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Abstract

Background: Structural variation among genomes is now viewed to be as important as single nucleoid
polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as
segments of DNA with homologous sequence.

Results: Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran
reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to
understand their potential impact on the evolution of these species. We find that the SDs content differed
substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs
formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis
showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H.
melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive
levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing
multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the
genes embedded in SDs regions belonged to species-specific SDs (“Unique” SDs). Functional analysis of these
genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained
transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on
comparison of gene expression level between SDs and non-SDs showed that the expression level of genes
embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene
expression differences in species.

Conclusions: The results showed that most of the SDs were “unique SDs”, which originated after species formation.
Functional analysis suggested that SDs might play different roles in different species. Our results provide a valuable
resource beyond the genetic mutation to explore the genome structure for future Lepidoptera research.
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Background
Segmental duplications (SDs) are DNA fragments with
near-identical sequences that are greater than 1Kb [1].
They have been recognized as important mediators of
gene and genome evolution, and are considered the

origins for gene gain, functional diversification, and gene
family expansion [1, 2]. The outcomes of a gene duplica-
tion event may lie on lineage-specific selection. In this
situation, the new gene copy has the opportunity to ac-
quire novel or modified functions or become non-
functional [3, 4]. These new copies are often important
for the adaption of the species to certain environments
[2]. SDs can lead to various types of genome rearrange-
ments [5] and other genome structural changes between
and within species [6–8].
Characterization and annotation of SDs are important

for understanding the structure and evolution of a
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genome and have been explored in many organisms’
whole genomes [9–15]. Few systematically comparative
analyses of SDs however have been performed until now.
The most important example is primate genomes, used to
understand the pattern and rates of SDs during hominid
evolution [6]. Here, we performed the comparative ana-
lysis of SDs in the whole genomes of five Lepidoptera in-
sects, diamondback moth (Plutella xylostella), Monarch
butterfly (Danaus plexippus), silkworm (Bombyx mori),
Carolina sphinx moth (Manduca sexta), and postman
butterfly (Heliconius melpomene), to understand the roles
of SDs during the evolution of Lepidoptera. Our analysis
revealed that duplication activities varied in terms of num-
ber of base pairs or events among these different species.
The marked difference of transposable elements (TEs)
content in the flanking regions of SDs among these spe-
cies of Lepidoptera suggested various formation mecha-
nisms of SDs. Our functional analysis of the SDs indicated
that gene families embedded in the SDs were different
among the five genomes and these gene families may be
related to species-specific adaptive evolution.

Methods
Data sources
The five Lepidoptera insect species, P. xylostella, B. mori,
D. plexippus, M. sexta, and H. melpomene, were used to
construct the SD map. The genome and predicted tran-
scripts of diamondback moth was downloaded from DBM
database (http://www.insect-genome.com/) [16]. The
other genomes resources of Lepidoptera insects were
downloaded from SilkDB (http://silkworm.genomic-
s.org.cn/) [17], Heliconius Genome Project (http://
www.butterflygenome.org/) [18], MonarchBase (http://
www.insect-genome.com/) [19] and Carolina sphinx data-
set (ftp://ftp.bioinformatics.ksu.edu/pub/Manduca/OGS2/).

Computational analysis of lepidoptera segmental
duplications
We used the Whole-Genome Assembly Comparison
(WGAC) method to detect the segmental duplications in
the five Lepidoptera species. The insect genomes were
first masked at 15% divergence level from transposable
elements (TEs), high-copy repeats or simple sequence
repeats (SSR) using RepeatMasker (Smit and Green
http://www.repeatmasker.org/, version 4.0.6). We then
used silkworm TE dataset [20] as repeat database to re-
run the RepeatMasker to mask as much TEs as possible.
All these repeats were deleted from the sequences and
the remaining genome sequences were used to perform
BLASTN searches against themselves with reduced af-
fine gap extension parameters, which allowed gaps up to
1000 bp and e value (1e−20).
After discarding self-alignments, the repeat sequences

were reinserted back into these alignments. These seed

alignments were subsequently used as queries to search
against the unmasked genome using BLASTN, which
generated accurate alignment statistics. Considering the
high rate of heterozygosity of these Lepidoptera species
(except silkworm, which has a long history of domestica-
tion and inbreeding) [16, 18, 21], we conservatively low-
ered the identity threshold to 75% for alignments in order
to capture more divergent SDs than under the 90% usual
threshold. Selected alignments were those with a length
longer than 1 kb and identity higher than 75%.

