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Duplication and expression of horizontally
transferred polygalacturonase genes is
associated with host range expansion of
mirid bugs
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Abstract

Backgroud: Horizontal gene transfer and gene duplication are two major mechanisms contributing to the
evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally
transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three
phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid
bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were
related to host range expansion in mirid bugs.

Results: By RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis,
respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants
(P = 0.0339) in mirid bugs. Most PGs (> 17) were highly expressed in the three phytozoophagous mirid bugs, while
only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly
showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs
(K = 0.546, P = 0.0158) rather than in phytozoophagous mirid bugs (K = 1, P = 0.92), suggesting a function constraint
of PGs in phytozoophagous mirid bugs.

Conclusion: Taken together with gene duplication, molecular evolution, and expression levels, our results suggest
that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the
duplication of PGs is associated with the expansion of host plant ranges in mirid bugs.
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Background
Horizontal gene transfer (HGT) and gene duplication
are two major mechanisms contributing to the evolu-
tionary adaptation of organisms [1–6]. HGT refers to
the transfer of genetic materials between species with
reproductive isolation, which was first reported more
than 70 years ago and has been found to help organisms
rapidly adapt to novel environments [1, 7–9]. Gene
duplication is one of the main sources of functional

diversity at the genotypic level, contributing to the
origin of new genes, the evolution of new gene func-
tion, and in certain instances to the evolution of or-
ganisms [10–12]. Over the last few decades, these
two evolutionary adaptations have been well investi-
gated, but the adaptation by duplication of horizon-
tally transferred genes has rarely been reported.
As one of a group of plant cell wall-degrading enzymes

(PCWDEs), polygalacturonase (PG) is ubiquitous in
fungi, bacteria, and plants, catalyzing hydrolysis of α-1,
4-glycosidic linkages in polygalacturonic (pectic) acid
[13]. Interestingly, PGs have also been detected in some
insects from Hemiptera and Coleoptera, such as mirid bugs
and leaf beetles [14–16]. Biochemically, PGs were first
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reported in the salivary glands of mirid bugs (Lygus spp.)
[17–20]. Subsequently, the genes encoding PG proteins
were cloned from mirid bugs and leaf beetles, and phylo-
genetic analysis suggested these genes were horizontally
transferred to mirids from fungi and had undergone mul-
tiple duplications [14, 16, 21]. Plants possess cell walls made
of complex composite fibers, which prevent insects from
feeding on plant nutrients [22]. Thus, the duplication of di-
gestive enzymes (PG genes) was considered as potentially
expanding the host plant range of these insects [14, 15].
Previously, we demonstrated the duplication of PG

genes in Apolygus lucorum [16]. According to host
ranges, species in the Miridae (Hemiptera) were divided
into two groups: one named phytozoophagy was mainly
phytophagous with prey to complementand the other
named zoophytophagy was predator which occasionally
fed on plant resources) [23, 24]. Thus are an ideal group
to test the hypothesis that adaptive evolution of organ-
ism by horizontal gene transfer and gene duplication e.g.
insects expand their host plant range by PG genes which
may have occurred in major phytozoophagous mirid
bugs (A. lucorum, Adelphocoris suturalis, A. fasciaticollis
and A. lineolatus [25, 26]) that ancestrally may have been
soley predaceous (such as Nesidiocoris tenuis) [27]. Here,
we determined the numbers of expressed PG genes in A.
suturalis, A. fasciaticollis, A. lineolatus and N. tenuis by
RNA-seq. We also investigated the expression levels of
PG genes in A. suturalis and N. tenuis. Our results indi-
cate that the phytozoophagous mirid bugs possessed more
PG genes and higher expressed levels of these genes than
did the one of zoophytophagous species examined, sug-
gesting that the gene duplication of horizontally trans-
ferred PG genes may have been part of what allowed the
host range expansion toward mixed phytozoophagy in
mirid bugs.

Methods
Ethics statement
With permission, we captured the insects in experiment
stations of Chinese Academy of Agricultural Sciences. No
permits were required for the described insect collection
and experimentation.

Insects
Adults of A. suturalis, A. fasciaticollis, and A. lineola-
tus were collected from a cotton field at the Langfang
Experimental Station of the Chinese Academy of
Agricultural Sciences (Hebei Province, China) in 2015.
Adults of N. tenuis were collected from a tobacco field
at the Jimo Experimental Station of the Chinese Academy
of Agricultural Sciences (Shandong Province, China)
in 2014. Field-collected insects were used for genetic
analyses.

