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Abstract

Background: The pattern of data availability in a phylogenetic data set may lead to the formation of terraces,
collections of equally optimal trees. Terraces can arise in tree space if trees are scored with parsimony or with
partitioned, edge-unlinked maximum likelihood. Theory predicts that terraces can be large, but their prevalence
in contemporary data sets has never been surveyed. We selected 26 data sets and phylogenetic trees reported
in recent literature and investigated the terraces to which the trees would belong, under a common set of
inference assumptions. We examined terrace size as a function of the sampling properties of the data sets,
including taxon coverage density (the proportion of taxon-by-gene positions with any data present) and a
measure of gene sampling “sufficiency”. We evaluated each data set in relation to the theoretical minimum
gene sampling depth needed to reduce terrace size to a single tree, and explored the impact of the
terraces found in replicate trees in bootstrap methods.

Results: Terraces were identified in nearly all data sets with taxon coverage densities < 0.90. They were not
found, however, in high-coverage-density (i.e., ≥ 0.94) transcriptomic and genomic data sets. The terraces
could be very large, and size varied inversely with taxon coverage density and with gene sampling sufficiency. Few
data sets achieved a theoretical minimum gene sampling depth needed to reduce terrace size to a single tree.
Terraces found during bootstrap resampling reduced overall support.

Conclusions: If certain inference assumptions apply, trees estimated from empirical data sets often belong to large
terraces of equally optimal trees. Terrace size correlates to data set sampling properties. Data sets seldom include
enough genes to reduce terrace size to one tree. When bootstrap replicate trees lie on a terrace, statistical support for
phylogenetic hypotheses may be reduced. Although some of the published analyses surveyed were conducted with
edge-linked inference models (which do not induce terraces), unlinked models have been used and advocated. The
present study describes the potential impact of that inference assumption on phylogenetic inference in the context of
the kinds of multigene data sets now widely assembled for large-scale tree construction.
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Background
Among the methodological challenges in phylogenetic
inference are those posed by missing data. Problems tied to
incomplete data sets first emerged in the context of
paleontological data matrices [1–3], from which character
states may be missing because of inapplicable characters or
fossil incompleteness, leading to parsimony reconstruction
(used widely for morphological data sets) recovering
multiple, equally good trees. A large literature (e.g., [4–16])
has since assessed the risks and identified advantages linked

to the use of incomplete data sets for inference, and the
issues remain salient in the modern phylogenetics context
because few data sets are fully sampled (i.e., include data at
every taxon-by-gene position). Incomplete data can be
analyzed accurately [10, 12, 14, 16–18] but studies also find
that sparse data can undermine phylogenetic accuracy [4–
6, 8] and confidence [9, 19, 20]. Recent work shows, for
example, that abundant or nonrandom missing data can
bias estimates of model parameters [21] promote the emer-
gence of support artifacts [22, 23]; and worsen biases built
into heuristic search procedures [24, 25], leading to
artifactual tree search outcomes [25].* Correspondence: dobrinb@email.arizona.edu
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Adding to these difficulties are terraces [26, 27], col-
lections of equally optimal trees that may arise in tree
space because of the taxon coverage patterns (the pat-
tern of gene presence/absence across taxa) in partitioned
alignments, such as commonly are found in multigene
data matrices. Terraces can slow tree search [26, 28] and
mislead heuristic search algorithm [27]; when a tree
search algorithm returns one putatively optimal tree that
is actually on a terrace, then this adds ambiguity to tree
inference. The presence of terraces can also confound
confidence assessment: in bootstrapping (under some
conditions), replicates are more likely to return a spuri-
ous clade if the clade occurs frequently on a terrace of
optimal trees; and in Bayesian assessment, long-branch
bias in the presence of missing data can elevate posterior
probabilities of some of the trees belonging to a terrace
[27]. The latter “phantom” support phenomenon resem-
bles the “star paradox” [29] and Bayesian long-branch
repulsion effects [30] observed elsewhere.
Precise necessary and sufficient conditions for the oc-

currence of terraces have been described elsewhere [26,
27]. Roughly speaking they include: 1) the tree optimality
criterion is parsimony or partitioned maximum likelihood
(ML) and, if the latter, edge lengths are optimized inde-
pendently across data partitions (i.e., the inference model
is “edge-unlinked” (EUL)) [27]; and 2) each partition is
sampled for fewer than the full complement of taxa. For
any “parent” tree, T, having all the taxa in a data matrix,
each partition of the matrix with fewer than this number
of taxa sampled induces (“displays”) a subtree of T with

those “missing” taxa pruned. Depending on the taxon
coverage pattern, these subtrees may be compatible not
only with T but with an assortment of other parent trees,
each displaying the induced subtree (Fig. 1). If the opti-
mality function is one of those cited above, scores of all
parent trees will be identical [26, 27], and collectively the
parent trees are called a terrace. Because terraces consist
of parent trees that display the same compatible subtrees,
they can be characterized using algorithms from the
supertree literature; in particular, terraces can be discov-
ered and described without the need to search tree space
once the first tree,T, is found [26, 27].
All else being equal, terraces should arise more often

from data sets with sparser taxon coverage, and more
often when data span many taxa and few genes (as in a
“tall” matrix), than the converse (as in a “wide” matrix)
[31]. The increased prevalence of next-generation sequen-
cing (NGS) sampling approaches will reduce the incom-
pleteness of data matrices, but “gappiness” currently
characterizes much large-scale phylogenetic data, for rea-
sons including 1) the use of public sequence archives,
which store disparate data sets composed of different taxa
and different numbers of taxa; 2) biological [30] or meth-
odological [32] barriers to obtaining orthologous se-
quences; 3) the use of shallow coverage protocols with
NGS methods; and 4) loss of genes. In this paper, we in-
vestigate the terraces that would arise from 26 large data
sets under the necessary inference assumptions. In par-
ticular, we investigated whether the published optimal
trees – generally maximum likelihood trees - were on a