Gene content and functional annotation
Gene content of segmental duplications was accessed
using the GFF files obtained from the dataset above (see
data sources). We also assessed whether the molecular
function, biological process, and pathway terms were
over-represented in SDs using Blast2Go [22]. For each
SD, we computed an expected number of genes for dif-
ferent biological processes based on their curated repre-
sentation in the reference genome. The statistical
significance of the functional GO Slim enrichment was
evaluated using the Fisher’s exact test (p < 0.05).This
analysis showed the GO terms that were significantly
enriched among genes within SDs. Pfam was also used
to annotate the function of the genes in the SDs [23].

RNA-seq analysis
We collected the RNA-seq data from published sources
to access the gene expression level within and outside
SDs regions. These data included different tissues or dif-
ferent developmental stages of diamondback moth [16],
silkworm [24] and Carolina sphinx moth [25]. All the
reads were mapped back to its genome using TopHat
[26]. The expression abundance (RPKM) was calculated
using CuffLinks [27]. The expression levels were
assessed as Log10

(RPKM). Gene expression levels within and
outside SDs regions as well as the variables were com-
pared using a T-test with a Bonferroni correction.

Results and discussion
Segmental duplication maps among different Lepidoptera
species
Using WGAC, we developed segmental duplication
maps for each of the five Lepidoptera species’ genomes
(Table 1). SD contents greatly varied among the five
Lepidoptera species, ranging from 1.2% in Bombyx mori
to 15.2% in Heliconius melpomene (Table 1, Additional
file 1: Table S1). SDs with highest identity (≥90%) was
the majority (ranging from 80% in M. sexta to 93% in D.
plexippus) (Table 1). Based on our analysis, duplications
varied in size from 5.6 Mbp in silkworm to 43 Mbp in P.
xylostella. P. xylostella and H. melpomene showed the
highest number of duplications (Table 1) suggesting that
their genomes could be unstable or capable of tolerating
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extensive levels of variation. For example, in human,
segmental duplications play an “expanding” role in gen-
omic instability [28].
The analysis of the length of SDs in all five species in-

dicated that the Lepidoptera genomes were significantly
poor in large blocks (>4 Kb) (T-test, P < 0.025; Fig. 1).
This is consistent with SDs data reported in Drosophila
genome (Fiston-Lavier et al. 2007) and silkworm genome
[29, 30]. The number of SDs in Lepidoptera decreased
along with the increase in SDs length (Fig. 1a) and this
was true for all five species (Fig. 1b). Eichler [31] has
suggested that SDs in invertebrates are much smaller in
length than in vertebrates. These differences probably
reflect some evolutionary constraints imposed by the
smaller size of the invertebrate genome [32].
We use RepeatMasker (Smit and Green http://

www.repeatmasker.org/, version 4.0.6) to mask the
transposable elements (TEs; masked at 15% diver-
gence level), high-copy repeats or simple sequence

repeats (SSR). Then silkworm TE dataset [20] was
used as repeat database to rerun the RepeatMasker to
mask as much TEs as possible. Thus, we used differ-
ent repeat databases to mask the target genomes. The
result showed that almost 22.6% of the silkworm gen-
ome was masked while 2.05% - 4.97% of other
Lepidoptera genomes were masked (P. xylostella:
3.12%, D. plexippus: 2.05%, M. sexta: 4.97% and H.
melpomene: 2.25%). Osanai-Futahashi et al. [33] have
shown that TEs are enriched in the genome of silk-
worm and TEs may play important roles during the
domestication of silkworm [34]. Thus, the high pro-
portion of SDs in H. melpomene may result from
some TEs left in the genome.

