
RESEARCH ARTICLE Open Access

Elucidation of cross-species proteomic
effects in human and hominin bone
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Abstract

Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples,
including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from
“cross-species proteomic effects”: the loss of peptide and protein identifications at increased evolutionary distances due
to a larger number of protein sequence differences between the database sequence and the analyzed
organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the
peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the
cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics
experiment is performed to test this using a set of modern human bone proteomes and three independent searches
against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan
(16-17 Ma) reference proteomes, respectively.

Results: Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable
Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and
protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover
protein identifications completely. Data indicates that peptide length and the number of mutations between the target
and database sequences are the main factors influencing mutable PSM identification.

Conclusions: The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing
evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly
impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards
the identification of conserved sequences and proteins. Effects are minimized between moderately divergent
proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee
proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of
ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has
negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial
proteins in evolutionary contexts.
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Background
The study of ancient protein sequences through tandem
mass spectrometry (LC-MS/MS) represents a novel fron-
tier in analyzing the phylogenetic placement of extinct
species [1–3], including hominin populations [4], as well
as the investigation of in vivo physiology, pathology, diet,
and disease based on protein sequence analysis of arch-
aeological and palaeontological samples [5–9]. Ancient
proteins preserved in mineralized tissues provide phylo-
genetically informative amino acid sequences in fossils
where no DNA survives [1], such as demonstrated by the
recovery of collagen type I spectra from 3.4 Ma old
Camelid bones in the Arctic [10] and 3.8 Ma eggshell pro-
teins in central Africa [11]. This is in contrast to the oldest
DNA sequences retrieved to date, which at approximately
0.7 Ma (from the permafrost) are significantly younger
[12]. Ancient proteins therefore provide a biomolecular al-
ternative in areas, time periods, and tissues where ancient
DNA does not regularly survive [13].
Proteomics applied to mineralized tissues only pro-

vides insights into protein sequences from a subset of
the genome - the largest ancient bone proteome pub-
lished to date contains close to 200 proteins [14]. The
total amount of phylogenetically informative positions is
therefore drastically reduced in ancient proteomes com-
pared to ancient DNA analysis of entire genomes, but
such data can be retrieved from significantly larger pe-
riods of time. Hence, (hominin) fossils preserving no, lit-
tle, or highly contaminated ancient DNA sequences
might be amenable to ancient protein analysis. Previous
research concluded that ancient protein sequences can
be used to study hominin phylogeny, as 1) it is possible
to retrieve hominin bone proteomes from Late Pleistocene
fossils [4, 15], and 2) such bone proteomes contain single
amino acid polymorphisms (SAPs, the protein analogue of
single nucleotide polymorphisms, SNPs) known to differ
between various clades of Late Pleistocene hominins for
which ancient genomes are available (Neanderthals,
Denisovans and modern humans; [4, 16, 17]). However,
up to now there has been no demonstration that the bio-
informatic analysis of such ancient hominin proteomes is
also able to correctly infer novel SAPs when analyzing en-
tire proteomes, as previously demonstrated for the protein
collagen type I [1]. This needs to be demonstrated before
moving on to the analysis of older and possibly more
divergent hominin fossils.
The analysis of tandem mass spectrometry data in pro-

teomics commonly either relies on the matching of MS/
MS spectra to a protein sequence database of the target
species by the use of a dedicated algorithm (for example
MASCOT, Byonic or MaxQuant; [18–20]), or through
de novo only protein sequencing without a provided
protein sequence database (for example PEAKS de novo,
NOVOR or PepNovo; [21–23]). De novo algorithms

suffer from high rates of incorrect peptide sequence
identifications, however [24]. Hence, the adoption of
error-tolerant algorithms that utilize protein sequence da-
tabases while allowing sequence deviation (i.e., mutations)
is currently the method-of-choice when identifying novel
SAPs in palaeoproteomics. Several of the above-mentioned
database matching algorithms now also provide error-
tolerant options as add-on functionality, while others are
designed specifically as error-tolerant search engines.
PEAKS (Bioinformatics Solutions Inc.) in particular has re-
cently been used in a number of studies investigating the
phylogenetic potential of proteomes retrieved from now-
extinct species or populations [1, 4, 25–29]. Such studies
aim to utilize dedicated, restricted databases in order to
keep estimated False Discovery Rates (FDR) low [30].
Hence, quite often a single reference proteome from the
studied organism, or a closely related organism, will be
included during bioinformatics analysis.
This presents a problem with the recovery of increas-

ingly older protein datasets from species more distantly
related to available (modern) reference proteomes [4].
With a larger number of sequence differences between
the target sequence (present in the protein extract and
in resulting MS/MS data) and the provided database
sequence, more peptides and potentially proteins will
remain unidentified in standard, non-error-tolerant
searches as such searches do not allow mutations/substi-
tutions between an identified sequence and the database
sequence. Hence, issues associated with “cross-species
proteomics” - the use of a protein sequence database
from a species/population different from the target spe-
cies/population – will become more prevalent in palaeo-
proteomics [31, 32]. Error-tolerant searches do allow for
the identification of SAPs between an identified peptide
sequence and the homologous database sequence. The
ideal scenario would therefore be that error-tolerant
searches entirely overcome the cross-species proteomics
problem. Error-tolerant searches might instead only
partly overcome the cross-species issue by identifying
some mutation-containing spectra, but not all, introdu-
cing hitherto unknown biases in peptide sequence recov-
ery and proteome composition. This could have adverse
consequences for phylogenetic analyses conducted on
ancient protein sequences from now-extinct organisms,
including hominins, or the quantitative comparison of
entire proteomes along diagenetic or evolutionary
gradients.
Previous work has demonstrated that for collagen type