Fig. 1 Origin of terraces. The two-locus taxon coverage pattern (displayed as a taxon coverage matrix, left) of a data alignment induces
two subtrees, T|Y1 and T|Y2, of a tree, T, inferred from the data. Three trees, T, T ’, and T” all display and are parent trees of T|Y1 and T|Y2. If
the tree scoring function is parsimony or ML-EUL, the scores of T, T ’, and T” are identical, and the trees constitute a terrace. Figure
adapted from [27]. Credit: J. Charboneau
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terrace, and the properties of those terraces. When we
reviewed the methods and models used originally to re-
cover the trees, we found surprising variability: one author
[33] conducted unpartitioned analysis, another [34] re-
ported having used an edge-linked (EL) model, and many
authors left inference model details unspecified. Of those
in the latter category, some may have used linked edge-
length parameters (and consequently EL models), often
the default parameter setting of tree reconstruction pro-
grams. However, we were less interested in evaluating the
findings of the published studies than in constructing a
test bed of data sets for examining the size and diversity of
terraces that would emerge under EUL inference (or parsi-
mony). EUL models have been used in likelihood-based
tree reconstruction, and may confer advantages in analysis
of some time-heterogeneous data sets (see Discussion);
and terraces are predicted to emerge from incompletely-
sampled data under EUL assumptions. Accordingly, we
evaluated the terraces that would have arisen if the re-
ported trees had been products of EUL maximum likeli-
hood inference (ML-EUL) or parsimony. We characterized
the terraces, measuring their size and the diversity of their
trees. We examined terrace properties in relation to the
data availability characteristics of the data sets, including
taxon coverage density and a measure of data sampling
sufficiency derived from theory. When bootstrapping to
obtain tree support values, each replicate tree may belong
to a terrace. We used consensus methods to measure the
impact of these terraces on bootstrap support. Finally, we
examined terrace size as a function of a simple measure of
overall data coverage, the percentage of taxon triples sam-
pled within partitions. Because terrace formation in likeli-
hood inference occurs with the use of EUL models, we
also used the Akaike Information Criterion (AIC) [35] to
identify the more suitable model (EL or EUL) for each data
set in the study sample.

Methods
Concepts and definitions
Earlier articles [26, 27] provide detailed exposition of
terraces and their properties. Here, we outline terrace
theory in brief.

Terraces and inference models
Consider a data matrix consisting of aligned, homolo-
gous sites (these may be nucleotides or other characters)
and n taxa, with the sites subdivided into k loci. We may
denote the set of n taxon labels as X. Each locus corre-
sponds to a unit such as a gene or a codon position, or
perhaps to a collection of sites demarcated by some a
posteriori criterion. Throughout this article, we will refer
to loci variously as “loci,” “partitions,” and “genes,” with-
out regard to the scheme used to cluster the data. If any
data are present for a taxon at a locus, we consider that

locus sampled for the taxon. The coverage pattern S for
the data and partitioning scheme consists of the subsets
of taxa Y1,...,Yk sampled for each of the k loci. Taxon
coverage density, or just coverage density, refers to the
percentage of taxon-by-locus combinations that have
any data present. We also speak of a taxon coverage
matrix, which differs from the coverage pattern only in
that it records the presence and absence of samples at
taxon-by-locus locations.
Given a tree T on X, each of the taxon subsets Yj in S in-

duces a subtree T|Yj composed only of taxon labels in Yj -
that is, T|Yj is the subtree of T remaining after all taxa not
present in Yj are removed. The tree T displays the set of
induced subtrees T|Y1,…,T|Yk, and is a parent tree of
T|Y1,…,T|Yk. Fig. 1 illustrates how more than one tree
may display (i.e., be a parent tree of) a set of subtrees in-
duced by a taxon coverage pattern: the two-locus coverage
pattern Y1, Y2 induces the subtrees T|Y1, T|Y2, of which T,
T’, and T” are parent trees. If the parent trees are scored
with an optimality function such as parsimony or max-
imum likelihood, and if all parent trees score the same,
collectively the parent trees are called a terrace.
If the scoring criterion is parsimony, the set of parent

trees is always a terrace [26]. If the criterion is maximum
likelihood (ML), the parent trees are a terrace if edge-
length parameters of the inference model are optimized
independently across loci [27]. In this paper, we refer to
models with such parameters as edge-unlinked (EUL).
An edge-linked (EL) model has a single length param-
eter per edge (i.e., optimization is joint across loci). A
partially edge-linked (PEL) model joins edge-length pa-
rameters across loci by one or more proportionality con-
stants. Use of an EUL model is a sufficient condition for
the emergence of terraces, while optimization with a
linked model (EL or PEL) is insufficient – terraces do
not arise under their assumptions. No conditions apply
to the rate matrix of the model, which may be defined
independently or jointly across loci [27].
As noted in the Introduction, often we could not dis-

cern rigorously the details of the inference models used
in the phylogenetic studies in our sample. In particular,
authors often left unspecified the linkage type (i.e.,
whether optimized jointly [linked] or separately [un-
linked] across partitions) assigned to edge-length param-
eters, and some authors may have relied on inference
tool default settings. In RAxML [36], the program used
most often across the sample, parameters for edge
length are linked by default, implementing a model (EL)
that does not induce terraces. The authors of one ana-
lysis [34] explicitly reported having used an EL model.
As we have noted, we were more interested in the im-
pact of the structure of the data than the particular in-
ference assumptions of the published papers, and
accordingly, we investigated the terraces that would have

Dobrin et al. BMC Evolutionary Biology  (2018) 18:46 Page 3 of 16



arisen had the reported trees been recovered with parsi-
mony or with some form of ML-EUL inference model.

Defining and decisiveness
If a tree T on X is the only parent tree of a set of sub-
trees induced by a coverage pattern S, we say that the
subtrees define T. Similarly, a coverage pattern S is said
to be decisive for T if T is the only parent tree of the
subtrees induced by S. Theory [31, 37] establishes neces-
sary and sufficient conditions under which a coverage
pattern achieves decisiveness. A theory of defining sets
out conditions under which a set of subtrees define a
tree. Here we summarize a selection of these theoretical
results, described previously in [31]:

� For a coverage pattern S to be decisive for all
(unrooted) trees on X, it is sufficient that one locus
is fully sampled (i.e., for every label in X). This
condition follows trivially from a condition (which
we do not describe here) applying to the distribution
of taxon quadruples among label subsets in S.

� For a coverage pattern S to be decisive for all
(unrooted) trees on X, it is necessary that every triple
of taxa (set of 3 taxa) is present (i.e., sampled or
observed) in at least one of the taxon subsets in S.