Comparative analysis of duplication maps among five
Lepidoptera species
We further characterized each SD as “unique” or
“shared”, depending on whether they exist in only one

Table 1 Characterization of the SDs of the five Lepidoptera species

Species P. xylostella M. sexta H. melpomene D. plexippus B. mori

Total number of SDs 21,369 11,141 23,942 10,799 3667

Number of SDs with 90% identity 18,064 8892 21,572 10,070 3221

Number of SDs with 80-90% identity 3204 2171 2239 668 416

Number of SDs with 75-80% identity 99 78 127 60 5

Total (Mb) 43 19.1 40.5 23.5 5.6

% of genome 11 5.2 15.2 9.9 1.2

Number of genes 2235 1040 1453 1564 332

% of genes 12.4 6.8 11 10.3 2.3

A B

Fig. 1 SDs length distributions among 5 Lepidoptera species. a Boxplots showing the mean and range of the numbers of SD for each SD length
category for all five Lepidoptera species combined. Most SDs were found in the 1–1.5 kb length category. b Number of SDs of different length
categories for each species. The size of the circle represents the proportion of SDs
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or multiple genomes. The comparative SD maps re-
vealed that most of the segmental duplications were
“unique” SDs (Fig. 2). For example, the number of
shared SDs among the five Lepidoptera species varied
from 83 in B. mori (e.g. 83 SDs from B. mori shared with
other Lepidoptera genomes) to 1817 in H. melpomene
(e.g. 1817 SDs from H. melpomene shared with other
Lepidoptera genomes) (Fig. 3a).
Butterflies (D. plexippus and H. melpomene) shared

more SDs with each other than with the other species
(Fig. 2) indicating their closer relationship. Silkworm
and Carolina sphinx moth also shared more common
SDs than with the other species, indicating their close

relationship. These results are consistent with the phyl-
ogeny of Lepidoptera published by Regier et al. [35].
Based on the phylogeny of Lepidoptera [35], it was

possible to assess the origins of some SDs within specific
lineages and ancestral events of SDs. Since segments
might have mutated after divergence, we attempted to
map duplication events onto the phylogenetic tree using
reconciliation method (software like NOTUNG). How-
ever, based on the blast search analysis, we found that
the “unique” SDs could not find the homologous se-
quences in other Lepidoptera species. We had two spec-
ulations to explain this result: (1) The segments might
have mutated after duplications or (2) SDs arose after

Fig. 2 Duplication map comparison of five Lepidoptera species. SDs regions in each Lepidoptera species and their paralogous regions in other
four genomes were shown. Different colors represent different insects. Only the best alignments were listed
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the divergence of each lineage. In the first situation, all
the copies should have mutated and evolved rapidly,
resulting in sequence variation being too high to find a
blast hit in other genomes. If so, it would be difficult to
trace the ancestral sequences onto the phylogenetic tree
using reconciliation method such as Notung. Thus, we
classified the SDs into five groups (Fig. 3b) and focused
on analyzing evolutionary history of SDs in Lepidoptera
genome. To identify the potential ancestral SDs events,
we initially focused on shared duplications among all five
species (Group A) but none were identified (Fig. 3b),sug-
gesting that the original SDs might have been lost early
during the evolution of Lepidoptera or the origins of the
SDs are along with the speciation of the Lepidoptera. The
second situation would lead to some SDs that only exist in
one or a few genomes.
We then analyzed the SDs that were only lost in Noc-

tuoidea and Bombycoidea (Group B, Fig. 3b). There were
46 cases found in this group. As part of our comparative
analyses, we also found some regions where duplication
patterns were inconsistent with the generally accepted
phylogeny (Groups C, D, and E; Fig. 3b). Such a scenario
could arise as a result of a de novo development of SDs
or as a result of deleted events, which might play a role
in lineage-specific evolution. Groups C and D (Fig. 3b)
were more common than the other groups due to their
closer relationship with species based on the evolution
history (Fig. 3b). The previous study of Marques-Bonet
et al. [6] reports that humans share a greater number of
SDs with chimpanzees than macaque or orangutan. Only
49 common SDs were lost in D. plexippus and H.

melpomene (Group E). Since the time of Lepidoptera
speciation is relatively long, we cannot test the complete
phylogeny of SDs, and a greater number of sequenced
Lepidoptera genomes would be necessary to elucidate
this aspect.
We speculated that the “shared” SDs between species

