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Abstract

Background: The eusocial Hymenoptera have radiated across a wide range of thermal environments, exposing
them to significant physiological stressors. We reconstructed the evolutionary history of three families of Heat Shock
Proteins (Hsp90, Hsp70, Hsp40), the primary molecular chaperones protecting against thermal damage, across 12
Hymenopteran species and four other insect orders. We also predicted and tested for thermal inducibility of eight
Hsps from the presence of cis-regulatory heat shock elements (HSEs). We tested whether Hsp induction patterns in
ants were associated with different thermal environments.

Results: We found evidence for duplications, losses, and cis-regulatory changes in two of the three gene families.
One member of the Hsp90 gene family, hsp83, duplicated basally in the Hymenoptera, with shifts in HSE motifs
in the novel copy. Both copies were retained in bees, but ants retained only the novel HSE copy. For Hsp70,
Hymenoptera lack the primary heat-inducible orthologue from Drosophila melanogaster and instead induce the
cognate form, hsc70-4, which also underwent an early duplication. Episodic diversifying selection was detected
along the branch predating the duplication of hsc70-4 and continued along one of the paralogue branches after
duplication. Four out of eight Hsp genes were heat-inducible and matched the predictions based on presence of
conserved HSEs. For the inducible homologues, the more thermally tolerant species, Pogonomyrmex barbatus, had
greater Hsp basal expression and induction in response to heat stress than did the less thermally tolerant species,
Aphaenogaster picea. Furthermore, there was no trade-off between basal expression and induction.

Conclusions: Our results highlight the unique evolutionary history of Hsps in eusocial Hymenoptera, which has
been shaped by gains, losses, and changes in cis-regulation. Ants, and most likely other Hymenoptera, utilize
lineage-specific heat inducible Hsps, whose expression patterns are associated with adaptive variation in thermal
tolerance between two ant species. Collectively, our analyses suggest that Hsp sequence and expression patterns
may reflect the forces of selection acting on thermal tolerance in ants and other social Hymenoptera.
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Background
Heat stress causes proteins to lose stability, misfold, and
form aggregates, which can impair function and reduce
organismal fitness [1–4]. To cope with macromolecular
damage, the heat shock response (HSR) transcriptionally
up-regulates thermally responsive genes such as heat
shock proteins (Hsps), which maintain proteostasis by
refolding or degrading denatured proteins and pre-
venting aggregations [1, 2, 5]. Hsps are a set of highly
conserved molecular chaperone proteins of diverse
multigene families, named after their molecular weight
(Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps) [6, 7].
Although Hsps as a group are highly conserved, diver-

sity within each Hsp gene family reflects evolutionary
gains and losses of gene copies [8, 9]. Each Hsp protein
family includes paralogues localized to different subcel-
lular compartments (cytosol, endoplasmic reticulum, or
mitochondria) that participate in housekeeping functions
and/or respond to environmental stress [10–12]. For
heat-inducible forms, the transcribed heat shock factors
(HSF), bind to cis-regulatory elements known as heat
shock elements (HSEs) and up-regulate Hsp transcrip-
tion [13–15]. Patterns of variation in Hsp gene expres-
sion among taxa include expansion of additional Hsp
genes [16] and shifts in the arrangement and position of
HSE elements [14, 17, 18]. Among taxa, both the level of
constitutive expression and the magnitude of Hsp induc-
tion are associated with adaptive variation in upper ther-
mal limits [19–22]. Gene structure may also play a role
in Hsp expression, but has not been well-studied. For
example, genes with introns allow for more mRNA accu-
mulation than do intronless genes [23–25].
The eusocial Hymenoptera (wasps, ants, and bees)

occupy diverse thermal environments from low to high
latitudes [26] and elevations [27, 28], suggesting that
temperature may have played an important selective role
in their evolution [29]. Species employ a variety of
behavioral [30, 31] and physiological strategies [32] to
reduce individual and colony-level exposure to thermal
stress. However, individual foragers that leave the nest
each day and immobile brood that develop in the nest
are likely to encounter sufficiently high temperatures to
trigger the HSR [33, 34]. Although key members of
Hsp90 and Hsp70 have been identified in a few species of
Hymenoptera [33–36], the diversity, functional properties,
and regulation of molecular chaperones underlying adap-
tive variation in Hymenopteran thermal tolerance are
poorly understood.
In this study, we evaluated the diversity and evolutionary

history of Hsps across 12 species of Hymenoptera and five
outgroup species (Culex quinquefasciatus, Drosophila mel-
anogaster, Bombyx mori, Tribolium castaneum, Acyrthosi-
phon pisum) spanning four insect orders. We analyzed
recently published genomes of multiple species of ants