The latter result suggests intuitively that the distribu-
tion of triples in a coverage pattern, and the number of
parent trees that can be constructed from its induced
subtrees, may be empirically correlated. Sanderson et al.
2010 [31] speculated that the percentage of observed
taxon triples might indeed predict the impact of a given
quantity of missing data. Further theory developed in
[31, 38] similarly suggests such a relationship. We state
here one such further result, given in [38]:

� Given a rooted tree T and a coverage pattern S, the
set of induced subtrees T|Y1,…,T|Yk defines T if
every edge of T is distinguished by some rooted
triplet from T|Y1,…,T|Yk. To describe the concept of
distinguishing informally, let π be a leaf taxon whose
incident edge subtends the root of T, but which is
not found in X (i.e., the label set of T); let a, b, and c
be taxa belonging to X. The rooted triplet a|bc
distinguishes an edge e of T if each taxon in the set
{π,a,b,c} has one label found in each subtree in T
whose roots are adjacent to e, and e corresponds to
the edge of the resolved quartet πa|bc.

Whether a taxon triple is associated with a distinguish-
ing triplet depends on the shape of T, but taxon triple
percentage can be thought of as a (numerically smaller)
proxy for the proportion of edges of T distinguished by
rooted triplets. Edges not fixed by induced subtrees can

be broken and their subtended partial trees placed else-
where, forming equally optimal alternative topologies.

Terrace discovery and analysis
Selection and preparation of empirical data sets
From recent phylogenetics literature, we selected 13
multi-locus data sets, each consisting of at least 7 loci
and at least 95 taxa [33, 34, 39–48]. From the largest of
these, the ~ 33,000-taxa vascular plant “megamatrix” of
Zanne et al. [42], we extracted 13 disjoint data subsets,
each corresponding to a named genus or family, and each
including (with one exception) at least 95 taxa. Some of
these data subsets contained fewer than the 7 loci
present in the megamatrix. Across all data sets (includ-
ing vascular plant subsets), the number of taxa ranged
from 57 to 7000, the number of loci from 5 to 1122, and
the number of aligned sites from 5054 to 504,850. Taxon
coverage densities ranged from 0.06 to 0.98 (Table 1). Of
the studies selected, all but two reported maximum like-
lihood trees. We explored the terraces (if present) asso-
ciated with these trees, characterizing terraces as they
would have arisen had the published trees been products
of parsimony or ML-EUL. To analyze the data set of
[44], we used the published maximum clade credibility
(MCC) Bayesian tree. To analyze the data set of [34], we
used the published partitioning scheme and a tree that
we constructed ourselves from the aligned data using
parsimony heuristic search in PAUP [49]. [34] reported a
tree estimated from the data (with an edge-linked (EL)
model), but no machine-readable copy of the tree ac-
companied the article. For each data subsample of the
plant megamatrix, we extracted the corresponding sub-
tree from the ~ 33,000-taxa megaphylogeny. Polytomies
were absent from all trees except that reported by [33].
Several of the published data alignments included se-

quences for taxa not found in the accompanying trees.
We deleted these taxa; consequently, some taxon counts
in our experimental data sets differ from the published
counts. We also deleted a small number of additional
taxa (three or fewer across all data sets) when we en-
countered difficulties processing their sequence data into
the format required for terrace analysis. All final data
alignments, partitioning schemes, and trees analyzed for
this study have been posted on the GitHub website.

Discovering and characterizing terraces
We used the Python program ‘terraphy’ [50], written by
DJZ, to discover and characterize the terraces. Terraphy
accepts as input a data matrix of aligned sites, a partition
scheme, and a tree. It computes the taxon coverage
matrix for the alignment and partitioning scheme, the
size of the terrace to which the tree belongs, and the
strict and Adams (BUILD) [51] consensus trees of the
trees on the terrace. To compute terrace size, terraphy
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uses the Constantinescu & Sankoff [52] supertree al-
gorithm, created to construct the full set of parent
trees of a group of compatible input trees. To com-
pute the Adams consensus tree, the program uses the
BUILD algorithm of Aho [51]. To construct the strict
consensus tree, the program relies on algorithms of
Constantinescu & Sankoff [52] and Steel [38]. The
scaling properties of these operations have been
described in [26, 27]. The terraphy package also in-
cludes functionality to: 1) construct and output sam-
ples of trees from a given terrace, 2) determine
whether two trees (found in bootstrap replicates, for
example) belong to the same terrace, and 3) report
the number of equally good subtree resolutions within
each clade in the strict consensus tree of a terrace.

Terraphy treats input tree polytomies as “soft” or irre-
solvable. When the program receives a nonbinary tree, it
evaluates the terraces of the alternative polytomy resolu-
tions, and its output is the sum of tree counts from
those terraces. The impact of polytomies on terrace tree
counts is minimally relevant to this study because all but
one of the trees we examined were binary.

Variability among trees on terraces
To describe the diversity of trees on the terraces, we
constructed the strict consensus tree of each terrace and
calculated its resolution, ρ (defined as the ratio of the
number of a tree’s bipartitions to the number of biparti-
tions of a fully resolved (binary) tree of the same size).

Table 1 Data set profiles and results of terrace and decisiveness analyses

Taxon Number
of taxa

Number
of loci

Number
of sites^

Taxon coverage
density

Terrace size ρ (resolution) of strict
consensus of trees
on terrace

Min. loci needed for
decisiveness (kmin),
p = .05

Gene (locus)
sampling
sufficiency (ζ)

Ref.

Birds 7000 32 39,611 0.12 1.30E + 388 ** 129,035 −8.3 [39]

Lichenized fungi 1317 9 7433 0.44 11,655 ** 574 −4.16 [40]

Saxifragales 946 51 48,242 0.06 ** NA 2,107,107 −10.63 [33]

Bats 815 29 20,364 0.15 1.43E + 41 0.78 44,209 −7.33 [41]

Rosaceae* 529 7 11,728 0.3 1.72E + 23 0.77 2627 − 5.93 [42]

Primates 372 79 61,198 0.37 70.8 million 0.92 982 − 2.52 [43]

Caryophyllaceae* 225 7 11,753 0.29 718.3 billion 0.77 2349 − 5.82 [42]

Scincid lizards 213 6 5283 0.78 3 ~ 1.00 37 −1.83 [44]

Chameleons 202 6 5054 0.92 1 1 14 −0.83 [45]

Solanum* 187 7 11,875 0.31 211.9 million 0.68 1730 − 5.51 [42]

Primula* 185 6 9408 0.43 2835 0.92 466 −4.35 [42]

Ranunculus* 170 7 9504 0.31 3 0.99 1889 − 5.6 [42]

Mammals 169 26 35,600 0.94 1 1 11 0.86 [46]

Insects 144 479 413,459 0.95 1 1 10 3.88 [34]

Iris* 137 6 8098 0.33 1 1 1384 −5.44 [42]