might represent the “ancestral sequences” as they
remained conserved in the genomes during the evolu-
tion of Lepidoptera. To test this speculation, we ana-
lyzed the alignment identity of “shared SDs” and “unique
SDs” and found that “shared SDs” had significantly
higher identity comparing with the “unique SDs”
(P < 0.01, T-test), except for silkworm (Fig. 3c). The re-
sults indicated that “shared SDs” might be more con-
served than the “unique SDs”. Silkworm has diverged
from the other species due to its domestication and in-
breeding history leading to extremely low level of het-
erozygosity [36]. We compared the SDs in silkworm
with the artificial selected regions that were identified in
Xia et al. [36] and found that eight SD regions over-
lapped with the artificial selected regions, suggesting that
these SDs may be related with the silkworm domestica-
tion. However, none of these eight regions were “shared
SDs”, which also indicated that these unique SDs may be
involved in the lineage-specific domestication. We also
tested the difference of variance between “shared” and
“unique” SDs (Fig. 3c) and showed that in P. xylostella,
D. plexippus and H. melpomene, the differences were
not significant (p = 0.05755; p = 0.5304 and p = 0.6278,
respectively). Only B. mori and M. sexta showed signifi-
cant differences (p = 1.218e-05 and p = 0.03909).

A B C

Fig. 3 “Shared” and “Unique” SDs among 5 species. a “Shared” and “Unique” SDs in each genome. Red represents “Unique” SDs while black
represents “Shared” SDs. b SDs classification of the five species based on the existing SDs (marked as “+”) and absence SDs (marked as “-”). We
classified the SDs into five groups to analyze evolutionary history of SDs in Lepidoptera genome. Group A are the potential ancestral SDs events.
Group B showed the SDs that were only lost in Noctuoidea and Bombycoidea while Groups C, D and E showed regions where duplication
patterns were inconsistent with the generally accepted phylogeny. Such a scenario could arise as a result of a de novo origin of SDs or as a result
of deleted events, which might have played a role in lineage-specific evolution. “n” represents the number of group A, B, C, D or E. c Identity
comparison between “Shared” and “Unique” SDs in the genomes of the five Lepidopteron species. The identity of “Shared” SDs is marked as black
while the identity of “Unique” SDs is marked as red
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Sequence properties of the SDs in the five studied
species
The analysis and comparison of the composition of
genes in the SDs among the five Lepidoptera species
showed that 2235, 1036, 1453, 1564 and 332 putative
genes could be identified in P. xylostella, M. sexta, H.
melpomene, D. plexippus and B. mori respectively (Table
1, Additional file 2: Table S2). Most of the segmental du-
plication intervals identified contained gene duplicates,
ranging from 58% in silkworm to 94% in H. melpomene
(Additional file 3: Table S3). We further characterized
the genes as “shared” or “unique” based on whether they
were located in the “shared SDs” or “unique SDs”. The
results showed that most of the genes belonged to the
“unique” genes, with only 31, 26, 13, 6, and 3 genes be-
longing to “shared” genes in P. xylostella, M. sexta, D.
plexippus, H. melpomene, and B. mori, respectively.
These results suggested that most of the genes in SDs
could play different roles in different species. We hy-
pothesized that these genes might be involved in
lineage-specific evolution and particular gene classes
might be overrepresented in the SDs.
To test the hypothesis, we used Gene Ontology (GO)

to annotate all the genes and showed that each species
had different GO enrichments and gene families (Table
2; Additional file 4: Table S4). In P. xylostella, 25 pro-
teins were identified such as serine-type endopeptidase
activity (GO: 0004252), structural constitute of cuticle
(GO: 0042302), and nucleic acid binding (GO: 0003676)
(Table 2). Based on previous study of differential expres-
sion in response to host-plant on Swedish comma, Poly-
gonia c-album, these genes may be related to host-
feeding [37, 38]. Thus, we suggested that the genes in
SDs of diamondback moth might be related with its
host-feeding behavior.
In M. sexta, we identified a GO enrichment of

prothoracicotrophic hormone activity (GO: 0018445).
The prothoracicotropic hormone (PTTH) is well studied
in tobacco hornworm (Rountree and Bollenbacher 1986)
and in M. sexta, it is related to molting and metamor-
phosis [39, 40]. In D. plexippus, we identified the GO
enrichment of glucuronosyltransferase activity (GO:
0015020). In silkworm, UDP-glucuronosyltransferase
(UGT) plays a role in detoxification processes, such as
minimizing the harmful effects of ingested plant allelo-
chemicals [41]. Also, we identified the enrichment of
Rho guanyl-nucleotide exchange factor activity (GO:
0005089), which is a modulator in the signaling pathway
of Ras/MAPK and Wnt. Previous studies have shown
that this activity is associated with neuronal growth cone
and planar cell polarity formation [42, 43]. In B. mori,
consistent with [30], we identified the enrichment of
monooxygenase activity (GO: 0004497), which might be
associated with detoxification.