Transcriptome analysis
Compared with nymphs, adults of mirids can feed on a
wider diversity of plant species because their ability to fly
allows them to move from species to species as plants
flower. Therefore, we chose adults to investigate the PG
genes in this study. Fifty adults for each group (A. sutura-
lis = 3 groups, A. fasciaticollis = 1 group, A. lineolatus = 1
group, and N. tenuis = 3 groups) were used to isolate total
RNA with Trizol reagent (Invitrogen, Carlsbad, CA, USA)
following the manufacturer’s instructions. The cDNA
library was constructed, sequenced and analyzed as de-
scribed by Xu et al. [28]. Briefly, the mRNA was isolated
using Oligo (dT) magnetic beads, broken into short frag-
ments and used to synthesize cDNA. The short fragments
were purified with the QiaQuich PCR Purification Kit
(Qiagen, Germany) and used to construct the cDNA li-
brary. The library was sequenced on an Illumina Hiseq™
platform and about 5 gigabase (Gb) of data were gener-
ated for each sample, using Majorbio (Beijing, China).
Low-quality reads were deleted using Fastx-tools and
clean pair-end reads were used for de novo assembly with
Trinity (v2.0.6) software [29]. Contigs longer than 200
bases were used for subsequent analysis. The reads from
libraries of each species were mapped to the assembled
contigs using Bowtie 0.12.7 [30]. The read counts were
further normalized as fragments per kilobase of exon
model per million mapped reads (FPKM) values [31].
Gene expression profile was estimated using FPKM
values by RSEM (v1.1.17) software with default parame-
ters [32]. Unigenes were annotated with blastx BLAST
based on the databases of Nr (NCBI non-redundant
protein sequences) (https://www.ncbi.nlm.nih.gov/genbank/
and https://www.ncbi.nlm.nih.gov/protein/), String (Search
Tool for the Retrieval of interacting Genes/Proteins)
(https://string-db.org/), Swissprot (A manually anno-
tated and reviewed protein sequence database) (http://
www.ebi.ac.uk/uniprot/) and KEGG (Kyoto Encycloe-
dia of Genes and Genomes) (https://www.genome.jp/kegg/)
for functional annotation. The e-value cut-off was set at
1e-5 for further analysis.

Identification of PG genes
To annotate the PGs in the four mirid bugs, 202 cod-
ing sequences of PGs were used as query sequences,
including 188 coding sequences from Broad Institute
(BI), Joint Genome Institute (JGI) and GenBank at Na-
tional Center for Biotechnology Information (NCBI)
[14] and 14 coding sequence from the salivary glands
of A. lucorum from our previous work [16]. Then,
BLAST was performed for searching PGs. To deter-
mine the genomic structure of PGs, we designed
primers according to the reference sequences from
RNA-seq to amplify PG genes in N. tenuis and A. sutura-
lis using DNA as template (Additional file 1: Table S1).
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The PCR program was as follows: 30 s at 94 °C, 30 s
at 55 °C, and 60 s at 72 °C, for 40 cycles.

Sequence alignment, and phylogenetic/evolutionary analyses
Beside our self-sequenced PG genes, we also down-
loaded PG genes of A. lucorum and Lygus lineolaris from
Genbank and then constructed a dataset containing 147
PG genes for subsequent evolutionary analysis. The se-
quence alignment was performed using the codon model
as implemented in PRANK [33]. Phylogenetic analysis
was performed using maximum likelihood (ML) method
under the GTR +G substitution model [34] with 1000
replicates implemented in RAxML 7.3.2 [35].