Eucalyptus* 136 6 7512 0.23 27 0.9 5416 − 6.81 [42]

Asplenium* 133 6 9797 0.21 95 0.64 8269 −7.23 [42]

Euphorbia* 131 7 11,648 0.28 759 0.87 2681 −5.95 [42]

Rhododendron* 117 7 9536 0.35 81 0.95 1034 −5 [42]

Ficus* 112 5 5645 0.36 851,445 0.8 12,357 −7.81 [42]

Syzygium* 106 5 5775 0.35 45 0.96 994 −5.29 [42]

1000 Plants.1 102 8 290,719 0.97 1 1 7 0.15 [47]

1000 Plants.2 102 620 290,719 0.91 1 1 13 3.88 [47]

Caryophyllales.1 95 209 87,082 0.98 1 0.99 8 3.23 [48]

Caryophyllales.2 95 1122 504,850 0.92 1 0.99 12 4.56 [48]

Allium* 57 6 6938 0.24 973,215 0.32 4231 − 6.56 [42]

^: Site counts do not include alignment columns containing no data, and may differ from counts reported in the original literature. kmin: theoretical minimum
number of loci that would need to be sampled to guarantee that a data set of a given sampling density and taxon count would be decisive for a random,
unrooted tree, assuming random distribution of taxon samples. ζ: gene (locus) sampling depth “sufficiency”: kmin normalized to the number of genes (loci)
sampled and transformed for scale. ζ < 0 indicates insufficient sampling depth, ζ > = 0 sufficient sampling depth. * denotes a subsample of the Zanne et al. [42]
vascular plant “megamatrix”. **: tree enumeration or consensus tree construction terminated prior to program completion
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Number of loci that must be sampled to ensure
decisiveness; “gene sampling sufficiency”
A probability model of random taxon sampling, described
in [31, 53], predicts the lower bound on the number of
loci, kmin, that would need to be sampled to guarantee that
a taxon coverage pattern, S, given its taxon coverage dens-
ity and taxon number, n, would be decisive for some (ran-
dom) tree constructed on the label set, X, of S:

kmin ¼
ln

n
3

� �
=p

� �

− ln 1−d4� �

which approximates to

kmin ≈
log

n3

6p
− log 1−d4� �

([53], Mike Steel, personal communication, 2015),
where d is the taxon coverage density of S, n the number
of taxa in S, and p the desired confidence level. Hence-
forth, kmin stands for the approximation. To compare
data sets, we used a normalized value that we call “gene
sampling sufficiency” (i.e., the depth of the gene sam-
pling), or ζ:

ζ ¼ ln
kmin

k

where k is the number of loci (partitions) sampled. If
decisiveness for a random tree on X is highly probable
(p < 0.05), then ζ ≥ 0. Otherwise, ζ < 0.

Impact of terraces on bootstrap support
In bootstrapping, the tree returned by each bootstrap
replicate may be part of a terrace of equally good trees.
To examine the impact of terraces on resampling sup-
port, we selected three small-to-medium-sized (112–225
taxa) data sets whose terraces were among the larger of
those recovered. From each of the three data sets, we
constructed 100 RAxML rapid bootstrap trees. We used
PAUP to construct a majority rule consensus tree of
each bootstrap replicate set and computed ρ for each
majority rule consensus tree (Fig. 2). Next, using terra-
phy, we evaluated the terrace of each replicate tree and
constructed the strict consensus tree of each terrace. Fi-
nally, we used PAUP to construct the majority rule con-
sensus tree of each collection of strict consensus trees.
We call these majority rule trees “terrace-aware,” be-
cause they exclude clades present in fewer than 100% of
trees on the terrace found in each bootstrap replicate.
We computed ρ for each “terrace-aware” consensus tree.

Observed taxon triples and terrace size
To test the conjecture of Sanderson et al. [31] that
the fraction of triples sampled in taxon subsets (i.e.,
Y1,...,Yk) might predict the effects of a given amount
of missing data, we computed the observed triple
proportion (see Concepts and Definitions, earlier) for
12 data sets of relatively similar taxon coverage dens-
ity and ζ values. Taxon coverage densities for this
group ranged from 0.19 to 0.43, and ζ values ranged
from − 4.35 to − 7.81. All data sets were chosen from
among the vascular plant subsamples.

Edge-length model choice
Although terraces are only known to occur with EUL
models, EL may not be the best model for all data sets.
We used the Akaike Information Criterion (AIC) [35] to
identify the most appropriate edge-length model for
each data matrix in the study sample. For each matrix,
we obtained maximum likelihood scores for a tree previ-
ously inferred from the data (in each case the tree used
for terrace analysis) with both models. For likelihood
analyses, we used RAxML v. 8.2.11 [36], with separate
HKY85 [54] substitution matrices for each partiton of
DNA data sets, and separate WAG [55] transition
models for each partition of protein data sets. We used
the GAMMA model of rate heterogeneity for all data
sets. Within pairs of inference models, the EUL model
differed from the corresponding EL model only in esti-
mating branch lengths independently across loci. We
computed ΔAIC [56, 57] for each pair of models.

Results
Size of terraces; relationship to taxon coverage
percentage
We succeeded in measuring the terraces present in 25
data sets; the sizes ranged from one tree (a nominal ter-
race) to an astonishing 10388 trees (Fig. 3a, Table 1).
The latter terrace was that found in the 7000-taxon
data matrix, the largest (in terms of taxa) of those ana-
lyzed. In evaluating the terrace of the large (946 taxa),
low-sampling-density (coverage density of .06) data set
of [31], we terminated the program run after several
weeks. Although the time required to count trees on
this terrace implies that it is very large (as run time
scales linearly with terrace size [26, 27]), the polytomy
topology (ρ = 0.82) of the tree may have extended the
program running time (see Methods). No terrace of a
data set of coverage density greater than 0.90 exceeded
one tree. For the 13 plant “megamatrix” data subsets,
terraces ranged in size from 1 to ~ 1023 trees, although
taxon coverage densities for these data sets spanned a
narrow range, from 0.19 to 0.43. In general, terrace size
varied inversely with the taxon coverage density of the
data (Fig. 3a).
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Minimum gene sampling depth needed for decisiveness
kmin was often very large, exceeding 1000 loci for 16
data sets, and exceeding 2 million loci for one data
set (Table 1). Sampling sufficiency, ζ, measured less
than zero (i.e., insufficient) for all but six data sets
(Fig. 4a, Table 1). As with taxon coverage density, ter-
race size generally varied inversely with sampling suf-
ficiency (ζ) (Fig. 4b). Terraces found in two data sets
for which values of ζ were low (− 5.44 and − 5.60)
comprised 1 and 3 trees, respectively, results at odds
with the predictions of the Steel [53] and Sanderson
et al. [31] probability model. The uniform taxon sam-
pling assumed by their model, however, may not re-
flect samples found in many empirical data sets.