I (COL1), PEAKS is capable of generating the correct
amino acid sequence for modern and Pleistocene sam-
ples [1], as tested by obtaining proteomic sequence data
of species for which the COL1 sequences were known
but not included in the protein sequence database. On
the proteome level, however, there is no demonstration
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of the effect that error-tolerant algorithms have on pro-
tein and peptide identification or its ability to correctly
identify SAPs. It is therefore unknown to what extent
error-tolerant searches overcome the cross-species
problem in (palaeo)proteomics. Here, a bioinformatics
experiment is performed to explicitly test non-error-
tolerance and error-tolerance performance on a set of
seven clinical, modern human bone proteomes available
online [33].
First, each bone proteome dataset was individually

searched against the human reference proteome, thereby
identifying the amino acid sequence represented by each
PSM (peptide-spectrum match; Database 1). This search
provides the ground-truth observation of protein and
peptide composition. Next, the same spectral dataset is
searched independently, but with similar search
constraints, against database 2 (the Pan proteome) and
subsequently against database 3 (the Pongo proteome;
Fig. 1). The experiment thereby estimates protein identi-
fication, PSM identification and error-tolerance perform-
ance at evolutionary distances of approximately 0 Ma,
6-8 Ma, and 16-17 Ma, respectively [34–36]. Knowing
the sequence differences between orthologous proteins
for all three proteomes allowed establishing which of
four possible outcomes occurred for each PSM individu-
ally in the searches against database 2 and 3: 1) the
error-tolerant search identified the correct sequence, in-
cluding a correctly placed amino acid substitution (SAP)
of the right type, 2) no substitution suggested, 3) an in-
correct substitution suggested, either at the wrong
amino acid position or of the wrong type, or 4) the
search to database 2 and 3 did not result in a PSM for
the relevant spectrum. Outcome 1, the identification of
the correct sequence, would represent a positive result,
while outcomes 2 and 3 would represent a negative

result with adverse consequences for subsequent phylo-
genetic analysis. In contrast, outcome 4 represents a
negative result without further phylogenetic conse-
quences, but with potential negative effects on protein
identification. The performance of a standard, non-
error-tolerant search is estimated simultaneously, as in
such a search the only outcomes are spectral matches to
non-mutated peptide sequences for identical, homolo-
gous peptides or the failure to identify phylogenetically
informative, homologous sequences (outcome 4). This
bioinformatic experiment therefore allowed establishing
the effect of error-tolerant database matching on the
total number of identified proteins, the number of PSMs
matching to phylogenetically informative amino acid se-
quences, and the constraints on SAP identification for
increasingly differentiated protein sequences.

Methods
Publicly available data were taken from Salmon et al.,
[33], comprising three bone proteome datafiles for seven
modern human individuals each. LC-MS/MS data (.mgf
format) were searched in PEAKS v.7.5 [22] against the
reference proteomes from Homo sapiens, Pan troglodytes
and Pongo abelii, respectively (hereafter referred to as
the Homo, Pan and Pongo databases). Reference pro-
teomes were downloaded from UniProt on 30/06/2016
using the canonical sequence for each protein only.
PEAKS searches included the full set of available pro-
cesses (PEAKS de novo > PEAKS DB > PEAKS PTM>
PEAKS SPIDER). Within this workflow, PEAKS SPIDER
is restricted to the identification of one amino acid mu-
tation compared to the reference database, while PEAKS
DB and PEAKS PTM do not have this constraint (Dan
Maloney, pers. comm. 2017). The workflow also allows
the identification of semitryptic and non-tryptic

Fig. 1 Experimental set-up and possible outcomes of an error-tolerant search for a mutable PSM. In the first search, MS/MS data is searched
against the complete Homo database, resulting in ground-truth knowledge of 28,916 PSMs after necessary filtering. Subsequently, the same
datasets are searched against the Pan and Pongo databases, respectively. The example concerns a mutable PSM with sequence differences
between all three included databases. The only outcomes possible for a non-error-tolerant search or an identical, homologous PSM are the
identification of the correct, non-mutated sequence (top) or no PSM match (bottom, outcome 4)
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peptides, which are a common feature of ancient prote-
ome datasets [4, 8].
A protein list containing commonly identified contam-

inants, composed of proteins listed on the common
Repository of Adventitious Proteins and those mentioned
in reference [37], was added to each reference proteome
(see Additional file 1). No further modifications were
made to the databases downloaded from UniProt to ac-
curately mimic the strategy that researchers commonly
follow when constructing reference databases using a sin-
gle proteome from a target or closely related species.
Search settings were identical to those reported in Salmon
et al., [33], with carbamidomethylation as a fixed post-
translational modification, methionine oxidation, phos-
phorylation of serine, threonine and tyrosine, glutamine
and asparagine deamidation, and proline hydroxylation as
variable modifications, in line with the extraction method
used by Salmon et al., [33], the proteome studied
(dominated by hydroxylated collagen), and diagenetically
induced protein modifications (glutamine and asparagine
deamidation). One missed cleavage was allowed, with a
precursor error tolerance of 10 ppm and 1 Da for frag-
ment ions. Proteins identifications were accepted when at
least two unique peptide-spectrum matches (PSMs) were
present in the first search (against the Homo database),
and PSMs were only accepted with a False Discovery Rate
(FDR) equal to 1.0%.
For evaluation of error-tolerant performance, PSMs

were only retained if that particular scan had been
matched in the search against the Homo database and
when the PSM had a length of ≥10 amino acids. Further-
more, all PSMs that matched to proteins that are either
absent, or have sequence regions wrongly predicted, in
the Pan or Pongo database were removed from the data-
set entirely or partly, respectively. This included protein
sequences translated from the following genes: COL6α1,
COL3α1, COL1α1, COL5α1, IGHG1, IGHG2, COL22α1,
GLIS1, VIME, H2B2E, ITIH1, ANXA6, COL19α1, IGKC,
TGFBI, CLEC3B, SLC25α6, HSPG2. Finally, PSMs
matching to proteins commonly suspected to represent
contaminants in bone proteomics were also removed
(including ALB, HBB, HBA, IGF2, GELS, ANXA5,
RS27A, K2C1, K1C16, K1C10, K1C9). Despite these
rigorous filters, a total of 28,916 PSMs (65.2% of the
total PSMs initially present) were retained. The majority
of removed PSMs was due to sequence length (< 10
amino acids, 29.1% of the total PSMs initially present).
For each PSM, the evolutionary distance between the