[37–42], bees (Apis [43] and Bombus [44]), and the jewel
wasp (Nasonia vitripennis [45]) to identify orthologues
within each major Hsp gene family and to characterize the
upstream regulatory motifs governing their transcription
(HSEs). We reconstructed molecular evolutionary relation-
ships within each Hsp multigene family to identify evolu-
tionary gains and losses and tested for positive or purifying
selection for each homologous Hsp among lineages and
across sites. To characterize the evolution of cis-regulation
and identify Hsps involved in the HSR, we identified cis-
regulatory HSEs within the promoter region for each hom-
ologous Hsp. We then tested whether HSE presence and
configuration successfully predicted inducibility in two
species of ants that experience different thermal environ-
ments: the hot-climate Pogonomyrmex barbatus, which
inhabits deserts of the southwestern United States [46],
and the cool-climate Aphaenogaster picea, which inhabits
temperate deciduous forests of the eastern United States
[47]. We found that ants, and probably other Hymenoptera,
harbor unique, lineage-specific sets of heat inducible Hsps
that were shaped by evolutionary gains, losses, and shifts
in cis-regulation. Expression patterns of these heat-
inducible Hsps reflect adaptive variation in thermal toler-
ance between P. barbatus and A. picea.

Results
Identification of conserved Hsp and cis-regulatory HSEs
We recovered conserved Hsps from all of the major
gene families (Hsp90, Hsp70, Hsp60, Hsp40, small Hsps;
Table 1). Three paralogues within the Hsp90 gene family
(trap1, gp93, and hsp83) were found across all surveyed
insects. We recovered five of the six Drosophila melano-
gaster Hsp70 homologues (CG2918, hsc70-3 (BIP),
hsc70-4, hsc70-5, and hsp70CB; Table 1) for Hymenoptera.
With the exception of Nasonia vitripennis, the Hymenop-
teran taxa all lacked the heat-inducible orthologue hsp70
(Table 1). For all species, we recovered two paralogues of
Hsp60 (Table 1). Hsp40 gene families are one of the most
diverse Hsps, but we narrowed our search to DnaJ-1,
which is the known heat-inducible paralogue of D. melano-
gaster (Table 1). We did not recover a DnaJ-1 paralogue
from any of the insects surveyed and found the best
BLAST match to be D. melanogaster CG5001 (Table 1).
Forward BLAST searching for D. melanogaster sHsps
(hsp22, hsp23, hsp26, hsp27) yielded no reciprocal BLAST
hits; instead, the closest match was lethal 2 essential
for life (l(2)efl), for which there were 3–9 copies in
the Hymenoptera, and 1–17 copies in other members
of the outgroup (Table 1).
Of the Hsp homologues, eight were quantifiable by

qPCR and were subsequently searched for cis-regulatory
HSEs (Table 1, indicated with asterisks). Local alignment
of the promoter regions of hsp83, hsc70-4 (h1 and h2),
and hsp40 across species indicated conserved location,

Nguyen et al. BMC Evolutionary Biology  (2016) 16:15 Page 2 of 13



conformation, and arrangement of cis-regulatory HSEs
(Figs. 1, 2 and 3), whereas hsc70-3 (BIP), hsc70-5, hsp60,
and l(2)efl had less conserved HSEs (Additional file 1:
Figures S1, Additional file 2: Figures S2, Additional
file 3: Figures S3; data not shown for l(2)efl). For Hsps
with conserved HSEs, 193 HSE motifs were annotated, in-
cluding 114 head types (‘nGAAn’) and 79 tail types
(‘nTTCn’; Figs. 1, 2 and 3). Across all sampled insects, we
found no consistent preference for head or tail motifs in
hsp83 (exact binomial test, p = 0.055), significant prefer-
ence for the head motif in hsc70-4 (p < 0.001), and signifi-
cant preference for the tail motif in hsp40 (p < 0.05).

Heat shock protein (Hsp) and cis-regulatory heat shock
element (HSE) evolution
Hsp83
Phylogenetic reconstruction of hsp83 revealed multiple
duplications and losses in both the outgroup and Hymen-
optera (Fig. 1). An early duplication event in a common
ancestor of the Hymenoptera generated two paralogues of
hsp83 (h1 and h2 in Fig. 1). Although both paralogues are
present in bees and wasps, only one paralogue (h2) exists
in ants, indicating a secondary loss. A second duplication
of the h2 orthologue occurred in Linepithema humile.
Selection analysis along the length of the gene sequence
indicated that most sites (608/714 and 625/714, Single
likelihood ancestor counting (SLAC) and Relative effects

likelihood (REL) analyses, respectively, Table 2) identified
purifying selection; there was no evidence for episodic di-
versifying selection in branches leading to Hymenopteran
paralogues (Branch-REL, p > 0.5; Fig. 1).
In spite of overall sequence conservation, Hymenopteran

hsp83 h2 differs in genomic structure and cis-regulation
from Hymenopteran hsp83 h1 and from outgroup species
in three ways. First, Hymenopteran hsp83 h1 and most
outgroup species completely lack introns, whereas hsp83
h2 has two introns; Apis mellifera hsp83 h1 is the ex-
ception, with one intron in hsp83 h1 (Additional file 4:
Figure S4). Second, Hymenopteran hsp83 h2 has a split
HSE arrangement (4–6 and 3 HSE motifs), whereas both
hsp83 Hymenopteran h1 and the outgroup have a con-
tiguous HSE arrangement (6–9 HSE motif length) at the
proximal end of the molecule (30–100 bps upstream TSS;
Fig. 1). Third, there is a preference in head-type motifs only
in Hymenopteran hsp83 h2 (Fisher’s Exact Test, p <0.001;
Fig. 1).