Test of selection
After duplication, genes tended to have a different selective
pressure measured as a ratio between synonymous and
non-synonymous substitution (dn/ds). To investigate the
drive force behind the shift toward plant feeding, we
searched for potential selections acting on PG genes in
mirids. Here we mainly focus on the transformation be-
tween zoophytophagous (N. tenuis) and phytozoophagous
(the other mirids). We use an ML approach [36] to test dif-
ferences in selection pressure between the two feeding
habits using the CODEML program implemented in the
PAML 4.5 package [37]. We tested whether specific branch
models were used to detect positive selection acting on the
particular lineages. Four hypotheses were evaluated: (1)
one dn/ds ratio for all branches (one-ratio model; assuming
that all branches have been evolving at the same rate); (2)
dn/ds ratio = 1 for all branches (neutral model; neutral evo-
lution for all branches); (3) zoophytophagous and phyto-
zoophagous lineages have a different dn/ds ratio (ω2 and
ω1; two ratio model; allowing a foreground branch to
evolve under a different rate); and finally (4) neutral evolu-
tion for zoophytophagous lineage (ω2 = 1). A likelihood ra-
tio test (LRT) was employed to determine if the alternative
model, indicating positive selection, was superior to the
null model. The newly developed RELAX method [38], as
implemented in the program HYPHY [39], was employed
to detect if the relaxation of selective strength occurred at
the phytozoophagous and/or zoophytophagous lineage of
PG genes and led to loss of function.

Statistics
Statistical analyses were conducted using Relative valu-
ation and one way ANOVA with SPSS Version 11.0 soft-
ware package.

Results
Identification of PGs in four species of mirid bugs by
transcriptome analysis
After removing adaptor sequences and low-quality reads,
we obtained a total of 23.29, 4.51, 5.12, and 26.18 Gb of

clean data in A. suturalis, A. fasciaticollis, A. lineolatus,
and N. tenuis, respectively. An overview of the sequencing
and assembly data are shown (Additional file 1: Table S2
and Additional file 2: Figures S1, S2, S3, S4). The RNA-seq
data were submitted to the NCBI Gene Expression
Omnibus (GEO) database (accession number: GSE90671)
[40], and Sequence Read Archive (SRA) database (ac-
cession number: SRR6322944, SRR6322963, SRR6322
964, SRR6322965, SRR6322463, SRR8259282, SRR8259
810, SRR8259912). Using functional annotation, 29,890,
17,879, 25,604, and 39,937 genes (22.2, 30.6, 24.5 and
25.4% of transcripts) were able to be get BLAST hits
using the E-value cutoff and NR database.
With functional annotation and a BLAST search using

202 PGs as reference sequences, we found 30, 20, 19, and
7 PGs in A. suturalis, A. fasciaticollis, A. lineolatus, and N.
tenuis, respectively (Additional file 1: Table S3-S6). The
known host plants of A. suturalis, A. fasciaticollis, A. line-
olatus, A. lucorum, and N. tenuis include 270, 127, 254,
288 and 8 species, respectively [41–43]. It should be noted
that without genomes for these species plus transcrip-
tomes from different developmental stages, a thorough
phylogenetic analysis will be difficult, because what is
missing from the adult transcriptome cannot readily be
seen. Previously, 28 PGs were reported in A. lucorum at
NCBI, which included 14 PGs we found from the cDNA
library [16]. With these data, we analyzed the correlation
between the number of host plants and the number of
PGs in the five mirid bugs and found a significantly posi-
tive correlation (r2 = 0.822, F = 13.82, P = 0.0339) (Fig. 1).

Sequence alignment and phylogenetic analysis
Our phylogenetic tree strongly supported all the PGs in
mirid bugs being clustered together (Fig. 2; Bootstrap
value = 100; Additional file 3), suggesting that the PGs of
mirid bugs were derived from fungi and subsequently
underwent multiple duplications after horizontally trans-
ferring into the genome of mirid bugs. Previously, no
more than 50 PGs have been reported. We classified
PGs of A. lucorum to six groups according to identities
[15]; however, it was difficult to classify them clearly,
using more than 100 members from seven species. To
determine the gene duplication mode of PGs, we de-
tected the genome structure of seven PGs with complete
coding sequence (CDS) by designing primers and ampli-
fying fragments using DNA as templates (six PGs in A.
suturalis and one PG in N. tenuis), and only one PG in
A. suturalis and the PG in N. tenuis contained one in-
tron in the open reading frame region (Additional file 2:
Figure S5).