amino acid sequences retrieved in the search against the
Homo database and its orthologous sequence present in
the Pan and Pongo databases can be quantified as the
number of amino acid differences (SAPs). PSMs with an
evolutionary distance of 1 or greater, e.g., where an amino
acid sequence difference exists between the used database

and the target data (human), are termed “mutable PSMs”.
Mutable PSMs can either be observed (outcomes 1, 2 or
3) or unobserved (outcome 4) during searches against the
Pan and Pongo databases, and their sequences can be in-
ferred correctly (outcome 1) or incorrectly (outcomes 2
and 3) in error-tolerant searches.
Mutable PSMs differing between orthologous sequences

by leucine (L) <> isoleucine (I) substitutions were catego-
rized as correctly identified as mass spectrometry com-
monly cannot differentiate between these two isobaric
amino acids. Furthermore, isobaric post-translational
modifications of amino acids can be misidentified as
amino acid modifications – or vice versa. Here, taking into
account the fragment ion tolerance of 1 Da, these include
the detection of lysine formylation (equal in mass to a
lysine (K) to arginine (R) substitution), and glutamine (Q)
and asparagine (N) deamidation (equal in mass to
substitutions towards glutamic acid (E) and aspartic acid
(D)). They were not regarded as wrongly identified mut-
able PSMs because of the isobaric nature of their
modifications.
To further investigate biases in the identified proteomes

in the second and third search, dN/dS values were com-
puted to investigate protein evolution and selection acting
on the identified proteins. dN/dS represents the ratio of
synonymous to non-synonymous (dN/dS) nucleotide sub-
stitutions and were obtained for each protein identified in
the Homo search. Values were retrieved from ENSEMBL
for protein orthologous with both Pan and Pongo using an
in-house R script utilizing biomaRt (v. 2.22.0; [38]). High
dN/dS values of 1 or above generally indicate positive
Darwinian selection, while low values close to 0 indicate
purifying selection. The vast majority of proteins display
values close to 0, reflective of the conserved nature of pro-
tein amino acid sequences in general.
Phylogenetic trees were constructed using amino acid

alignments consisting of phylogenetically informative
amino acid positions that were identified in the sample
dataset and orthologous positions in the Pongo abelii,
Pan troglodytes and Homo sapiens reference proteomes.
Analysis of these alignments was conducted using
PhyML in Geneious and RAxML on the CIPRES Science
Gateway [39]. RAxML was run for 1000 bootstrap itera-
tions using the Dayhoff substitution model (selected
after running PartitionFinderProtein; [40]). PhyML was
run using 10,000 bootstrap iterations. Pongo was speci-
fied as outgroup in both RAxML and PhyML
phylogenetic analysis.

Results
Proteome size of the seven studied individuals ranges
between 31 and 54 proteins. This proteome size is simi-
lar to bone proteomes observed in some modern and
some ancient bone proteome studies [4, 9, 41, 42]. The
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identified proteomes contain common non-collagenous
bone proteins such as osteomodulin (OMD), alpha-2-
HS-glycoprotein (AHSG), chondroadherin (CHAD),
osteocalcin (BGLAP), and biglycan (BGN), as well as
several collagenous proteins (primarily peptide-spectrum
matches to collagen type I alpha 1 (COL1α1) and alpha
2 (COL1α2)). Collagen type 10 alpha-1 (COL10α1) is ab-
sent from the dataset, but this is not surprising as the
studied bone samples derive from adult humans [33]
while COL10α1 is excreted by hypertrophic chondro-
cytes during initial bone mineralization and should dis-
appear quickly from the bone proteome during bone
remodeling later in life [4]. Nevertheless, several proteins
that are identified here are known to contain phylogen-
etically informative SAPs for Late Pleistocene hominin
clades for which (ancient) genomes are available (mod-
ern humans, Neanderthals and Denisovans [4, 16, 17]),
while others are phylogenetically informative within
Hominidae in general (see below). Both the size and
composition of the studied proteomes is therefore com-
parable to proteomes retrieved from Late Pleistocene
and Holocene bone specimens containing no or low
amounts of endogenous DNA sequences [4, 42]. Some
of these proteins are known to survive for particularly
long periods of time, as shown by their recovery from
Early Pleistocene sites in Europe [41].

Error-tolerance performance
A reduction in the number of identified proteins and
peptides for error-tolerant and non-error-tolerant
matches in searches against both the Pan and Pongo
database is apparent (Fig. 2). A non-error-tolerant search
would have resulted in, on average, 8.5% less protein
identifications and 0.8% less PSMs in Pan and 13.1% less
protein identifications and 3.2% less PSMs in Pongo. The
error-tolerant search partly recovered data loss but not
completely. Here, on average, 7.1% less protein identifi-
cations and 0.4% less PSMs in Pan and 11.0% less pro-
tein identifications and 1.7% less PSMs in Pongo. These
differences between non-error-tolerant and error-
tolerant searches are significant for both databases
(Fig. 2). The reduction in proteome size is not correlated
with the initial size of the proteome in the Homo search
(r(13) = 0.24, p = 0.41). The reduction in both the num-
ber of identified proteins and PSMs is driven by a
smaller number of observed mutable PSMs (Fig. 2c; as
determined in the search against the Homo database), of
which, on average, 47.5 and 49.3% were identified in the
Pan and Pongo database search, respectively. This sig-
nificant reduction in the number of observed mutable
PSMs is not entirely reflected in whether any mutable
PSMs were retained for each amino acid position of
phylogenetic interest (Fig. 2d). Here, on average 87.2%

Fig. 2 Performance of error-tolerant searches compared to non-error-tolerant matches in the same search. a Number of matched proteins. b Total
number of Peptide Spectrum Matches (PSMs). c Number of observed mutable PSMs. d Retrieval of mutable positions in searches 2 and 3, regardless of
the number of matching mutable PSMs. For a and b, open boxplots indicate a search equaling a non-error-tolerant search and a filled boxplot
indicates an error-tolerant search. Values are normalized to the Homo database search per dataset. Note differences in y-axes. Statistical differences
were determined by paired samples t-tests (* = p < 0.05, ** = p < 0.01, *** = p < 0.001)
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positions of phylogenetic interest were recovered in the
search against the Pan proteome, while on average only
61.4% of such positions were observed in the Pongo
proteome. Hence, error-tolerant searches only partly
overcome the problem posed by cross-species proteo-
mics. They are less effective at larger evolutionary dis-
tances not only at the PSM level, where they would be
expected, but especially at the protein level.