Hsc70-4
Phylogenetic reconstruction of hsc70-4 indicates mul-
tiple duplication events both within species (C. quinque-
fasciatus and A. pisum) and in a common ancestor of
the Hymenoptera, leading to two paralogues (h1 and h2;
Fig. 2). Each paralogue forms a strongly supported clade,
with the exception of the two Bombus species, in which

Table 1 Summary of orthologous HSPs from the combination of reciprocal BLAST and HMMER searches using D. melanogaster as
the reference

Outgroup Hymenoptera

Gene family Gene C. quinque. T. castaneum B. mori A. pisum Ants Bees N. vitripennis

Hsp90 trap1 1 1 1 1 1 1 1

gp93 3 1 1 1 1 1 1

hsp83 3 3 1 2 1–2* 2 2

Hsp70 CG2918 1 1 1 3 1 1 1

hsc70-3 (BIP) 1 1 1 1 1* 1 1

hsc70-4 2 1 1 2 2* 2 2

hsc70-5 1 1 1 1 1* 1 1

hsp70 6 1 2 3 0 0 1

hsp70CB 1 1 1 1 1 1 1

Hsp60 tcp-1 1 1 1 1 1 1 1

hsp60 1 1 1 1 1* 1 1

Hsp40 CG5001 1 1 1 1 1* 1 1

small Hsps hsp23 0 0 0 0 0 0 0

hsp24 0 0 0 0 0 0 0

hsp26 0 0 0 0 0 0 0

hsp27 0 0 0 0 0 0 0

l(2)efl 8 10 17 1 3–6* 4–9 7

Each entry is the number of orthologous HSPs detected. The astericks (*) indicate orthologues that were detectable by qPCR. For l(2)efl, only one paralogue was detectable
by qPCR. C. quinque= Culex quinquefasciatus, T. castaneum= Tribolium castaneum. B. mori = Bombyx mori, A. pisum = Acyrthosiphon pisum, N. vitripennis=Nasonia vitripennis.
See text for further details of ants and bees used for analysis
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the h1 paralogue is nested within the h1 clade but the
second copy does not group with either Hymenopteran
paralogue (Fig. 2). There is evidence of episodic diversi-
fying selection along the branch preceding the hsc70-4
duplication in the Hymenoptera and also in the Hymen-
opteran hsc70-4 h2 lineage (Branch-REL, p <0.001 in
both cases; Fig. 2), even though most individual sites
(608/710 and 610/710, SLAC and REL analyses, res-
pectively) were under purifying selection (Table 2).
Hymenopteran hsc70-4 differs in genomic structure and

cis-regulatory HSEs from that of D. melanogaster. The
orthologue of hsc70-4 in D. melanogaster lacks introns and
cis-regulatory HSEs (Additional file 5: Figure S5; Fig. 2). In
contrast, Hymenopteran hsc70-4 h1 has one intron, with
the exception of N. vitripennis, which has two introns.
Hymenopteran hsc70-4 h2 also has two introns, with the
exception of Bombus (Additional file 5: Figure S5). Com-
pared to the hsc70-4 in members of the outgroup (Fig. 2,
right), both Hymenopteran hsc70-4 paralogues showed high
diversification in cis-regulatory HSEs, particularly at the
more distal positions ( >120 bps upstream TSS). At the
proximal position (30–115 bps upstream TSS), however,
HSEs of Hymenopteran hsc70-4 aligned locally with the
inducible D. melanogaster hsp70 gene (data not shown).

Hsp40
Both sequence and copy number of hsp40 were phylo-
genetically conserved across all insect species (Fig. 3).

Most sites were under purifying selection (Table 2), and
there was no evidence of episodic diversifying selection
along branches leading to the Hymenoptera (Fig. 3).
Cis-regulatory HSEs of hsp40 were concentrated in
one conserved proximal block of 3–7 HSE subunits
that were located 35–100 bps upstream of the TSS, al-
though in D. melanogaster HSEs were located 255–
285 bps upstream (Fig. 3). However, the genetic structure
appears less conserved, ranging from zero to three introns
(Additional file 6: Figure S6).

Inducible Hsp expression
We tested whether the presence or absence of conserved
cis-regulatory HSEs successfully predicted Hsp gene
induction in response to experimental heat shock. The four
Hsp genes with conserved HSEs were all significantly up-
regulated in response to increasing temperature treatments
(hsp83 (F5,12 = 8.48; p < 0.01), hsc70-4 h1 (F5,12 = 3.74;
p < 0.05), hsc70-4 h2 (F5,12 = 10.6; p < 0.001), and hsp40
(F5,12 = 6.97, p < 0.01); Fig. 4a–d). The other four Hsps,
which lacked conserved HSEs, were not significantly
up-regulated after heat shock (hsc70-5 (F5,12 = 2.17;
p = 0.13), hsc70-3 (F5,12 = 1.91; p = 0.17), hsp60 (F5,12 = 2.86;
p = 0.063), and l(2)efl (F5,12 = 0.223; p = 0.946); Fig. 5a–d).

