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The complete mitochondrial genome of Scutopus
ventrolineatus (Mollusca: Chaetodermomorpha)
supports the Aculifera hypothesis
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Abstract

Background: With more than 100000 living species, mollusks are the second most diverse metazoan phylum. The
current taxonomic classification of mollusks recognizes eight classes (Neomeniomorpha, Chaetodermomorpha,
Polyplacophora, Monoplacophora, Cephalopoda, Gastropoda, Bivalvia, and Scaphopoda) that exhibit very distinct
body plans. In the past, phylogenetic relationships among mollusk classes have been contentious due to the lack of
indisputable morphological synapomorphies. Fortunately, recent phylogenetic analyses based on multi-gene data
sets are rendering promising results. In this regard, mitochondrial genomes have been widely used to reconstruct
deep phylogenies. For mollusks, complete mitochondrial genomes are mostly available for gastropods, bivalves, and
cephalopods, whereas other less-diverse lineages have few or none reported.

Results: The complete DNA sequence (14662 bp) of the mitochondrial genome of the chaetodermomorph Scutopus
ventrolineatus Salvini-Plawen, 1968 was determined. Compared with other mollusks, the relative position of protein-coding
genes in the mitochondrial genome of S. ventrolineatus is very similar to those reported for Polyplacophora, Cephalopoda
and early-diverging lineages of Bivalvia and Gastropoda (Vetigastropoda and Neritimorpha; but not Patellogastropoda).
The reconstructed phylogenetic tree based on combined mitochondrial and nuclear sequence data recovered
monophyletic Aplacophora, Aculifera, and Conchifera. Within the latter, Cephalopoda was the sister group of
Gastropoda and Bivalvia + Scaphopoda.

Conclusions: Phylogenetic analyses of mitochondrial sequences showed strong among-lineage rate heterogeneity that
produced long-branch attraction biases. Removal of long branches (namely those of bivalves and patellogastropods)
ameliorated but not fully resolved the problem. Best results in terms of statistical support were achieved when
mitochondrial and nuclear sequence data were concatenated.
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Background
Mollusks are the second largest animal phylum with more
than 100000 described extant species and are grouped
into eight classes: Solenogastres or Neomeniomorpha,
Caudofoveata or Chaetodermomorpha, Polyplacophora,
Monoplacophora, Bivalvia, Gastropoda, Cephalopoda, and
Scaphopoda [1-3]. Morphology-based classifications con-
sider Neomeniomorpha and Chaetodermomorpha as the
earliest branching lineages within mollusks because they
lack many typical features of mollusks, among which the
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most conspicuous is the shell [4]. Whether they form a
monophyletic group named Aplacophora [5,6] or a para-
phyletic grade [7-10] is still a matter of debate [11]. Some
authors [12-14] place Polyplacophora (chitons) as sister
group of Conchifera (Monoplacophora, Bivalvia, Gastro-
poda, Cephalopoda, and Scaphopoda), forming the clade
Testaria. Alternatively, the Aculifera hypothesis proposes
a sister group relationship of Polyplacophora and Aplaco-
phora, suggesting that the aplacophoran morphology
was secondarily modified from a chiton-like ancestor
[5,6,15,16]. Phylogenetic relationships within Conchifera
are also far from settled due to the highly derived morph-
ologies within each class-level grade, which hinder the dis-
covery of morphological synapomorphies across lineages
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[17]. The traditional morphology-based hypothesis groups
together Bivalvia + Scaphopoda (Diasoma or Loboconcha)
and Cephalopoda + Gastropoda (Cyrtosoma or Viscero-
concha) [3,9].
Earlier molecular studies based on partial sequences of

one or few genes revealed important phylogenetic infer-
ence biases, and failed to recover the monophyly of mol-
lusks and/or of several main lineages within the group
[18]. The first studies analyzing the relative phylogenetic
position of Monoplacophora [19,20] also rendered a sur-
prising result in recovering the group as closely related
to Polyplacophora, forming the taxon Serialia, which is
in disagreement with most morphological evidence [21].
More recently, attempts to reconstruct the phylogeny of
mollusks were based on concatenated matrices spanning
many genes. A study [22] based on 79 ribosomal protein
genes recovered the monophyly of the phylum and of all
five mollusk classes included in the analyses (Neomenio-
morpha, Monoplacophora, and Scaphopoda were missing).
However, recovered interclass relationships, although highly
supported, were rather unconventional, with Bivalvia and
Gastropoda being sister group to Polyplacophora, and this
clade being sister group to Cephalopoda and Chaetodermo-
morpha [22]. The latest phylogenetic studies based on
seven housekeeping genes [23], and on genomic-scale data
sets spanning 308 [24] and 1185 [25] genes, respectively, re-
covered monophyletic Mollusca, Aplacophora, and Aculi-
fera, thus rejecting the Testaria hypothesis. One of these
studies included Monoplacophora, which was placed within
Conchifera, thus providing no support for the Serialia hy-
pothesis [25]. Interestingly, phylogenomic studies [24,25]
arrived at highly supported but contrasting conchiferan in-
terclass relationships. While both studies support a basal
position of Cephalopoda (+Monoplacophora in [25]), one
favors a clade composed of Gastropoda and Bivalvia (the
so-called Pleistomollusca [24]) whereas the other groups to-
gether Gastropoda and Scaphopoda [25].
During the last decade, complete mitochondrial (mt) ge-