Mutable and mutated PSM behaviour
The experiment allows evaluating the occurrence of the
four possible outcomes of an error-tolerant search con-
ducted on mutable PSMs. Either the correct substitution
is identified (outcome 1), no substitution is identified
(outcome 2), a substitution of the wrong type or position
is identified (outcome 3), or there is no PSM match
(outcome 4). As noted above, roughly half of the mut-
able PSMs were not recovered in either the Pan or
Pongo database search (Fig. 2c), making outcomes 1 and
4 roughly equally prevalent. The unobserved mutable
PSMs (outcome 4) are not randomly distributed within
the datasets available, however. First, mutable PSMs that
have a low peptide score in the Homo search are less
likely to be matched in subsequent searches, regardless
of the mutable position within the amino acid sequence
(Fig. 3a). This trend is more extreme at larger evolution-
ary distances (Fig. 3b), and in agreement with general
proteome results (Fig. 2). This observation is not sur-
prising as higher-scoring PSMs tend to have more high
intensity, low error internal fragment ions (MS2).
Second, the evolutionary distance between homologous
peptides has a significant effect on the ability of PEAKS
to correctly identify SAPs. Just over half (57%) of the
PSMs with one mutable position were recovered,
roughly a quarter with two mutable positions (26%), and
no PSM with an evolutionary distance of three or more

amino acids was identified in subsequent searches to the
Pan or Pongo database (Fig. 4a). Third, mutable PSMs
with an amino acid length of 25 amino acids or more
were almost never identified, while mutable PSMs with
an amino acid length of between 10 and 15 amino acids
were identified in up to 75% of cases (Fig. 4b). This
holds true regardless of the evolutionary distance be-
tween the target and database sequence. No influence of
changes in peptide mass, peptide charge, or peptide iso-
electric point were observed (Additional file 2). It is diffi-
cult to test a relationship between peptide length and
peptide score given the filtering criteria imposed on length
(PSM length ≥ 10) and minimum score (FDR rate equals
1.0%), and a generally lower number of longer PSMs.
Nevertheless, there seems to be an absence of such a
correlation (Pearson correlation coefficient = − 0.09). To
summarize, the evolutionary distance between the target
sequence and the database sequence and PSM length both
play a significant role in determining if a mutable PSM is
identified.
No mutable PSMs were identified for which a muta-

tion should have been suggested in the searches against
the Pan and Pongo databases but where this did not hap-
pen (i.e., outcome 2). Theoretically, outcome 2 could
occur by positioning a post-translational modification
(PTM) equal in mass to the needed amino acid substitu-
tion on or nearby a mutable PSM in the searches against
the Pan or Pongo database. Such PTMs could be non-
specified PTMs as well, as PEAKS SPIDER has the abil-
ity to match PSMs containing such non-specified PTMs,
theoretically causing a situation where (non-specified)
PTMs and amino acid substitutions with the same mass
modification are equally likely outcomes. Instead, such
mutable PSMs seem to be lost from the dataset entirely.
This implies that the possible confounding influence of
outcome 2 is negligible in palaeoproteomic studies.

Fig. 3 High-scoring PSMs are more likely to be identified in error-tolerant searches. a When Pan and Pongo both contain one SAP, but at a
different sequence location, the same set of high-scoring PSMs is identified in the error-tolerant searches. b PSMs with lower scores are unidentified
at increased evolutionary distances. Protein and peptide locations are Fibrinogen gamma chain 122-134 (FGG; FIBG_HUMAN) and Pigment
epithelium-derived factor 226-237 (SERPINF1; PEDF_HUMAN), respectively
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Estimating the influence of outcome 3, the identifica-
tion of an amino acid substitution (SAP) at the wrong
place or of the wrong kind, is more difficult to quantify.
Error-tolerant searches have the tendency to also pro-
vide spurious PSM matches with incorrectly suggested
mutations to PSMs that should not be mutated. These
“off-target” suggested mutations have the potential to
confound subsequent phylogenetic analysis as in normal
situations one cannot differentiate a priori between off-
target mutations and outcome 3 for mutable PSMs. In-
stead, here all mutated PSMs are quantified as correctly
or incorrectly identified based on the a priori knowledge
provided by search 1. Subsequently, mutation-containing
PSMs were accepted or rejected based on 1) the pres-
ence of at least two PSMs covering the mutated amino
acid position, and 2) these two or more PSMs comprise
the majority of the total number of PSMs matching that
amino acid position. Such filtering criteria mirror those
utilized with PEAKS elsewhere [1, 4, 25]. Prior to filter-
ing, roughly 20% of proposed mutations are incorrect
(Table 1). However, after filtering 100% of mutation-
containing PSMs derived from the searches against both
the Pan and Pongo databases are correct. As a result,
error-tolerant searches are correct when simple filtering

criteria are implemented. The most important criterion
seems to be to only accept novel SAPS with the support
of multiple PSMs.