Species comparisons
We then tested whether variation in thermal tolerances
between two ant species was accompanied by changes in

Fig. 1 Evolutionary gains and losses in hsp83 within Hymenoptera, followed by diversification in cis-regulatory HSEs. Relationships of homologous
hsp83 were reconstructed with PhyML for 17 insect species (rooted with A. pisum) using a JTT substitution model with 1000 bootstrap replicates
(>90 bootstrap support indicated; left). Branches of the outgroup taxa are colored in blue and black, while well-supported paralogues of Hymenopteran
branches are colored in orange (h1) and red (h2). Statistically significant episodic diversifying selection using Branch-Rel is indicated along the branch
(+ corresponds to p < 0.05; * = p < 0.01; ** = p < 0.001). Cis-regulatory HSEs in the promoter region spanning 400 bps from the transcription start site
(TSS; right) are mapped onto the phylogeny and are annotated by their length and motif type
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Hsp inducibility. The median lethal temperature 50 (LT50)
of the warm-climate P. barbatus (median LT50 = 46.9 °C)
was significantly higher than the LT50 of the cool-climate
A. picea (median LT50 = 38.78 °C; generalized linear model
(GLM) with a binomial response variable: influence of
species, p < 0.001; Additional file 7: Figure S7). These
survivorship differences were matched by patterns of Hsp
gene expression: P. barbatus shifted its expression profile
toward higher temperatures than did A. picea for all
inducible Hsps (Fig. 4a–d). For hsp83, hsc70-4 h1, and
hsc70-4 h2, P. barbatus showed peak expression at 43 °C,
whereas A. picea showed peak expression at 35–38.5 °C
(Fig. 4a–c). For hsp40, peak expression was 40 and
35 °C for P. barbatus and A. picea, respectively (Fig. 4d).
P. barbatus exhibited significantly higher constitutive ex-
pression of hsc70-4 h1 (ANOVA, F1,5 = 87.8, p < 0.01) and
l(2)efl (F1,5 = 6.92, p < 0.05), and significantly lower consti-
tutive expression of hsc70-3 (F1,5 = 596, p < 0.01), hsc70-5
(F1,5 = 24.3, p < 0.001), and hsp60 (F1,5 = 31.2, p < 0.01)
than did A. picea (Fig. 6). Among the inducible Hsps,
there was a positive relationship between relative basal

expression levels and relative inducibility (linear regres-
sion, r2 = 0.918, p < 0.05; Fig. 7).

Discussion
Molecular characterization of Hymenopteran Hsps re-
veals functionally important divergence in identity,
amino acid sequence, and regulation of chaperone pro-
teins (Table 2, Figs. 1 and 2). Both hsp83 and hsc70-4
display Hymenoptera-specific gains and losses, resulting
in unique sets of homologues. Although most codons
exhibited purifying selection (Table 1), instances of posi-
tive selection along branches leading to and within the
Hymenoptera (Figs. 1 and 2, left) suggest novel chap-
eroning activity [48]. This sequence divergence, coupled
with cis-regulatory HSE distribution and expression pat-
terns (Figs. 1 and 2, right; Figs. 4 and 5), suggests that
although there is substantial conservation of ancestral
inducibility, the HSR response in Hymenoptera has been
additionally augmented by expansion and subfunctiona-
lization of novel gene duplicates that are activated by
thermal stress.

Fig. 2 Evolutionary conservation of two copies of hsc70-4 within Hymenoptera, but both copies harbor an extraordinary amount of diversity in
cis-regulatory HSEs. Relationships of homologous hsc70-4 were reconstructed with PhyML for 17 insect species (rooted on A. pisum) using a JTT
substitution model with 1000 bootstrap replicates (>90 bootstrap support indicated; left). Branches of the outgroup taxa are colored in blue, while
well-supported paralogues of Hymenopteran branches are colored in orange (h1) and red (h2). Statistically significant episodes of positive selection
identified with Branch-Rel are indicated along the branch(+ corresponds to p < 0.05; * = p < 0.01; ** = p < 0.001). Cis-regulatory HSE elements in the
promoter region spanning 570 bps from the transcription start site (TSS; right side) are mapped onto the phylogeny and are annotated by their length
and motif type
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As in other taxonomic groups, cytoplasmic Hsps mainly
mediate the HSR in Hymenoptera (Figs. 4 and 5), whereas
mitochondrial and ER-localizing forms of Hsp70 [9, 49]
and Hsp90 appear to play little role ([50, 51], but see [52]).
The set of inducible Hsps identified likely interact with
one another to protect and refold denatured proteins.
Upon protein denaturation, Hsp40 delivers unfolded pro-
teins to Hsp70, and the two together mediate refolding
through cycles of substrate binding and release driven by
ATP binding and hydrolysis [53]. Despite their inter-
dependence, however, the extent of functional diversifica-
tion of hsc70-4 and hsp40 differed substantially (Figs. 1, 2
and 3). Hsc70-4 showed the most dramatic variation, with
the primary inducible member hsp70 in Drosophila com-
pletely lost in Hymenoptera, which instead induces two
hsc70-4 paralogues that vary in both HSE configuration
and fold-increase in response to heat stress (Figs. 2 and 4).