To further clarify the functions of SDs in each
Lepidoptera species, we annotated the gene functions in
the SDs regions using Pfam and although the GO en-
richments differed among species, some of the gene
families embedded in the SDs were the same for the five
species (Additional file 5: Table S5). For example, genes
in SDs can be classified into three categories: (1) detoxifi-
cation, (2) immunity, and (3) environmental signal recog-
nition, which are similar to other mammals and insects
[30, 44]. These genes are very important in drug detoxifi-
cation, defense, and receptor and signal reorganization.
The cytochrome P450s (P450s), for example, are import-
ant proteins for insect growth and development and have
been found to play various functions such as biosynthesis
of hormones, and inactivation and metabolism of xeno-
biotic compounds such as pesticides [45–47]. In this
study, P450s were identified in all five species (8, 13, 15,
12, 10 SDs regions in P. xylostella, B. mori, M. sexta, D.
plexippus and H. melpomene, respectively). In P. xylos-
tella, Yu et al. [48] report strong expression of 84 func-
tional cytochrome P450 genes, many of them, especially
CYP367s, contributing to detoxification or metabolic pro-
cessing of environmental chemicals.
We also identified the trypsin in the five species (55, 7,

24, 19, 2 SDs regions in P. xylostella, B. mori, M. sexta,
D. plexippus and H. melpomene, respectively), which
may be involved in immunity [49]. The glucose-
methanol-choline (GMC) oxidoreductases, shown to be
involved in developmental and physiological processes,
and immunity [50], were also identified in four of the
five species (1, 4, 5, 4 SDs regions in B. mori, M. sexta,
D. plexippus and H. melpomene, respectively).
Some species-specific genes in SDs regions were

also identified including 13 Lepidopteran-specific
Lipoprotein_11 in silkworm. Zhang et al. [51] have
shown that this family is involved in various physio-
logical processes such as energy storage, embryonic
development and immunity. These SDs might have
played a role in the silkworm-specific evolution. Some
lineage-specific expansion genes were also embedded
in the SDs regions. For example, we identified 167
zinc-finger proteins in the SD regions of P. xylostella,
which was much more than in any other species (20,
73, 91 and 8 in B. mori, M. sexta, D. plexippus and
H. melpomene). A recent study (data unpubl.) of tran-
scription factors in diamondback moth indicates that
zinc-finger proteins may be expanded, also suggesting
their potential important functions in the DBM. The
zinc-finger has been shown to function in a variety of
biological processes, such as DNA-binding, RNA-
binding, protein-protein interactions, developmental
processes and differentiation [52]. Further studies on
expression patterns showed that the expression of
some zinc-fingers were significantly different between
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susceptible and resistant strains (data unpublished).
However, more researches are needed to illustrate the
functions of these zinc-fingers.

Zhao et al. [30] report in silkworm that SDs are char-
acterized by enrichment of DNA transposons and LTR
retrotransposons. These observed enrichments in the

Table 2 GO enrichment for some proteins within the SDs regions among the five Lepidoptera species

GO term p-value Number of proteins

P. xylostella

Nucleic acid binding [GO:0003676] 5.78E-06 149

Oxidoreductase activity [GO:0016491] 1.64E-05 16

Oxidation-reduction process [GO:0055114] 0.0005938 38

Serine-type endopeptidase activity [GO:0004252] 0.001488 54

Protein tyrosine phosphatase activity [GO:0004725] 0.003778 12

Protein dephosphorylation [GO:0006470] 0.005278 14

Structural constituent of cuticle [GO:0042302] 0.006409 3

Zinc ion binding [GO:0008270] 0.008232 151

M. sexta

Prothoracicotrophic hormone activity [GO:0018445] 2.99E-06 10

Growth factor activity [GO:0008083] 0.0026 5

Phosphorylase kinase complex [GO:0005964] 0.003736 3

SWI/SNF complex [GO:0016514] 0.003736 3

Phosphorylase kinase activity [GO:0004689] 0.003736 3

Phosphoprotein phosphatase activity [GO:0004721] 0.00556 6

Neuropeptide signaling pathway [GO:0007218] 0.007097 13

Defense response [GO:0006952] 0.00955 3

H. melpomene

ATP-dependent peptidase activity [GO:0004176] 0.002622 2

Misfolded or incompletely synthesized protein catabolic process [GO:0006515] 0.002622 2