Discussion
Error-tolerant search outcomes
The bioinformatics experiment performed here allows
estimating the occurrence of the four possible error-
tolerant outcomes for mutable PSMs, thereby providing
insights into which parameters influence error-tolerance
performance at the peptide level. Simultaneously, the
experiment allows comparison of standard, non-error-
tolerant searches and error-tolerant searches at the pro-
tein and proteome level. The experiment was set up in
such a way to include the complete PEAKS workflow
(from de novo to SPIDER), without any further interfer-
ence in provided reference proteome databases.
Correctly suggested substitutions account for roughly

80% of all suggested substitutions (Table 1), but simple
filtering increased this to 100%. This provides experi-
mental support for the use of error-tolerant search algo-
rithms in ancient (hominin) protein analysis. Mutable
PSMs were only identified when the evolutionary dis-
tance between the Homo and Pan/Pongo sequence was

Fig. 4 Characteristics of identified and unidentified mutable PSMs. a PSMs separated by evolutionary distance, here indicated as the number of
amino acid differences (SAPs) between the homologous Homo and Pan or Pongo peptide sequence. Mutable PSMs are mostly identified when
one amino acid position differs between the sequence represented by the MS/MS spectrum and the provided sequence database. b Proportion
of unidentified mutable PSMs by PSM length. Longer mutable PSMs are frequently unidentified in the Pan and Pongo searches. Fitted logistic
curve with 1SD. PSMs with a length of < 10 amino acids were excluded from analysis

Table 1 Validity of suggested amino acid mutations (SAPs)

Unfiltered Filtered

Pan Pongo Pan Pongo

1 mutation (incorrect) 18.8% (32) 15.2% (66) – –

1 mutation (correct) 81.2% (138) 80.9% (352) 100% (125) 95.6% (328)

2 mutations (incorrect) – – – –

2 mutations (correct) – 3.9% (17) – 4.4% (15)

Total PSMs 170 435 125 343

Filtering is based on a majority of matching PSMs containing the suggested mutation for a particular position with a minimum of two mutated PSMs

Welker BMC Evolutionary Biology  (2018) 18:23 Page 7 of 11



either 1 or 2 amino acids. PSMs with larger evolutionary
distances were never identified in the error-tolerant
searches. Furthermore, PSMs “identifiability” is severely
impacted by PSM length, with long mutable PSMs al-
most never identified. Therefore, unidentified mutable
PSMs are not randomly distributed in the dataset, or
solely related to MS/MS quality. The disappearance of
PSMs with longer amino acid sequence lengths as well
as the absence of PSMs with three or more substitutions
can either be explained by an unacceptable increase in
search space within error-tolerant mode or the require-
ment of an unlikely number of high intensity internal
fragment ions (or a combination of both). Furthermore,
the number of consecutively database-sequence match-
ing fragment ions and peptide length are utilized by
PEAKS as two of the attributes involved in normalizing
PSM scores, and so interruption of this database-
matching series due to the presence of a SAP negatively
impacts the identification of SAPs in longer PSMs in
particular [43]. Although one might aim to optimize
protein sequence coverage by generating longer peptide
sequences through the use of different enzymatic diges-
tion approaches, the experiment conducted here
strongly indicates that this is a disadvantageous ap-
proach in error-tolerant experiments. Palaeoproteomic
experiments aiming to provide molecular data on the
phylogenetic placement of extinct populations or spe-
cies, be they human, hominin, or animal, should instead
focus their efforts on generating large amounts of rela-
tively short peptide sequences. This can be achieved
through changes in extraction chemistry and/or mass
spectrometry set-up.
Incorrect substitutions seem to account for roughly a

fifth to a quarter of the suggested amino acid mutations
when left unfiltered. Previously, in the context of colla-
gen type I phylogenetics, it has been suggested to only
accept suggested amino acid substitution when these
were present in two independent MS/MS spectra and
these mutation-containing spectra formed the majority
of all PSMs matching to that particular amino acid pos-
ition [1]. In that study and elsewhere, such substitutions
are subsequently verified by re-searching the entire spec-
tral dataset against a new sequence database containing
the modified protein sequences. Here, such re-searching
was not performed but it is shown that similar filtering
criteria remove all falsely suggested amino acid substitu-
tions (Table 1). This comes at a cost, as correctly
substituted PSMs that are the only matching PSM to a
particular phylogenetically informative position are also
filtered out. Running the same protein extract several
times on a tandem mass-spectrometer would be a
simple way of overcoming this issue, simultaneously
demonstrating replicability of generated tandem mass
spectrometry results overall.

Proteome composition and retrieval
Recent comparisons of bone proteomes have provided
vital insights into proteome degradation [41] and changes
in bone proteomes composition during maturation and
aging [14]. Such studies rely on the comparison of prote-
omic datasets derived from model organisms that are
searched against available reference proteomes. Hence,
and based on the results of this study, they do not suffer
from issues arising from cross-species proteomic ap-
proaches. The inclusion of non-model or extinct organ-
isms into such comparisons would be more complicated
at moderate or larger distances such as the Homo-Pan
split (approximately 6-8 Ma). As the data indicates here,
protein identification loss can be 10% or more, even when
using an error-tolerant search (Fig. 2b). As ancient prote-
ome datasets are (sometimes) relatively small, the missed
identification of a particular protein can have a propor-
tionally large influence on proteome interpretation.
Fast evolving proteins observed in ancient protein

datasets are of particular interest as they provide in-
creased phylogenetic information compared to slow-
evolving proteins. Based on the results presented here,
such proteins might instead remain unidentified in
error-tolerant searches exactly because of their high sub-
stitution rates. Fast-evolving proteins in ancient protein
studies are not restricted to bone proteins in evolution-
ary applications but also include (human) proteins in-
volved in immune response, bacterial proteins recovered
from dental calculus (due to higher mutation rates and
horizontal gene transfer), and potentially proteins under
positive or negative selection during domestication pro-
cesses [7, 8, 44]. Computation of dN/dS values of ortho-
logous proteins (Homo-Pan and Homo-Pongo) provides
some insights into the distribution of fast-evolving, po-
tentially positively selected proteins among the different
proteomes obtained during the three searches. Compari-
son of dN/dS values for retained proteins and missed
proteins indicates that there is indeed a moderately sig-
nificant difference in proteome composition, even with
error-tolerant searches (Fig. 5). These observations are
consistent with a previous non-error-tolerant search in a
cross-species analysis of mammalian sperm proteins
[31], suggesting that fast-evolving, potentially positively
selected proteins are prone to remain unidentified in
both standard and error-tolerant proteomic searches in a
wide range of possible ancient protein studies.
It is of note that two proteins, alpha-2-HS-glycoprotein

(AHSG) and fibrinogen alpha chain (FGA), with dN/dS > 1
are still identified in searches 2 and 3. This suggests that
the phylogenetically informative positions of these two
proteins are sufficiently spaced apart to ensure that error-
tolerant searches are capable of identifying novel amino
acid sequences even at large evolutionary distances (at the
protein level). These two proteins are also frequently
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observed in ancient bone proteome datasets, making them
prime targets for future phylogenetic studies [12, 37, 41,
45]. Furthermore, the presence of proteins in the bone
proteome that are potentially under positive selection in
hominin evolution requires further study.