Utilization of hsc70 in the stress response across the in-
sects appears to be widespread, with HSEs present in most
of the taxa sampled (Fig. 2). Hsc70-4 also contains gene
duplications in other taxa, suggesting that this gene family
has undergone multiple evolutionary gains, losses and
functional shifts. For example, Culex quinquefasciatus has
two paralogues, one of which is accompanied by cis-
regulatory HSEs (Fig. 2), suggesting that one copy is heat-
inducible and the other serves housekeeping functions.
For hsp83, we found two paralogues in bees and

wasps, one with an ancestral contiguous arrangement of
HSEs, and one with a derived split arrangement similar
to that of Drosophila hsp70. This split arrangement re-
duces cooperative binding of HSF trimers, leading to
lower basal expression and higher inducibility than in
the more contiguous motif [14, 54, 55]. The presence of
two differentially regulated paralogues may reflect novel
functionalization in hsp83 to provide both basal and
inducible Hsp expression. Foraging bees are known to
super-heat thoracic muscles prior and during flight, which
necessitates both constitutive and inducible chaperoning
activity [32, 34]. Transcriptomic screens in Apis mellifera
have found weak support for Hsp90 up-regulation in for-
aging relative to nurse bees, but more detailed and precise
quantification of each paralogue will determine whether
they have subfunctionalized into constitutive and indu-
cible roles [56]. In contrast, except for the nuptial flight of
males and queens, worker ants are flightless, which may
explain the secondary loss of the ancestral paralogue but
the retention of the more inducible form.

Fig. 3 Evolutionary conservation of hsp40 copy number and cis-regulatory HSEs. Relationships of homologous hsp40 were reconstructed with
PhyML for 17 insect species (rooted on A. pisum) using a JTT substitution model with 1000 bootstrap replicates (>90 support indicated). The
outgroup and Hymenopteran branches are indicated in blue and red, respectively. Statistically significant episodes of positive selection using
Branch-Rel are indicated along the branch (+ corresponds to p < 0.05; * = p < 0.01; ** = p < 0.001). Cis-regulatory HSE elements in the promoter
region spanning 370 bps from the transcription start site (TSS; right side) are mapped onto the phylogeny and are annotated by their length and
motif type. S. invicta did not provide enough sequence information for the identification of cis-regulatory HSEs

Table 2 Summary of selection analyses for three HSP genes

Global ω ω-/ω+

Gene N Codons SLAC REL SLAC FEL MEME

hsp83 25 714 0.0603 0.071 608/0 625/0 NA/1

hsc70-4 31 710 0.0549 0.051 608/0 610/0 NA/7

hsp40 17 384 0.1147 0.100 253/0 284/0 NA/1

For each gene, the number of sequences and number of codons were used
for detecting positive selection. The mean global ω is shown for SLAC and REL
methods. The number of sites that are negatively or positively selected are
shown under ω -/ ω + for SLAC, FEL. P-values were set to default (p = 0.1) for
SLAC, FEL, REL. MEME provides evidence for episodic positive selection at
individual branches and sites (p < 0.01) and the number of negatively selected
sites are non applicable (NA)
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In contrast to hsc70 and hsp83, hsp40 was much more
conserved. There was a single gene copy per taxon in
which most sites were under purifying selection, suggest-
ing that their co-chaperoning activity has been retained
across insects. In particular, the conserved J domain of
Hsp40 stimulates the ATPase domain of Hsp70 proteins.
Across the insect hsp40 phylogeny, HSE configuration
remained conserved for all but D. melanogaster, whose
primary motif was further from the transcriptional start
site (Fig. 3). Although the Hsp40 gene family is one of
the most diverse molecular chaperones, we captured the
paralogue that participates in the HSR because it was
significantly up-regulated in response to heat stress.
Interestingly, hsp40 in P. barbatus peaked in up-
regulation at a less extreme temperature than did the
other Hsp proteins (Fig. 4d). Early expression of hsp40
may enhance chaperoning activity by binding to existing
and accumulating pools of hsc70 and also by providing
crosstalk with Hsp90-mediated chaperoning [57].
Comparisons of two ant species that experience very

different thermal ranges revealed correlated shifts in
both the basal expression and inducibility of Hsps that
reflect the higher and more frequent thermal stress
expected in extreme habitats (Fig. 7, Additional file 7:
Figure S7). Workers of the harvester ant P. barbatus for-
age in extreme desert heat [58, 59] and may be more
reliant on both constitutive and inducible mechanisms
to cope with thermal stress than workers of A. picea,