Variability among trees on terraces
After several weeks we terminated construction of the
strict consensus tree of both the 11,655-tree terrace
associated with the data set of [40], and the enor-
mous 10388 tree terrace found in the data set of [39].

Although time to compute the strict consensus tree
of a terrace scales polynomially, the large sizes of the
tree (1337 taxa) on the one hand, and the terrace on
the other, likely explain the long run times required
to complete the program runs. For the remaining
terraces, except those of one tree (nominal terraces)
and the terrace discovered from the smallest data set,
ρ of the strict consensus trees ranged from 0.64 to 0.
98 (Fig. 4c, Table 1). In general, ρ varied inversely
with terrace size (Fig. 4b); exceptions included the
value ρ = 0.92 for the ~ 71 million-tree terrace associ-
ated with the data set of [43]. ρ measured less than
0.50 only for the consensus tree associated with the
smallest data set, a 57-taxon subsample of the Zanne
et al. 2014 [42] matrix.

Impact of terraces on bootstrap support
The resolution, ρ, of the bootstrap majority rule con-
sensus trees measured 0.47, 0.49, and 0.56, while ρ

a b2

b3

b1

Fig. 2 Measuring “terrace-aware” bootstrap support. Top center of figure: a sample of bootstrap replicate trees. a. Majority rule consensus tree of
replicate set. b1. Terraces containing the individual replicate trees. b2. Strict consensus tree of each terrace. b3. Majority rule consensus tree of
the strict consensus trees, or “terrace-aware” majority rule tree
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for the “terrace-aware” majority-rule trees measured
0.33, 0.41, and 0.36, respectively (Fig. 5).

Percentage of taxon triples observed and terrace size
As anticipated [31], the percentage of triples sampled
within taxon subsets (Y1,…,Yk) varied inversely (p = .008)
with terrace size among data sets of similar sampling
density and ζ (Fig. 6).

Edge-length model choice
The AIC criterion favored the EUL model over the corre-
sponding EL model for 9 data sets (Table 2), including
phylogenomic and high-coverage-density data matrices
from which terrace analysis recovered terraces of one tree.
The EL model was preferred for the remaining data sets,
including all but one of the 13 vascular plant subsets.

Discussion
The results of this analysis show that the phylogenetic trees
inferred from empirical data sets often are found on large
terraces of equally optimal trees, given certain assumptions
about inference. The size of these terraces correlates in-
versely with data availability characteristics of the data:
taxon sampling density, and a gene sampling “sufficiency”
metric derived from theory. Evaluated by the latter meas-
ure, which incorporates the assumptions that no additional
taxon sampling occurs and that sampling density does not
increase, data sets seldom include enough genes to reduce
terrace size to a single tree. We found that bootstrap sup-
port is reduced when the trees on terraces are included in
replicate samples, and we showed how the distribution of
taxon samples influences the size of terraces among data
sets of otherwise similar sampling properties.
Our findings illustrate the frequency and scale at which

terraces could arise from data sets assembled under a range
of strategies. Of five high-coverage-density, genome- or
transcriptome-scale data sets in our study sample (i.e., [34,
47, 48]) none induced terraces having more than one tree.
Among low-density data sets extracted from the vascular
plant megamatrix, terrace sizes varied widely; results from
our taxon triple experiment show that distributions of sam-
ples across data partitions explain some of these differences.
The findings for this group indicate the scale at which sets
of equally optimal subtree topologies might emerge within
the lower taxonomic ranks of trees inferred from extremely
large (“mega”-scale) data sets. Our sample also included
studies conducted at the ordinal or infra-class level (e.g.,
[33, 39, 41, 43]), some including large species samples to
provide statistical power for downstream comparative ana-
lyses. Studies in this category rely on gene-rich, low-density
data gathered predominantly from public repositories, but
the gene samples, though large, do not achieve the depth
required to reduce terrace size to one tree.
Tests [58] of the RAxML rapid and standard bootstrap

search algorithms using empirical data have shown that,
although the differences are small, rapid (heuristic) boot-
strap search typically returns higher support values than
standard bootstrap search; and when compared for the
same data set, the total number of distinct bi-partitions
in standard bootstrap samples is higher than that found
in rapid bootstrap samples. The likely cause of these
somewhat surprising differences in support levels is that
the use of non-independent starting trees in rapid search

a

b

Fig. 3 Terrace properties. a: Terrace size as a function of taxon
coverage density. The black dot marks the coverage density of the
data set for which we terminated terrace tree enumeration before
completion (see text). The data point above the plot (in dashed box)
represents the largest terrace measured, 10388 trees. b: Resolution (ρ)
of the strict consensus tree of a terrace plotted as a function of
terrace size. ρ is defined as the ratio of the number of a tree’s
bipartitions to the number found in a binary tree of the same size.
For two terraces identified in data sets, including the largest (10388

trees) and a terrace consisting of 11,655 trees, we terminated
construction of the strict consensus tree before completion
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“localizes” search in tree space and leads to stronger
support [58]. These findings imply that, in tree space
with terraces, standard bootstrap would overstate
support less than does rapid bootstrap (i.e., values of ρ
measured for basic and “terrace-aware” consensus trees
would be nearer to one another). The effectiveness of
search algorithm alternatives at estimating support in
terraced tree space deserves further study.
A common approach to assembling data for the recon-

struction of large and species-rich clades is to combine
two data matrices of different coverage densities: a com-
pletely sampled matrix of many slow-evolving genes for
a small set of taxa sharing most recent ancestors at deep
nodes, and a sparser matrix of fast-evolving genes sam-
pled for a larger collection of species concentrated in

lower subclades (i.e., “top-down, bottom-up” sampling
method [14, 34, 43, 46, 59]). Experiments using empir-
ical data [14] show that this data sampling facilitates the
accurate reconstruction of large clades at deep and shal-
low levels. Our taxon triple results suggest that terraces
might arise from this sampling design if inclusion of the
sparse complement - the fast-evolving genes - increases
the number of taxon triples (relative to the base matrix)
faster than the number of triples sampled within parti-
tion subsets. Similarly, combining incomplete taxa (taxa
sampled for less than the full complement of genes) with
a densely-sampled matrix of slow-evolving loci is
thought to be advantageous for reconstructing deep
nodes, since the incomplete data can subdivide long, sat-
urated branches [6, 60, 61]. With this design, if blocks of