Phylogenetic implications
The use of ancient protein datasets to reconstruct the
phylogenetic position and evolutionary history of extinct
species relies on the identification of amino acid se-
quence differences (SAPs) between orthologous proteins.
In the past years, this approach has largely focused on
the use of error-tolerant search algorithms of tandem
mass spectrometry datasets against a closely related ref-
erence proteome, particularly the PEAKS workflow. The
identification of proteins with large amounts of amino
acid sequence differences between orthologous proteins
in ancient proteomes has been seen as particularly

significant for such purposes [41], especially in combin-
ation with other less variable proteins such as collagen
type I that are more consistently identified and poten-
tially observable for longer periods of time in the
geological record [1–4, 25, 26].
The experiment conducted here indicates that unidenti-

fied mutable PSMs have a significant influence on the
total number of proteins identified, but do not impede any
subsequent phylogenetic analysis of the obtained data at
an evolutionary distance of approximately 6-8 Ma (the
split between Homo and Pan). However, at a larger evolu-
tionary distance of approximately 16-18 Ma (the split
between Ponginae and Homininae) a large proportion of
phylogenetically informative positions is lost (up to 53%;
Fig. 2d). The topology of Pongo, Pan, Homo and the
proteomic sample resulting from all three searches is iden-
tical due to the consistent recovery of Homo-specific
amino acid substitutions in all seven datasets (Fig. 6).
Nevertheless, nodal support for the Sample + Homo node
is decreased for PhyML in the searches against the Pan
and Pongo database, compared to the Homo database.
RAxML consistently recovers support for all nodes at
100%, however. This suggests that some phylogenetic
methods are less suited when database and target species
have relatively large suspected divergence times. The use
of multiple methods of phylogenetic tree reconstruction
should therefore be a requirement in ancient protein stud-
ies aiming to provide novel phylogenetic hypotheses for
extinct species or populations.
The contribution of PSMs with two or more variable po-

sitions to sequence alignments is minimal as such PSMs
will often go unidentified (≈75%), even in error-tolerant
searches. This problem might not be particularly significant
for proteins with relatively random, well-dispersed SAPs
throughout their sequence. However, it has been demon-
strated previously that SAPs for collagen type I, the domin-
ant bone protein, are rather clustered and do not display a
random distribution in either the COL1α1 or COL1α2
chains [1]. Similar patterns might be present for other col-
lagenous and non-collagenous bone proteins as well. For
such protein, the results of the experiment conducted here
indicate that current error-tolerant algorithms are biased

Fig. 5 Violin plot of the ratio of non-synonymous to synonymous
(dN/dS) scores for proteins identified and unidentified in searches
two and three in error-tolerant mode. Protein identifications are
compared to the search against the human reference proteome
(search one). dN/dS values between the identified proteins and the
unidentified proteins is moderately different (t.test(− 2.65),
df = 56.131, p = 0.01)

Fig. 6 Phylogenetic trees for one human bone proteome dataset used in this study. a Phylogenetic tree resulting from the search against the
Homo database. b Phylogenetic tree resulting from the search against the Pan database. c Phylogenetic tree resulting from the search against the
Pongo database. Used database highlighted in yellow for each tree. The sample is placed identically due to the recovery of eight Homo-specific
SAP variants in all three database searches. Upper nodal value: RAxML (0-100). Lower nodal value: PhyML (0-100)
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towards the identification of relatively conserved sequence
regions. This is of significance, as recently acquired diver-
gence dates for the lineages leading to Macrauchenia (an
extinct South American Laurasiatherian mammal related to
Perissodactyla) and Equus differ significantly when compar-
ing estimates based on ancient protein sequences
(≈74-89 Ma; [1, 3]) and ancient mitochondrial DNA se-
quences (≈56-78 Ma; [46]). This would be in line with the
observations made in the current study. So, especially for
divergence dating based on ancient proteins care must be
taken as cross-species proteomic effects might compound
age estimates due to non-random substitution patterns
along protein sequences.

Conclusions
The bioinformatic experiment presented here provides in-
sights into the cross-species proteomic effects of standard
and error-tolerant searches at increasing evolutionary dis-
tances. Incorrectly mutated peptide-spectrum matches are
completely removed from the datasets using simple filtering
criteria, providing experimental support for the use of
error-tolerant search algorithms to identify novel hominin
protein sequences in the future. Nevertheless, results sug-
gest that there is an increasing loss of peptide and protein
identifications at larger evolutionary distances, indicating
that cross-species proteomic effects are not overcome com-
pletely by error-tolerant algorithms. The loss of peptide and
protein identifications has significant effects on qualitative
and quantitative proteome comparisons, especially for small
proteomes such as those recovered in ancient (hominin)
samples. Both peptide and protein identifications are biased
towards the recovery of conserved amino acid sequences.
As a result, divergence time estimates based on ancient
protein datasets can be significantly overestimating true
divergence times. This identification bias can be (partly)
overcome by focusing on the generation of short peptides
during protein extraction and digestion in future palaeopro-
teomics experiments, instead of focusing on longer peptides
that would provide larger protein sequence coverage.
Nevertheless, cross-species proteomic effects might still be
prevalent when analyzing fast-evolving human proteins, for
example those involved in immune responses, in the ana-
lysis of non-human bacterial proteins, or when focusing on
proteins positively or negatively selected during animal and
plant domestication. Cross-species proteomic effects are
minimized between moderately divergent proteomes, as in-
dicated by almost complete recovery of hominin SAPs in
the search against the chimpanzee proteome (≈90%). This
provides an experimental basis for the future phylogenetic
analysis of ancient hominin protein sequences, including
the identification of novel hominin single amino acid poly-
morphisms (SAPs) not present among currently available
present-day human genomes or ancient modern human,
Neanderthal, or Denisovan genomes.