Natural selection analysis
The codeml branch model significantly rejected the neu-
tral evolutionary hypothesis for the whole phylogeny of
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mirid PGs (Table 1, LRT = 9746.22, p < 0.001). Also our
analysis suggests that the zoophytophagous lineages, which
experienced serious loss of PGs, also evolved according to
the non-neutral pattern (LRT = 41.12, P < 0.001). Given
this result, we further specifically tested whether the selec-
tion pressure differed between predatory and phytozoopha-
gous mirid bugs. When we set zoophytophagous lineages
as foreground and phytozoophagous branches as reference,
RELAX estimated the selection intensity parameter value
of K = 0.546 (K = 1 is RELAX’s null hypothesis; K < 1, selec-
tion pressure been relaxed; K > 1, selection pressure been
intensified), and the alternative relaxation model signifi-
cantly outperformed the null model with a P-value =
1.58 × 10− 4, which is consistent with the results assessed
with the likelihood ratio test. However, this was not the
case when we set phytozoophagous lineages as the fore-
ground (K = 1.0 and P-value = 0.92), which suggest that a
relaxation of selection pressures occurred on the zoophyto-
phagous branches.

Expression analysis
To detect the mRNA level of PGs in phytozoophagous
and zoophytophagous mirid bugs, we chose A. suturalis
and N. tenuis to perform RNA-seq for three replicates
(groups) and used the CDS sequence of PGs for counting
FPKM value. In A. suturalis, 29 of 30 PGs were highly
expressed (average FPKM value > 30) and the expression
level of these 30 PGs showed statistically significant
differences (d.f. = 29,60, F = 11.016, P = 6.481e-15)
(Fig. 3). Only one in seven PGs of N. tenuis was highly
expressed, but the expression levels were not

statistically significant because of big differences among
samples (d.f. = 6,14, F = 2.7757, P = 0.05416) (Fig. 4). In A.
fasciaticollis and A. lineolatus, we sequenced one sample
per species. As with PGs from the phytozoophagous A.
suturalis, 17 of 20 PGs A. fasciaticollis and 16 of 17 PGs
in A. lineolatus were highly expressed (FPKM value >
30) (Additional file 2: Figures S6, S7).

Discussion
As barriers to plant nutrients, the diversity of cell walls
may promote the adaptive evolution of pests, including
insects and pathogenic microbes. Mirid bugs are respon-
sible for serious yield loss in several economically import-
ant crops (including cotton and grapes) by causing plant
stunting and fruit abscission [44]. To feed on plants, mirid
bugs use horizontally transferred PG genes derived from
fungi and then multiplied these genes [14, 16]. However, it
remains unclear whether the gene duplication of PGs is
related to the host range expansion of mirid bugs or not.
The PG genes and host-range diversity of species within
the family Miridae forms an ideal model to investigate the
adaptive evolution of host-shift by horizontally transferred
gene duplication [14, 25, 41–43]. Next generation sequen-
cing (NGS) facilitates the investigation of these expressed
PG numbers and levels [45].

Identification of PGs in mirid bugs
In this study, we determined the expressed PG genes in
three phytozoophagous and one zoophytophagous mirid
bugs by RNA-seq technology. Phytozoophagous mirid
bugs usually have a broad host-plant range, while
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zoophytophagous mirid bugs feed on only a few plants
[41–43]. Interestingly, we found a significant, positive cor-
relation between the numbers of host plants and the num-
bers of expressed PGs in mirid bugs, suggesting the
possibility that PG gene duplication may promote

host-plant expansion in mirid bugs. There are two sources
for gene duplication (DNA and RNA): the first can be ex-
plained by three established models: unequal
crossing-over, duplicative (DNA) transposition and poly-
ploidization; the second is called retrotransposition, which

Table 1 Selective patterns for PG genes

Model npa Ln Lb Estimates of ω Models compared LRTc P Values

Branch model

A: one ratio 293 −59,339.55 ω = 0.10894

B: one ratio ω = 1 292 −64,212.66 ω = 1 B vs. A 9746.22 0.0

C: predacity branches have ω1, the other branches have ω0 294 −59,339.50 ω1 = 0.09379
ω0 = 0.10900

A vs. C 0.1 0.75

D: predacity branches have ω1 = 1 293 −59,360.06 ω1 = 1
ω0 = 0.10798

D vs. C 41.12 0.0

aNumber of parameters
bThe natural logarithm of the likelihood value
cTwice the log likelihood difference between the two models
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is from mature RNA and without introns [46, 47]. To de-
termine the duplicated model of PGs, we detected the
genomic structure of seven PGs in A. suturalis and N. ten-
uis. One intron was found in the CDS region of PG in N.
tenuis. There were no introns in the CDS regions of six
PGs. Although we found introns in PGs of mirid bugs, we
could not exclude the possibility that the duplication of
PGs in mirid bugs derived from retrotransposition.