DNA integration [GO:0015074] 0.008793 2

Inositol-1,4,5-trisphosphate 3-kinase activity [GO:0008440] 0.008793 2

D. plexippus

Dephosphorylation [GO:0016311] 0.002541 12

RNA-directed DNA polymerase activity [GO:0003964] 0.002617 16

Glucuronosyltransferase activity [GO:0015020] 0.003223 10

Endonuclease activity [GO:0004519] 0.004409 14

Carbohydrate transport [GO:0008643] 0.005052 12

Pyrophosphatase activity [GO:0016462] 0.008074 4

Riboflavin metabolic process [GO:0006771] 0.009158 8

Rho guanyl-nucleotide exchange factor activity [GO:0005089] 0.00975 10

B. mori

Heme binding [GO:0020037] 1.30E-06 13

Monooxygenase activity [GO:0004497] 2.09E-06 13

Hormone activity [GO:0005179] 0.0001028 6

Electron transport [GO:0006118] 0.0003995 18

Calcium ion binding [GO:0005509] 0.00205 10

Response to oxidative stress [GO:0006979] 0.003103 3

Odorant binding [GO:0005549] 0.003145 6

Oxidoreductase activity [GO:0016491] 0.00358 16
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flanking regions of SDs in silkworm suggest a potential
implication in the formation of repeats in SDs. In this
study, the TEs composition was analyzed by comparing
the sequences near the SDs regions and found that DNA
transposons were enriched in SDs regions as well as
flanking regions of most species except H. melpomene
(Table 3). Like in silkworm, DNA transposons and LTR
(long terminal repeat) retrotransposons were enriched in
the region of SDs and flanking regions in P. xylostella
(Table 3), suggesting similar potential roles in SD forma-
tion. In M. sexta and D. plexippus, only DNA transpo-
sons were found to be enriched (Table 3). In H.
melpomene, all analyzed TEs, except DNA transposons,
were enriched in the SDs and flanking regions (Table 3)
with LINEs (long interspersed nuclear elements) being
the most abundant. These results suggest that short in-
terspersed nuclear elements (SINEs), LTR and LINEs
may also be involved in the formation of SDs in the gen-
ome of H. melpomene.

Effects of SDs on gene expression
An initial study of lymphoblastoid cell lines in human
has shown that CNVs have some effects on gene expres-
sion [53]. For example, changes in the number of copies

can explain almost 20% of the variation in gene expres-
sion [53]. This effect can be the results of gene dosage
within SDs or SDs on neighboring genes [53–56]. To as-
sess the effect of SDs on the transcriptomes, we explored
the genome-wide expression of three of the Lepidoptera
species, P. xylostella, B. mori, and M. sexta, at different de-
velopmental stages, different tissues and different strains
using RNA-seq data (NCBI website). We found that the
gene expression levels embedded within our SDs regions
were significantly lower than that of other genes located
elsewhere in the genome. This was true for all analyzed
available developmental stages or tissues (T-test,
p < 2.20E-16) (Fig. 4). For example, in P. xylostella, we an-
alyzed the expression pattern of genes within and outside
the SD regions in different developmental stages. The re-
sults showed that the expression values of genes within
SDs were significantly lower than the genes outside the
SDs regions (T-test, p < 0.01, Fig. 4a). We redid the same
analysis on the silk gland from different strains of B. mori
and different tissues of M. sexta and found similar expres-
sion patterns: genes located in SDs had lower expression
values than the genes outside SDs (Fig. 4b and c).
A possible reason for this may be that some regulation

mechanisms control the gene expression within SDs.

Table 3 TEs properties of the Lepidoptera genomes, duplications and 2.5 Kb flanking regions