Additional files

Additional file 1: FASTA file containing possible contaminant proteins
appended to each reference proteome. This list derives from the
common Repository of Adventitious Proteins and contaminant proteins
listed in [43]. (FASTA 39 kb)

Additional file 2: Additional parameters of unidentified, mutable PSMs.
(a) Peptide isoelectric point (pI). (b) Peptide charge. (c) Differences in
peptide mass. Searches against the Pan database are on the left, those to
the Pongo database on the right. Point colour indicates the number of
sequence differences between the Homo and Pan/Pongo sequence,
respectively. Dashed lines indicate where isoelectric point, charge or
peptide sequence mass is identical for homologous sequences. Peptide
isoelectric point and charge are calculated at pH = 7. (PNG 586 kb)

Abbreviations
AHSG: Alpha-2-HS-glycoprotein; BGLAP: Osteocalcin; BGN: Biglycan;
CHAD: Chondroadherin; COL1: Collagen type I; COL10α1: Collagen type 10
alpha-1; COL1α1: Collagen type I alpha-1; COL1α2: Collagen type I alpha-2;
FDR: False discovery rates; FGA: Fibrinogen alpha chain; LC-MS/MS: Liquid
chromatography-tandem mass spectrometry; Ma: Million years;
OMD: Osteomodulin; ppm: Parts per million; PSMs: Peptide spectrum
matches; PTM: Post-translational modification; SAP: Single amino acid
polymorphism; SNP: Single nucleotide polymorphism

Acknowledgements
Matthew J. Collins, Enrico Cappellini, and Jean-Jacques Hublin are thanked
for supportive discussions on the phylogenetic analysis of ancient (hominin)
proteomes. Isolde van Riemsdijk is thanked for commenting on a previous
draft of this manuscript.

Funding
This research was funded by the Max Planck Society and the VILLUM Fonden
(#17649). The funding bodies had no role in study design, collection,
analysis, or data interpretation.

Availability of data and materials
The datasets analysed during the current study are available in the
ProteomeExchange repository, and can be accessed under accession
number PXD000420. Alternatively, access to .raw proteomic files can be
obtained through http://proteomecentral.proteomexchange.org/cgi/
GetDataset?ID=PXD000420. Data was initially generated as part of a previous
publication (Salmon et al., [33]). The datasets used and/or analysed during
the current study are available from the corresponding author on reasonable
request.

Author’s contributions
FW designed, performed, analyzed and interpreted all aspects of this study.
The author read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The author declares that he has no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Welker BMC Evolutionary Biology  (2018) 18:23 Page 10 of 11

https://doi.org/10.1186/s12862-018-1141-1
https://doi.org/10.1186/s12862-018-1141-1
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD000420
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD000420


Received: 23 August 2017 Accepted: 15 February 2018

References
1. Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, et al.

Ancient proteins resolve the evolutionary history of Darwin’s south
American ungulates. Nature. 2015;522:81–4.

2. Buckley M, Fariña RA, Lawless C, Tambusso PS, Varela L, Carlini AA, et al.
Collagen sequence analysis of the extinct Giant ground sloths Lestodon
and Megatherium. PLoS One. 2015;10:e0144793.

3. Buckley M. Ancient collagen reveals evolutionary history of the endemic
south American “ungulates.”. Proc R Soc B. 2015;282:20142671.

4. Welker F, Hajdinjak M, Talamo S, Jaouen K, Dannemann M, David F, et al.
Palaeoproteomic evidence identifies archaic hominins associated with the
Châtelperronian at the Grotte du Renne. Proc Natl Acad Sci U S A. 2016;113:
11162–7.

5. Shevchenko A, Yang Y, Knaust A, Thomas H, Jiang H, Lu E, et al. Proteomics
identifies the composition and manufacturing recipe of the 2500-year old
sourdough bread from Subeixi cemetery in China. J Proteome. 2014;105:363–71.

6. Hendy J, Collins M, Teoh KY, Ashford DA, Thomas-Oates J, Donoghue HD, et
al. The challenge of identifying tuberculosis proteins in archaeological
tissues. J Archaeol Sci. 2016;66:146–53.

7. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel C, et al.
Direct evidence of milk consumption from ancient human dental calculus.
Sci Rep. 2014;4:7104.

8. Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al.
Pathogens and host immunity in the ancient human oral cavity. Nat Genet.
2014;46:336–44.

9. Procopio N, Chamberlain AT, Buckley M. Intra- and Interskeletal proteome
variations in fresh and buried bones. J Proteome Res. 2017;16:2016–29.

10. Rybczynski N, Gosse JC, Harington CR, Wogelius RA, Hidy AJ, Buckley M.
Mid-Pliocene warm-period deposits in the high Arctic yield insight into
camel evolution. Nat Commun. 2013;4:1550.

11. Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J, Crisp MK, et al.
Protein sequences bound to mineral surfaces persist into deep time. elife.
2016;5:e17092.

12. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al.
Recalibrating Equus evolution using the genome sequence of an early
middle Pleistocene horse. Nature. 2013;499:74–8.

13. Cappellini E, Collins MJ, Gilbert MTP. Unlocking ancient protein palimpsests.
Science. 2014;343:1320–2.

14. Sawafuji R, Cappellini E, Nagaoka T, Fotakis AK, Jersie-Christensen RR, Olsen
JV, et al. Proteomic profiling of archaeological human bone. Royal Society
Open Science. 2017;4:161004.

15. Brown S, Higham T, Slon V, Pääbo S, Meyer M, Douka K, et al. Identification
of a new hominin bone from Denisova cave, Siberia using collagen
fingerprinting and mitochondrial DNA analysis. Sci Rep. 2016;6:23559.

16. Castellano S, Parra G, Sánchez-Quinto FA, Racimo F, Kuhlwilm M, Kircher M,
et al. Patterns of coding variation in the complete exomes of three
Neandertals. Proc Natl Acad Sci U S A. 2014;111:6666–71.

17. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, et al. A high-
coverage genome sequence from an archaic Denisovan individual. Science.
2012;338:222–6.

18. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein
identification by searching sequence databases using mass spectrometry
data. Electrophoresis. 1999;20:3551–67.

19. Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification
software. Curr Protoc Bioinformatics. 2012;40(13.20):13.20.1–13.20.14.

20. Cox J, Mann M. MaxQuant enables high peptide identification rates,
individualized ppb-range mass accuracies and proteome-wide protein
quantification. Nat Biotechnol. 2008;26:1367–72.

21. Frank A, Pevzner P. PepNovo: de novo peptide sequencing via probabilistic
network modeling. Anal Chem. 2005;77:964–73.

22. Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, et al. PEAKS:
powerful software for peptide de novo sequencing by tandem mass
spectrometry. Rapid Commun Mass Spectrom. 2003;17:2337–42.

23. Ma B. Novor: real-time peptide de novo sequencing software. J Am Soc
Mass Spectrom. 2015;26:1885–94.

24. Muth T, Renard BY. Evaluating de novo sequencing in proteomics: already
an accurate alternative to database-driven peptide identification? Brief
Bioinform. 2017;

25. Welker F, Smith GM, Hutson JM, Kindler L, Garcia-Moreno A, Villaluenga A,
et al. Middle Pleistocene protein sequences from the rhinoceros genus
Stephanorhinus and the phylogeny of extant and extinct middle/late
Pleistocene Rhinocerotidae. PeerJ. 2017;5:e3033.

26. Cleland TP, Schroeter ER, Feranec RS, Vashishth D. Peptide sequences from
the first Castoroides ohioensis skull and the utility of old museum
collections for palaeoproteomics. Proc Biol Sci. 2016;283. https://doi.org/10.
1098/rspb.2016.0593.

27. Cleland TP, Schroeter ER, Zamdborg L, Zheng W, Lee JE, Tran JC, et al. Mass
spectrometry and antibody-based characterization of blood vessels from
Brachylophosaurus canadensis. J Proteome Res. 2015;14:5252–62.

28. Cleland TP, Schroeter ER, Schweitzer MH. Biologically and diagenetically
derived peptide modifications in moa collagens. Proc R Soc B. 2015;282:
20150015.

29. Schroeter ER, DeHart CJ, Cleland TP, Zheng W, Thomas PM, Kelleher NL, et
al. Expansion for the Brachylophosaurus canadensis collagen I sequence
and additional evidence of the preservation of cretaceous protein. J
Proteome Res. 2017;16:920–32.

30. Muth T, Renard BY, Martens L. Metaproteomic data analysis at a glance:
advances in computational microbial community proteomics. Expert Rev
Proteomics. 2016;13:757–69.

31. Bayram HL, Claydon AJ, Brownridge PJ, Hurst JL, Mileham A, Stockley P, et
al. Cross-species proteomics in analysis of mammalian sperm proteins. J
Proteome. 2016;135:38–50.

32. Wright JC, Beynon RJ, Hubbard SJ. Cross species proteomics. Methods Mol
Biol. 2010;604:123–35.

33. Salmon CR, Tomazela DM, Ruiz KGS, Foster BL, Paes Leme AF, Sallum EA, et
al. Proteomic analysis of human dental cementum and alveolar bone. J
Proteome. 2013;91:544–55.

34. Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. Dating
primate divergences through an integrated analysis of palaeontological and
molecular data. Syst Biol. 2011;60:16–31.

35. Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate
phylogenetic relationships and divergence dates inferred from complete
mitochondrial genomes. Mol Phylogenet Evol. 2014;75:165–83.

36. Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, et al. A
mitogenomic phylogeny of living primates. PLoS One. 2013;8:e69504.

37. Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RAR, Stafford
TW, et al. Proteomic analysis of a pleistocene mammoth femur reveals more
than one hundred ancient bone proteins. J Proteome Res. 2012;11:917–26.

38. Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, et al. The
BioMart community portal: an innovative alternative to large, centralized
data repositories. Nucleic Acids Res. 2015;43:W589–98.

39. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for
inference of large phylogenetic trees. In: Gateway computing environments
workshop (GCE). New Orleans: ieeexplore.ieee.org; 2010. p. 1–8.

40. Lanfear R, Calcott B, Ho SYW, Guindon S. Partitionfinder: combined selection
of partitioning schemes and substitution models for phylogenetic analyses.
Mol Biol Evol. 2012;29:1695–701.

41. Wadsworth C, Buckley M. Proteome degradation in fossils: investigating the
longevity of protein survival in ancient bone. Rapid Commun Mass
Spectrom. 2014;28:605–15.

42. Wadsworth C, Procopio N, Anderung C, Carretero J-M, Iriarte E, Valdiosera C,
et al. Comparing ancient DNA survival and proteome content in 69
archaeological cattle tooth and bone samples from multiple European sites.
J Proteome. 2017;158:1–8.

43. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, et al. PEAKS DB: de novo
sequencing assisted database search for sensitive and accurate peptide
identification. Mol Cell Proteomics. 2012;111:M111.010587.

44. Kendall R, Hendy J, Collins MJ, Millard AR, Gowland RL. Poor preservation of
antibodies in archaeological human bone and dentine. STAR: Science &
Technology of Archaeological Research. 2016;2:15–24.

45. Buckley M, Wadsworth C. Proteome degradation in ancient bone:
diagenesis and phylogenetic potential. Palaeogeogr Palaeoclimatol
Palaeoecol. 2014;416:69–79.

46. Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JLA, Kramarz A, et al.
A mitogenomic timetree for Darwin’s enigmatic south American mammal
Macrauchenia patachonica. Nat Commun. 2017;8:15951.

Welker BMC Evolutionary Biology  (2018) 18:23 Page 11 of 11

https://doi.org/10.1098/rspb.2016.0593
https://doi.org/10.1098/rspb.2016.0593

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Results
	Error-tolerance performance
	Mutable and mutated PSM behaviour

	Discussion
	Error-tolerant search outcomes
	Proteome composition and retrieval
	Phylogenetic implications

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Author’s contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