The molecular evolution of PGs in mirid bugs
Theoretically, neutral evolution and natural selection
drive ecological population divergence and the speci-
ation of organisms [48–50]. As major digestive en-
zymes of plants, PGs in phytozoophagous mirid bugs
might be under more selection pressure than PGs in
zoophytophagous bugs. As expected, a test of selection
suggested that PGs of mirid bugs were under natural
selection but not neutral evolution. Although no posi-
tive selection was detected on PGs of phytozoophagous
mirid bugs, our results clearly showed significantly re-
laxed selection in PGs of predators, suggesting a pos-
sible loss of function of PGs in zoophytophagous mirid
bugs. Molecular phylogeny analysis indicated that
zoophytophagous mirid bugs (e.g., N. tenuis from the

Bryocorinae) were more ancient than phytozoophagous
mirid bugs (e.g., A. fasciaticollis, A. lineolatus, A. sutur-
alis, and A. lucorum from the Mirinae), suggesting a
host-expansion from zoophytophagous to phytozoopha-
gous mirid bugs [24]. Indeed, phytozoophagous mirid
bugs also prey on insects [51]. Taken together, horizon-
tal transfer of PGs from fungi may promote host expan-
sion in mirid bugs: initially, mirid bugs mainly preyed
on arthropods and were unable to feed on plants inde-
pendently but only on plant tissues digested by fungi;
subsequently, they obtained PGs from fungi by HGT
and gained the capacity to feed on plants independ-
ently; finally, phytozoophagous mirid bugs might ex-
pand their host-plant ranges by multiplying the number
of their PGs, while predatory mirid bugs kept low copy
numbers of PGs, which underwent relaxed selection
because of the largely non-phytophagous nature of the
diet of these species.

Expression patterns of PGs in mirid bugs
Adaptive evolution at a molecular level includes two
mechanisms to regulate gene function: (1) nucleotide/
amino acid sequence variation which could be detected
with selection pressure as described above, and (2)
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expression levels which are essential for gene function
(e.g., opsin evolution in the visual system) [52–55].
To determine whether all PGs are highly expressed
and whether the expression levels of PGs were differ-
ent between phytozoophagous and zoophytophagous
mirid bugs, we analyzed the expression levels of PGs in A.
suturalis (three replicates), N. tenuis (three replicates), A.
fasciaticollis (no replicates) and A. lineolatus (no repli-
cates) using FPKM values from of RNA-seq. Our results
clearly showed that almost all PGs were highly expressed
in the three phytozoophagous mirid bugs (> 17), but
only one PG was relatively highly expressed in zoo-
phytophagous mirid bugs with huge fluctuation, which
most likely resulted from that PGs were needed more
by phytozoophagous than zoophytophagous mirid
bugs. The other reason that feeding on cotton caused
the upregulation of PGs could not be completely
excluded because the samples used in this study of
phytozoophagous mirid bugs were collected in cotton
field and the zoophytophagous mirid bugs were col-
lected in tobacco field. Controversially, N. tenuis has
been used as a natural enemy for pest management
because of its zoophytophagy [56–58]. Taking the evi-
dence of molecular evolution together with the mRNA

expression levels of PGs, our data support the use of
N. tenuis as a natural enemy due to the relaxed
selection and only one PG expressed in N. tenuis, but
with controlled density because of occasionally high
expression level.

Conclusions
We identified the number of expressed PGs in three
phytozoophagous and one zoophytophagous mirid bug
and found a significant, positive correlation between
the numbers of PGs and host plants. Natural selection
analysis suggested the PGs of zoophytophagous mirid
bug were under a significantly relaxed selection. More
than 17 PGs were highly expressed in each of the three
species of phytozoophagous mirid bugs, but only one
PG was relatively highly expressed in predatory mirid
bugs. Taken together with evidence of gene copy number,
molecular evolution and gene expression levels, our results
suggested that PGs were more needed by phytozoophagous
than zoophytophagous mirid bugs and the duplication of
PGs promoted the host-expansion of mirid bugs. This re-
search suggests that PGs are target genes for the manage-
ment of phytozoophagous mirid bugs (e.g. RNAi).
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