a

b c

Fig. 4 Gene sampling sufficiency (ζ) and terrace properties. ζ: scaled ratio of the number of genes present in the data set and the theoretical
minimum number of genes needed for the data set to be decisive. A decisive data set induces a terrace of only one tree. ζ > =0: number of
genes is sufficient for the data to achieve decisiveness. ζ < 0: number of genes is insufficient. a. Rank-order ζ of the 26 data sets. The number of
genes is sufficient to achieve data decisiveness in only 6 data sets. b. and c. Terrace size and consensus tree ρ plotted as a function of ζ. The data
point above the plot in b. represents the largest, 10388-tree terrace. Black dots mark the ζ values of data sets for which we terminated terrace tree
enumeration or consensus tree assembly before completion
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the introduced taxon labels share few sampled genes -
that is, if the incomplete taxa are sampled nonrandomly
- we might expect terrace behaviors among the discon-
tinuously sampled labels, as their inclusion would in-
crease total data set taxon triples more than triples
observed in partitions. Of course, in considering these
common data assembly strategies, we leave aside other
concerns arising from sparse or fragmented sampling
(see Introduction).
Our results show that ΔAIC favored EUL models for

some data sets, including many in which terrace analysis
found terraces of a single tree; while favoring EL models
for others, including many of lower sampling density,
and most from which multi-tree terraces arose. The cor-
relation between terraces in data sets and the
information-based preference for simpler models de-
serves further study, but it is not unexpected, given the
tendency of information-based model selection criteria
to reject richer models where there are less data [56, 57].

Inference models and “stands”
In this paper, we described the terraces that would arise
in tree inference from real data sets under parsimony or
ML-EUL inference assumptions. We also noted that one
or more of the trees investigated were inferred originally
with EL models, which do not induce terraces. There is
an important connection between several concepts here
that is independent of the particular inference model.
We define a stand [27] as the collection of parent trees

Fig. 5 Comparing bootstrap and “terrace-aware” bootstrap support.
A “terrace-aware” bootstrap sample consists of 100 strict consensus
trees, each the consensus of the terrace associated with an
individual bootstrap replicate tree. The ordinary bootstrap sample
consists of 100 replicate trees. ρ was computed for the majority rule
consensus trees of the two samples

Fig. 6 Terrace size and distribution of taxon samples. Terrace size plotted against the fraction of taxon triples observed in locus subsets (see text)
for 12 data sets of similar taxon coverage densities and ζ. Linear regression line p = .008. Range of taxon coverage density values: 0.19–0.43. Range
of ζ values: − 4.35 – − 7.81 (ζ: gene sampling sufficiency [see text])
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Table 2 EL and EUL model choice

Taxon Number
of taxa

Taxon coverage
density

Number
of loci

Model Number of
parameters

Log likelihood AIC AIC [EL] –
AIC [EUL]#

Terrace size

Insects 144 0.95 472^ EL 757 −30,914,676 61,830,867 417,292 1

EUL 134,992 −30,571,795 61,413,574

Caryophyllales.2 95 0.92 1120^^ EL 1307 −20,001,090 40,004,795 184,811 1

EUL 210,560 −19,699,432 39,819,984

1000 Plants.2 102 0.91 620 EL 5781 −8,873,326 17,758,215 136,442 1

EUL 130,200 −8,680,687 17,621,773

1000 Plants.1 102 0.97 8 EL 273 −8,881,093 17,762,731 43,552 1

EUL 1680 −8,857,910 17,719,179

Caryophyllales.1 95 0.98 209 EL 396 −3,490,762 6,982,316 30,510 1

EUL 39,292 −3,436,611 6,951,806

Mammals 169 0.94 26 EL 569 −1,227,939 2,457,016 18,145 1

EUL 8944 −1,210,492 2,438,871

Chameleons 202 0.92 6 EL 455 − 188,780 378,471 4565 1

EUL 2460 −184,493 373,906

Scincid lizards 213 0.78 6 EL 477 −129,669 260,291 1410 3

EUL 2592 − 126,849 258,881

Euphorbia* 131 0.28 7 EL 322 −46,304 93,252 435 759

EUL 1876 −44,533 92,817

Iris* 137 0.33 6 EL 311 −29,602 59,827 −46 1

EUL 1596 −28,340 59,872

Allium* 57 0.24 6 EL 155 −15,288 30,886 − 217 973,215

EUL 660 −14,891 31,102

Primula* 185 0.43 6 EL 421 −43,494 87,831 − 801 466

EUL 2256 −42,060 88,631

Ficus* 112 0.36 5 EL 264 −14,185 28,897 − 963 851,445

EUL 1140 −13,790 29,860

Syzygium* 106 0.35 5 EL 254 −14,557 29,622 − 1085 45

EUL 1090 −14,264 30,707

Solanum* 187 0.31 7 EL 434 −39,049 78,967 − 1410 211.9 million

EUL 2660 −37,528 80,376

Caryophyllaceae* 225 0.29 7 EL 498 −67,977 136,951 − 1619 718.3 billion

EUL 3108 −66,177 138,570

Asplenium* 133 0.21 6 EL 317 −29,688 60,010 − 1758 8269

EUL 1632 −29,252 61,768

Eucalyptus* 136 0.23 6 EL 309 −14,683 29,984 − 1832 27

EUL 1584 −14,324 31,816

Ranunculus* 170 0.31 7 EL 400 −32,738 66,276 − 1986 1

EUL 2422 −31,709 68,262

Rhododendron* 117 0.35 7 EL 294 −22,049 44,687 − 2025 1034

EUL 1680 −21,676 46,712

Rosaceae* 529 0.30 7 EL 1118 −83,932 170,101 − 6350 1.72E + 23

EUL 7448 −80,777 176,451

Lichenized fungi 1317 0.44 9 EL 2712 − 499,157 1,003,737 − 8260 11,655
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of a set of compatible input trees – here the subtrees in-
duced from the partitions. For trees inferred with parsi-
mony or ML-EUL, all trees on a stand score the same, and
all stands are terraces. For other inference models, the
stands may include trees with different scores. Our study
accurately characterizes the stands - their size, the variabil-
ity of their member trees, their relation to decisiveness and
other data properties - as they arise in a selection of empir-
ical data sets. Stands occur in tree space because of the
taxon coverage structure of a data set. Terraces form in
stands because of the inference model (or inference
method) decisions of analysts. We now consider briefly the
matter of this inference model choice.
In practice, the default parameter settings of tree recon-