which are more temperature sensitive and occur in ther-
mally buffered mesic deciduous forest [47, 60]. The gene
expression responses of P. barbatus and A. picea are
consistent with previous work comparing two hot-desert
ant species of Cataglyphis with the cool woodland ant For-
mica polyctena [33]. In that study, HSP70 (hsc70-4) basal
expression and induction were higher in Cataglyphis, al-
though alternative paralogues were not fully distinguished.
Although Hsp chaperoning activity expends energy (ATP),
there may not be trade-offs between continual and max-
imum induction of Hsps because investment in the HSR is
less costly than the loss of biochemical activity from
protein denaturation [4, 61, 62]. In addition, the HSR
in P. barbatus in this study was shifted upward by ~5–7 °C
(Fig. 4), suggesting underlying differences in overall prote-
ome stability that permit P. barbatus to tolerate signifi-
cantly higher temperatures than A. picea (Additional file 7:
Figure S7).

Conclusions
Our study represents the most comprehensive survey to
date of Hsp sequence and cis-regulatory evolution for
insects. Hymenoptera have unique Hsp evolutionary
histories shaped by gains, losses, and changes in cis-
regulation. Based on the presence of conserved cis-
regulatory elements (HSEs), we reliably predicted the
heat inducible Hsps that are critical for mounting the
HSR in ants, suggesting that the ancestral inducibility

Fig. 4 Relative fold increase in gene expression (+/− SD) for four inducible HSPs in A. picea and P. barbatus across different temperature
treatment. Relative expression of hsp83 (a), hsc70-4 h1 (b), hsc70-4 h2 (c), and hsp40 (d) were normalized to the 18 s rRNA and β-actin, 18 s rRNA
and GAPDH in A. picea (N = 4 per treatment) and P. barbatus (N = 3 per treatment), respectively. Significant up-regulation from 25 °C (A. picea) and
30 °C (P. barbatus) is denoted by ‘*’ from post hoc Tukey tests (p < 0.05)
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has been retained. We uncovered greater diversity in the
number, arrangement, and location of cis-regulatory
HSEs in Hymenoptera for two major Hsp genes (hsp83
and hsc70-4), suggesting that the HSR is mediated
through changes in cis-regulation. Furthermore, Hsp ex-
pression patterns were associated with the thermal limits
of two ant species that inhabit different thermal environ-
ments. Collectively, our analyses suggest Hsp sequence
and expression patterns may reflect the forces of selec-
tion acting on thermal tolerance in ants and other social
Hymenoptera.

Methods
Phylogenetic reconstruction
To reconstruct the evolutionary relationships of heat
shock proteins, we identified orthologous Hsps in 17
insect species representing five insect orders using the
well-characterized Hsps of Drosophila melanogaster as a
reference (Additional file 8: Table S1). Reciprocal best
BLAST (blastp) searches (e-value < 1E-10, and top bit
score) were used to identify annotated orthologues of the
known D. melanogaster paralogues with an ant-specific

genome database (http://antgenomes.org/, [63]) as well as
with the NCBI non-redundant protein and nucleotide da-
tabases (Additional file 8: Table S1). To find unannotated
sequences, we queried D. melanogaster orthologues with
tblastn to each insect species’ genome. To identify add-
itional homologues not found with BLAST, we employed a
similar search with Hmmer 3.0 [64]. We used Drosophila
melanogaster transcripts to search (hmmsearch) each indi-
vidual genome and identified orthologues based on e-
value < 1E-10 and top bit score. HMMER searches recov-
ered nine additional copies from two genes (gp93 and
hsp70) for Culex quinquefasciatus. Identified nucleotide
sequences were translation-aligned with MAFFT using de-
fault settings [65] to identify homologous codons for sub-
sequent selection analyses and the resultant alignment
was translated for phylogenetic reconstruction [66]. We
reconstructed gene relationships of homologous Hsps
with PhyML [66, 67], and bootstrap support was esti-
mated for 1000 replicate searches utilizing an amino acid
substitution model inferred from Prottest3 [68]. Similar
phylogenetic relationships were recovered with a Bayesian
analysis using MrBayes [66, 69].

Fig. 5 Relative fold change in gene expression (+/− SD) for four non-inducible Hsps in A. picea and P. barbatus across different temperature
treatment. Relative expression of hsc70-5 (a), hsc70-3 (b), hsp60 (c), and l(2)efl (d) were normalized to the 18 s rRNA and β-actin and 18 s rRNA
and GAPDH for A. picea (N = 4 per treatment) and P. barbatus (N = 3 per treatment), respectively
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Tests of selection
Selection at the protein-coding level was quantified as
the ratio of the nonsynonymous substitution rate to the
synonymous substitution rate (ω = dN/dS); ω > 1 indicates
positive selection, whereas ω < 1 indicates purifying

selection, and ω = 1 is indicates neutral evolution [70].
For each homologous Hsp, we tested for selection at in-
dividual codons as well as across the phylogeny using
the HyPhy package [71] on the web-interface Datamon-
key (http://www.datamonkey.org).
We identified individual codon sites for positive selec-

