by using BUSCO and

TransRate. We recognize that the data used for tran-
scriptome assembly greatly influences downstream ana-
lyses, especially in experimental work in which certain
genes may only be expressed in one treatment. However,
we did limit the likelihood of this by choosing one
individual per color morph. Evidence indicates that our
approach did successfully address this issue, as our tran-
scriptome has a very high BUSCO score (> 95%).

Downstream analyses
We annotated our transcriptome using the peptide data-
bases corresponding to frog genomes for Xenopus tropi-
calis [97], Nanorana parkeri [98], and Rana catesbeiana
[99] as well as the UniRef90 database [100] using Dia-
mond version 0.9.10 [101] and an e-value cutoff of
0.001. We then pseudo-aligned reads from each sample
using Kallisto version 0.43.0 [102] and examined differ-
ential expression of transcripts in R version 3.4.2 [103]
using Sleuth version 0.29.0 [104]. Differential expression
was analyzed by performing a likelihood ratio test com-
paring a model with color morph as a factor to a simpli-
fied, null model of the overall data, essentially testing for
differences in expression patterns between any of the
four morphs. In addition to examining overall differen-
tial expression between morphs, we examined differen-
tial expression in an a priori group of candidate color
genes. We used PANTHER [105] to quantify the distri-
bution of differentially expressed genes annotated to
Xenopus tropicalis into biological processes, molecular
functions, and cellular components. Finally, we used
ANGSD for an analysis of SNPs [106]. We only exam-
ined SNPs that had a minimum quality score of 20, and
a minimum depth of 100 reads. Following SNP calling,
we examined SNPS that were fixed in at least one color
morph and were in our candidate color gene list. We
then used BLAST translated nucleotide to protein
searches (tblastx) to align the color morph specific gene
variants to the best amino acid sequence match in the
model species genome (either Xenopus or Nanorana).
We confirmed codon frame by aligning the specific pro-
tein sequence from the model species (Xenopus or
Nanorana) to the matching translated nucleotide se-
quence for each candidate gene in D. auratus (except in
the case of dio2, for which we were unable to find a
matching amino acid sequence). We then determined
whether the color morph specific fixed variants pro-
duced synonymous or non-synonymous changes or
introduced stop codons.

Additional files

Additional file 1: Table S1. Differentially expressed genes. A list of genes
that were differentially expressed and relevant test statistics. (CSV 482 kb)
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Additional file 2: Table S2. Fixed genomic variants of color genes. Contig,
SNP position, gene name, and whether these changes produce synonymous
or non-synonymous changes across color morphs. (CSV 2 kb)
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