struction programs may influence model use decisions. By
default, RAxML [36] links edge-length parameters of par-
titioned models (defining an EL model), while unlinking
all other parameters. In contrast, users of the maximum
likelihood program IQ-Tree [62] must affirmatively
choose among EL, PEL, and EUL classes of model. Users
of PAML [63] can unlink all parameters, or may use any
of a collection of linkage class combinations in which
edge-length parameters are fixed to partial linkage [PEL].
Users of MrBayes [64] must actively unlink parameters,
but can unlink all or any combination. Terraces can arise
in inference with the latter two programs and can interact
with program assumptions to affect outcomes: in PAML,
the likelihood score calculated with an EUL model might
belong to an entire collection of topologically distinct
trees. Bayesian programs may infer higher posterior prob-
abilities for some member trees of a terrace than others,
for in the presence of missing data, Bayesian priors can
favor the joining of long branches [27]. With PAML and
MrBayes, it is unclear whether the mechanics of specifying
model parameterization (described above) might inciden-
tally “favor” some models more than others, but with
RAxML, default settings may increase the frequency of EL

model use. Our review of the inference methods used
across our study sample suggests that if authors relied on
inference program default settings, the rate of use of EL
models was quite high.

Are EL inference models better for partitioned phylogenetic
analyses?
The AIC model selection criterion favored EL models in
several low-coverage data sets. Moreover, terraces have
only been proven to arise under EUL models. Nonethe-
less, there are several reasons to think EL models are
not guaranteed to provide better tree reconstruction
outcomes, even for low-density data. One is that the re-
sults of EL inference are susceptible to multiple artifacts
not related directly to terraces, such as those cited in the
Background (e.g., affecting support, model parameter,
and tree topology estimates). Second, in light of the
prevalence of terraces, the “optimality” of a tree selected
with EL from a poorly-differentiated likelihood surface
(such as is likely to arise from low-density or low-
information data) may be illusory, reflecting the impreci-
sion of floating point arithmetic and stochasticity in the
tree search process [36, 65]. For example, different
addition orders of individual site log likelihoods can re-
sult in different summed log likelihood scores. Third, a
number of studies have suggested that EL models may
misspecify heterotachous evolutionary patterns. Broadly
speaking, evolutionary biologists have defined heterota-
chy as within-site rate variation over time, but in phylo-
genetics, a substantial literature [66–72] has focused on
heterotachous patterns in which intra-site variation can
be observed as differences in branch-length patterns
across loci. This “among-gene heterotachy” [73] natur-
ally suggests the use of an inference model (a “heterota-
chy model” [27]) that separately parameterizes branch
lengths for each data partition. Authors who have ad-
dressed the inferential problems posed by this form of

Table 2 EL and EUL model choice (Continued)

Taxon Number
of taxa

Taxon coverage
density

Number
of loci

Model Number of
parameters

Log likelihood AIC AIC [EL] –
AIC [EUL]#

Terrace size

EUL 23,760 − 482,238 1,011,997

Primates 372 0.37 79 EL 1452 −648,012 1,298,927 −41,745 70.8 million

EUL 59,250 −611,086 1,340,672

Bats 815 0.15 29 EL 1888 − 589,602 1,182,979 −51,491 1.43E + 41

EUL 47,444 −569,791 1,234,470

Saxifragales 946 0.06 51 EL 2348 − 277,272 559,240 − 171,677 **

EUL 96,798 −268,660 730,917

Birds 7000 0.12 32 EL 14,285 −4,181,534 8,391,639 − 704,755 1.3E + 388

EUL 448,192 −4,100,005 9,096,394

#: column displays ΔAIC if ΔAIC favors the EUL model, and -ΔAIC otherwise. ^ and ^^: the number of loci differs from that reported in Table 1, because we
discarded loci that contained fewer than the full complement of amino acids. ^: 7 loci were discarded; ^^: 2 loci were discarded. * and **: see Table 1. For
methods used to compare the models, see text
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heterotachy have often assumed that the identity of sites
varying in common are not known in advance and must
be inferred, and accordingly have used computationally
intensive mixture models to sort sites into branch-length
classifications (sets) [66–68, 70]. Models in this category,
and others that optimize branch-length sets separately
across partitions, have been found to recover better trees
or to fit empirical or simulated data better than homoge-
neous (homotachous) models parameterized with single
sets of branch lengths [18, 66–68, 70, 72, 73]. Several
studies show that homogeneous models can become in-
consistent under strong forms of between-locus hetero-
tachy [68, 71, 74], and these findings have partly
motivated efforts to formulate heterotachous models.
Notably, some experimenters have inferred non-
independence between genes and branch-length sets se-
lected optimally with mixtures [73], and others have
found that separate analyses conducted on broadly-
defined functional categories of sequences exhibit sub-
stantially different branch-length patterns [72]. EUL
parameterization seems a natural fit for these observed
patterns. We urge further empirical studies addressing
whether, generally, branch lengths covary among data
partitions (i.e., rate shifts occur homogeneously across
partitions, as would correspond with an EL model), or
whether no such covariance exists, and within-partition
branch length patters may be specified better with EUL
parameterization. Some of the findings depended on
complete data samples, but Sanderson et al. [27], using
simulations to examine the effects of missing data,
showed that while an edge-linked (EL) inference model
correctly inferred trees from homotachous and strongly
heterotachous data under full taxon coverage, the het-
erotachous (but not homotachous) data pattern misled
the model when data were removed to form a pattern of
partial taxon coverage. These results are consistent with
studies undertaken in a variety of contexts showing that
phylogenetic accuracy suffers from reliance on overly
simple models [6, 74–78], and that missing data often
worsens the effects of model misspecification [5, 6, 8,
27], at times misleading models that otherwise remain
robust to violations of their assumptions. It is also the
case that complex models (e.g., EUL models) may overfit
the data [79–81], and this consideration motivated us to
identify the edge-length model favored by the AIC
model selection criterion for each data set in the study
sample. The results, wherein the EUL model was pre-
ferred for higher-density data, are consistent with the ex-
pectation that richer data sets should support more
complex models, but may also be indicative of differ-
ences in underlying evolutionary processes. For example,
the preference for the EL model for most of the vascular
plant submatrices may stem from using many of the
same loci between data subsets. Similarly, evolutionary

rate heterogeneity among the sampled loci may account
for the choice of EUL models for genomic and transcrip-
tomic data sets. Further study of model suitability and
terrace formation may shed light on the relationship of
terraces per se to the phenomenon of increased estima-
tor variance or non-identifiability (sensu Rannala [82])
that can occur in inference with highly parameterized
models. When terraces do arise, the ambiguity that they
introduce into tree reconstruction can be mitigated by
adding data, or can be integrated over to provide hy-
potheses for downstream evolutionary analysis.