tion using Single-Likelihood Ancestor Counting (SLAC),
Random Effects Likelihood (REL), and Fixed Effects
Likelihood [72]. SLAC calculates the number of ob-
served and expected dN and dS rates and conservatively
estimates ω using a recommended cutoff of p = 0.1 [72].
The REL method is an extension of analyses in PAML
[70] that allows dN and dS to vary across sites and uses a
Bayes factor (>50) to assess selection [72]. FEL estimates
dN and dS from the codon substitution model and im-
plements a likelihood ratio to evaluate significance using
a recommended cutoff of p = 0.1 [72].
In addition to testing for selection at sites along the

gene, we tested for changes in selective pressures across
the reconstructed amino acid phylogeny, which might
indicate evolutionary shifts in gene function. Episodic
diversifying selection was assessed using branch-REL
and MEME [73, 74]: branch-site REL detects episodic di-
versifying selection for individual lineages [73], whereas
MEME is an extension of FEL that detects episodic
diversifying evolution by allowing ω to vary across
branches and sites [74].

Fig. 6 Relative basal heat shock gene (target) expression (+/− SD) between P. barbatus(N = 3) and A. picea (N= 4). Relative gene expression was
normalized with the geometric mean of 18 s rRNA and β-actin as the calibrator (* = p < 0.05;** = p < 0.01; *** = p < 0.001 levels of significance) and fold
change was calculated as P. barbatus relative to A. picea was calculated as follows: 2Target(Pbar-Apic)/2Calibrator(Pbar-Apic)(Pbar = P. barbatus, Apic = A. picea). -1
was divided by values less than one to calculate negative relative basal expression. Significant up-regulation in P. barbatus and A. picea are colored in
red and blue, respectively

Fig. 7 The positive relationship between the log ratios of basal
expression levels (P. barbatus/A. picea) at rearing temperatures and
max induction (β1 slope = 0.2398, r2 = 0.918, p < 0.05)
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Identification of genomic structure and cis-regulatory
Heat Shock Elements (HSE)
Identification of genomic structure and cis-regulatory
HSEs was performed for Hsps that were detectable by
qPCR (for methods, see Quantitative real time PCR).
We mapped transcripts to their respective genomic re-
gions in Geneious Pro 6.1 [75] and identified exons and
introns, making further manual alignments by hand
when necessary. The transcriptional start site (TSS) was
predicted using Neural Network Promoter Predictor
(NNPP) [76]. Previous chip-seq experiments in D. melano-
gaster revealed that HSF binds primarily to Hsp promoters
within 1250 bps of the TSS [77]; sequences were trimmed
to this length and locally aligned to identify orthologous
HSEs.
To identify cis-regulatory HSEs, we followed a modi-

fied search procedure adapted from Tian et al. [17]. Pro-
moter sequences were searched for the putative HSE
motif (head conformation = nGAAnnTTCnnGAAn or
tail conformation = nTTCnnGAAnnTTCn) [78], allow-
ing for a two base-pair mismatch from the preferred se-
quence [66]. HSE motifs were then manually screened
and annotated by the number and type of subunit occu-
pying the distal end (subunits beginning with ‘nGAAn’
or ‘nTTCn’ refer to the head or tail conformation, re-
spectively). Mismatches occurring at critical sites for
HSF binding (G in 2nd position of head conformation, C
in 4th position of tail conformation) [79] were discarded,
unless motifs were interior to a HSE with three or more
subunits, known as a gapped HSE [17].
A final screen was employed to quantify the binding

strength of each HSE subunit. Briefly, a WebLogos [80]
was generated for head and tail types recovered from the
search. Bit scores for the preferred base at each of the
five possible positions in a subunit were summed; the
match between the individual subunits and the preferred
subunit was expressed as the ratio of the summed ob-
served bit score over the preferred bit score. Subunits
with scores less than 0.5 were discarded unless flanked
with subunits with scores greater than 0.5, again indicat-
ing a ‘gapped’ HSE. 253 out of 1753 total HSEs were
retained after screening (Additional file 9: Table S2).

Field collections and lab rearing
Hsp induction was quantified in workers sampled from
lab-acclimated colonies of Pogonomyrmex barbatus and
Aphaenogaster picea. Three Pogonomyrmex barbatus
colonies were reared from queens collected with permis-
sion following a mating flight at the Welder Wildlife
Foundation in Sinton Co., Texas (28.10837 °N 97.42265 °W)
in June 2007. Colonies were maintained in an environ-
mental room at the University of Vermont, Department
of Biology, with a 12:12 light dark light cycle at 30 °C
in 17 × 12 × 6 cm plastic nest boxes provided with

three 16 × 150 mm disposable glass test tubes in
which water was supplied behind a cotton stopper as
a nest site. Each week, colonies were fed two meal-
worms (Tribolium molitor) and an ad libitum seed
mixture composed of oat bran, wheat germ, millet,
thistle seeds, and quinoa.
Eight colonies of A. picea were collected with permis-