Repeat Duplication % 2.5 Kb FR % Genome % Enrichment in SDs Enrichment in FR

P. xylostella

DNA 72,462 0.167 55,718 0.053 180,461 0.046 3.653 1.152

SINE 3040 0.007 22,679 0.021 258,493 0.066 0.107 0.327

LTR 18,614 0.043 10,333 0.010 23,611 0.006 7.173 1.632

LINE 249,583 0.576 129,227 0.122 628,430 0.159 3.613 0.767

M. sexta

DNA 11,814 0.062 22,773 0.045 128,714 0.031 2.015 1.462

SINE 361 0.002 2714 0.005 48,452 0.011 0.164 0.463

LTR 131 0.001 1537 0.003 12,658 0.003 0.227 1.004

LINE 18,312 0.096 19,895 0.039 156,948 0.037 2.561 1.048

D. plexippus

DNA 12,322 0.052 22,852 0.044 73,287 0.029 1.779 1.484

SINE 2783 0.012 4447 0.009 21,783 0.009 1.352 0.972

LTR 555 0.002 1975 0.004 7333 0.003 0.800 1.282

LINE 6026 0.026 4729 0.009 57,808 0.023 1.103 0.389

H. melpomene

DNA 483 0.001 20,348 0.017 51,129 0.019 0.064 0.938

SINE 23,660 0.058 15,872 0.014 26,036 0.009 6.169 1.436

LTR 7735 0.019 14,801 0.013 12,676 0.004 4.143 2.751

LINE 171,528 0.423 129,144 0.111 243,145 0.088 4.789 1.251

DNA DNA transposons, SINE short interspersed nuclear elements, LTR long terminal repeat, LINE long interspersed nuclear elements
The TEs contents of three regions of the genomes were compared: SDs regions; 2.5 Kb flanking regions (FR) of the SDs and the genome average. Enrichment was
defined as the repeat content of duplicated sequences divided by the repeat content of unique sequences. The significance was performed by simulating the
repeats in a random sample (n = 1,00) of DBM SDs (P-value < 0.05 were in bold)
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Based on our analysis above, we found that some TEs
were enriched in the SDs as well as the SDs’ flanking re-
gions (Table 3). In silkworm, methylation levels in TEs
regions are extremely low compared to the rest of the
genome [57]. Epigenetic regulation in insects can have
various effects on biological processes. In silkworm, CG
methylation is enriched in gene bodies and is positively
correlated with gene expression level, indicating its posi-
tive roles in gene transcription [57]. We therefore ana-
lyzed the CG methylation level of the genes embedded
in the SD regions as well as the genes outside the SDs
regions for the five species and did not find any CG
methylation in gene bodies of SDs (Fig. 4c). This may
explain the low gene expression levels in SDs regions.
However, more CG methylation information from other
Lepidoptera species may be needed to further validate
this conclusion.

Conclusion
Structural variation between genomes is important in
phenotype differentiation and genome evolution. Here,
we performed a comparative analysis of segmental dupli-
cations (SDs) among five lepidopteran reference ge-
nomes (P. xylostella, D. plexippus, B. mori, M. sexta and
H. melpomene). We found that the SDs contents greatly
varied among the five species. Comparative analyses of
SDs showed that most of them arose after the diver-
gence of each lineage. The most closely related species
based on the phylogenetic tree also shared more com-
mon SDs. Conserved ancestral SDs and species specific
SD events were assessed, revealing multiple examples of
gain, loss or maintenance of SDs over time. The results
indicated that SDs might have undergone loss or gain

during the evolution of the genome. We further analyzed
the genes embedded in SDs regions and the result
showed that most of the genes were located in the
species-specific SDs (“Unique” SDs). Functional analysis
of these genes suggested their potential roles in the
lineage-specific evolution. Comparison of gene expres-
sion between SDs and non-SDs showed that the expres-
sion levels of genes embedded in SDs were significantly
lower, suggesting that structural changes in the genomes
were involved in gene expression differences within each
species. Our results suggested that SDs might have been
involved in the species-specific evolution. They thus pro-
vide a valuable resource beyond the genetic mutation to
explore the genome structure for future Lepidoptera
research.
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Fig. 4 Expression levels are associated with segmental duplications in the 5 species. a Expression level analysis in P. xylostella. Different developmental
stages (from egg to adult) are listed. The expression level for the genes located in SDs is marked as red while the expression level for the genes
outside SDs is marked as black. b Expression level analysis in M. sexta. Different tissues and developmental stages used in the analysis are listed. The
expression level for the genes located in SDs is marked as green while the expression level for the genes outside SDs is marked as black. c Expression
level analysis in silk gland of B. mori. Different strains were analyzed including domesticated strain Chunhua (D_CH), domesticated strain Chunyu
(D_CY), wild silkworm Ankang from Baihe county of Shanxi Province (W_AKBH) and wild silkworm Ankang from Shiquan county of Shanxi Province
(W_AKSQ). d Methylation level comparison between genes within and without SDs regions based on silkworm data
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