Remediating, summarizing, and analyzing terraces
Reducing terrace size
Given a tree T on a labels set X, and a set of subtrees
T|Y1,…,T|Yk induced by a taxon coverage pattern
Y1,…,Yk, an algorithm adapted from the supertree litera-
ture can identify the smallest set of taxon labels to re-
move from X so that the subtrees T*|Y1,…,T*|Yk define a
reduced tree, T* [26]. Under the appropriate inference
model, this stand of size one will then be a terrace of
size one. This problem, of finding the maximum defining
label set (MDLS), has an exact and easily computed so-
lution for two induced subtrees (i.e., two loci). For data
sets of more than two loci, applying the algorithm suc-
cessively to pairs of loci gives an approximate solution
[26, 27]. Taxa outside the MDLS, or outside the intersec-
tion of pairwise MDLSs, can be sampled for all loci, or
their data removed. The MDLS solutions of trees in a
confidence set, however, may differ from one another
and from that of the original tree. Moreover, data aug-
mented with new samples may imply a phylogeny not
defined by its induced subtrees.

Fully sampling one gene
As noted earlier, a taxon coverage pattern is always de-
cisive if any one gene is sampled for all taxa. However, full
taxon coverage for one gene does not guarantee that the
likelihood (or other score) surface will be well behaved; as
noted in [26], a terrace-like flatness might characterize
scores inferred from decisive data, if decisiveness is
achieved with low-signal data restricted to a single gene.

Partitioning to reduce the size of terraces
Sanderson et al. [27] showed that for every data set, a
unique maximal partition exists and that it corresponds
to a maximal terrace (the largest terrace). Parsimony
analyses should report the maximal partition and ter-
race, since parsimony scores would be unaffected. With
maximum likelihood, partitioning to maximize model fit
or performance may sometimes reduce the size of ter-
races. A procedure developed by Li et al. [79] for finding
the optimal number of parameters in an inference model
can reduce the number of partitions. With incompletely
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sampled data, reducing partition number should increase
taxon coverage density and could reduce terrace size. In
an analysis of genome-scale data, Xi et al. [59] used
Bayesian inference of model mixtures to group sites by
substitution pattern. The resulting partitioning scheme
improved likelihood (as measured by AIC) and reduced
terrace size compared to partitioning a priori by gene
and codon position.

Summarizing and analyzing terraces
In addition to functions for computing consensuses,
three terraphy package tools support terrace analysis
and reporting. As noted earlier, an annotating tool re-
ports the number of equally good subtree resolutions
per clade of the strict consensus tree of a terrace. This
feature decomposes terrace-based ambiguity into its
combinatoric elements for analysis, and helps to high-
light unresolved regions of large trees. Another feature
constructs and outputs random trees sampled from a
given terrace, allowing investigation of the impact of ter-
races on downstream comparative analyses. A third fea-
ture reports whether two trees belong to the same
terrace. In conjunction with data from the strict consen-
sus tree and taxon coverage matrix, the latter functional-
ity could be used to detect the signature of another
hazard of terraces, the supported, spurious clade. An ex-
periment conducted on simulated data [27] showed that
when sampling overlap between two clades is minimal –
i.e., the groups share few sampled loci - the clades may
be found merged in a large proportion of trees on the
terrace. If many bootstrap trees fall on the terrace, the
spurious clade in turn would occur at high frequency in
the bootstrap sample. The data used for the experiment
comprised two partitions of sequences patterned to en-
sure that bootstrap trees achieved identical scores, and
translating the results to a prediction applicable to, for
example, larger collections of loci or more complex pat-
terns of sampling discontinuity would require further ex-
periments. If an artifact of this type arose in real data,
however, it would predict a conjunction of outcomes at
a node: strong support among bootstrap replicate trees
that reside on the terrace, and in the terrace consensus
tree, weak resolution of the interior branches of the
clade compared to a binary tree.

Conclusion
Provided certain inference assumptions apply, the phylo-
genetic trees recovered from many large empirical data
sets belong to large terraces of equally optimal trees.
The size of these terraces varies inversely with two sam-
pling properties of the data: taxon coverage density and
gene sampling “sufficiency,” a measure derived from data
decisiveness theory. Evaluated on this scale, which treats
taxon sampling density and taxon count as fixed, data

sets seldom include enough genes to reduce terrace size
to one tree. At a given sampling density, a measure of
the distribution of samples among genes can often pre-
dict the impact of terraces. The terraces found in boot-
strap replicates can reduce resampling support for
phylogenetic hypotheses. The widespread adoption of
NGS approaches to data assembly will reduce incom-
pleteness in data sets, and also the prevalence of ter-
races. A new program, terraphy, provides terrace
discovery, analysis, and reporting tools.
The methods used originally by authors to reconstruct

the published trees were variable and included inference
with EL (edge-linked) models. Models of this type do
not induce terraces, but for all data sets and starting
trees surveyed, our findings characterize the collections
(stands) of trees, many very large, as they arise from the
data sets. Under EL inference, these trees have different
scores. Under ML-EUL or parsimony inference assump-
tions, these collections of trees would be terraces. We
used the AIC model choice criterion to determine the
most appropriate edge-length model (EL or EUL) for
each data set, and found that EUL models were pre-
ferred for some, including high-coverage data sets which
induce single-tree terraces; whereas EL models were fa-
vored for others. The correspondence between single-
tree terraces and selection of the EUL model is in line
with expectations, given that sparse data may be insuffi-
cient to support complex models and also give rise to
terraces. These model choice results, and the relation-
ship between terraces and model suitability, deserve fur-
ther study. If EL models are used to analyze low-density
or low-signal data sets, terrace analysis can reveal poten-
tial ambiguity in the inference, for the likelihood surface
recovered under such a data-and-model combination is
likely to be poorly differentiated. The present study re-
veals the scale and frequency at which terraces would
arise from parsimony or edge-unlinked maximum likeli-
hood analyses of large data sets, and allows us to add
terraces to the list of challenges in phylogenetic analysis
from sparsely sampled and large collections of data.
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