sion from the University of Vermont in May and June
2012 from black spruce forest adjacent to Molly Bog
(44.508611°N, 72.702222°W), located near Stowe,
Vermont. Entire live colonies containing 500–1000
workers, brood, and queen were excavated from the leaf
litter. Colonies were maintained for 1 month in the
laboratory at 25 °C +/− 1 °C with 12 h light/dark cycles
in a 7 x 3 ¼ x 1 ¾ inch plastic nest box covered with red
cellophane and connected to an open plastic foraging
arena filled with ~1 cm sand and lined with Insect-a-slip
(BioQuip) to prevent escape. 1–3 cotton-plugged water
tubes (16 × 150 mm) were provided in the nest box for
each colony to maintain humidity. Approximately 200 μl
of 20 % honey water and one bisected mealworm were
provided in each foraging arena every 3 days.

Thermal tolerance assays
Acute upper thermal limits in both species were deter-
mined by quantifying a LT50 temperature, defined as the
temperature at which a one-hour exposure produced 50 %
worker mortality after 3 days of recovery using the dose.p
function in the MASS package within R (version 3.2.0)
[81]. Ants were exposed to six different temperature re-
gimes (30, 35, 40, , 42, 45, 46 °C for P. barbatus and 25,
30, 35, 36.5, 38.5 40 °C for A. picea). Temperature treat-
ments were applied by confining 10–13 nest-mate workers
together in a 5 mL screw-cap glass vial and submerging
the vial in a pre-set Thermo Neslab EX17 heating water
bath for 1 h. Temperature inside the vials was monitored
with a temperature probe inserted in an empty 5 mL glass
vial submerged in the water bath simultaneously. After
the application of temperature treatment, ten ants were
allowed to recover for survival counts in a 16 × 150 mm
cotton-plugged water tube. For each treatment, three ants
per colony from four of the eight A. picea colonies and
the three P. barbatus colonies were flash frozen and
stored at −80 °C for gene expression analyses.

Quantitative real time PCR
RNA was isolated from flash-frozen ants with RNAzol
(Molecular Research Center, Inc., USA) and then
purified with the RNeazy micro kit (QIAGEN, USA)
for downstream gene expression quantification. Flash-
frozen ants from each temperature treatment were
pooled and homogenized in a Bullet Blender (Next
Advance Inc., USA) homogenizer at top speed (10)
with 1.4 mm zirconium silicate grinding beads
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(Quackenbush Co., Inc., USA) and 500 uL of RNAzol
buffer (Molecular Research Center, Inc., USA) for
3 min. Following the manufacturer’s instructions for
RNAzol, RNA samples were resuspended in 100 uL
of water and subsequently purified with Rneasy micro
kit with DNAse I (Qiagen, USA) treatment on the micro
column to remove genomic DNA contamination. RNA
was quantified with Nanodrop spectrophotometry; all
sample 260/280 ratios were between 2.0–2.2, indicating
acceptable RNA quality. mRNA was reverse transcribed
into cDNA with High Capacity cDNA Reverse Transcrip-
tion Kit (ABI, USA).
To detect specific heat shock proteins, primers were

designed for a whole suite of genes for each gene
family (Table 1, Additional file 10: Table S3). Table 1
highlights (in *) working primer sets. Quantitative
PCR was performed on an ABI StepOnePlus Real-
Time PCR system. Reactions were performed in 20 μl
volumes with 2 ng of template cDNA, 500 nM total
primer, and 10 μl of Power SYBR® Green Master Mix
(Life Technologies, USA). Cycling conditions con-
sisted of an initial 95 °C incubation for 2 min and
then 40 cycles of 95 °C for 15 s, with 55 °C annealing
and extension for 60 s. Following amplification, melt
curve analyses confirmed the presence of a single
amplicon. All gene products from preliminary experi-
ments were sequenced for verification of specific gene
amplification.
Gene expression fold changes were calculated relative

to rearing temperatures using the ΔΔ CT method [82]
after empirically determining ~100 % primer efficiencies
for each primer set (Additional file 10: Table S3). The
set of housekeeping genes for normalization was deter-
mined with Normfinder [83], which calculated the rela-
tive stability of four housekeeping genes (18 s rRNA,
GAPDH, β-actin, and Ef1β) and selected the most stable
genes across samples. For A. picea, 18 s rRNA and
β-actin were most stable (0.20 stability), whereas 18 s
rRNA and GAPDH (0.25 stability) were the most stable
for P. barbatus. For cross-species comparisons, 18 s rRNA
and β-actin were the most stable (0.05 stability). Differ-
ences in HSP up-regulation across temperature treatments
were determined with a one-way Analysis of Variance
(ANOVA) in which fold expression values were log10
transformed to meet assumptions of normality. Significant
up-regulation relative to controls was identified with post
hoc Tukey tests.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded in the Dryad Digital repository (https://datadryad.
org/resource/doi:10.5061/dryad.8vj6j) [66], within the
article and its additional files.
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