nomes have become a standard for phylogenetic reconstruc-
tion of animal relationships [26]. Although the number of
completely sequenced mollusk mt genomes has increased
considerably in the last few years, the majority belong to the
most common and economically important mollusk classes
i.e., Cephalopoda [27], Bivalvia [28], and Gastropoda [29,30].
In addition, there are reported three Polyplacophora,
Katharina tunicata [31] and two Sypharochiton species [32],
and two Scaphopoda, Siphonodentalium lobatum [33] and
Graptacme eborea [34] mitogenomes (but note that the mt
genome of a Chaetodermomorpha, Chaetoderma nitidulum
is available at NCBI, although unpublished). The only pub-
lished study [35] that has applied thus far whole mt genome
data for reconstructing phylogenetic relationships of mol-
lusks failed to recover the monophyly of Mollusca and of
many mollusk classes due to long branch attraction (LBA)
artifacts. The authors concluded that representatives from
all mollusks classes and a denser taxon sampling of most
diverse lineages could render a more resolved mollusk in-
terclass phylogeny, and that mt gene order data could be-
come a promising source of phylogenetic information [35].
In this paper, we present the complete mitochondrial

genome of Scutopus ventrolineatus, a representative of
the supposedly early-branching Limifossoridae within
Chaetodermomorpha. We performed comparative gen-
omic analyses with other available mollusk mt genomes
with the specific aim of addressing the evolution of gene
order arrangements among the main lineages within the
phylum. In addition, we used generated mt sequence
data to infer phylogenetic relationships of mollusks, and in
particular to test the validity of traditional morphology-
based hypotheses that place Chaetodermomorpha at the
base of the mollusk tree. Finally, we concatenated mt ge-
nomes with publicly available nuclear sequence data in try-
ing to maximize statistical support of the reconstructed
mollusk phylogeny.

Results and discussion
Mitochondrial genome organization and structural
features
The complete mt genome of Scutopus ventrolineatus
was assembled as a 14662 bp circular molecule. Like
most metazoan mt genomes, it encodes for 13 protein-
coding, 22 tRNA and 2 rRNA genes (Figure 1). The
major strand encodes 20 out of the 37 genes (trnF, nad5,
trnH, nad4, nad4L, trnS(UCN), cob, nad6, nad1, trnL
(UUR), trnL(CUN), rrnS, trnM, trnC, trnQ, trnY, rrnL,
trnV, trnG, trnW). Most protein-coding genes start with
the codon ATG with the exception of atp8, which begins
with GTG. Several genes show complete stop codons, ei-
ther TAA (as in cox1, atp8, atp6, nad4l, cob, and nad6)
or TAG (as in cox2 and nad1). The remaining genes fin-
ish with either TA (nad5) or a single T (cox3, nad2,
nad4), which presumably become functional stop codons
by subsequent polyadenylation of the transcribed mes-
senger RNAs [36]. Four genes overlap with contiguous
genes: cox2 with trnD; atp8 with atp6; nad4 with trnH;
and nad4L with nad4. The largest noncoding region has
47 bp, and it is located between trnW and trnE genes.
The gene order arrangement of the mt genome of S.

ventrolineatus was compared with the mt genome
organization in other mollusks. The unpublished mt
genome of the chaetodermomorph C. nitidulum is the
closest to compare, but it is 40% longer (21008 bp), and
shows a duplication of the cox2 gene, as well as large
non-coding regions (see Additional file 1: Figure S1). In
addition, several tRNA genes (trnV, trnF, trnG, trnW,
trnA, trnR, trnI, trnS (UCN)) are reordered and two
(trnV and trnS (UCN)) are encoded on opposite strands
when compared to the mt genome of S. ventrolineatus
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Figure 1 Mitochondrial gene order of Scutopus ventrolineatus. Protein-coding (red), rRNA (green) and tRNA (blue) genes are shown. Arrows
indicate sense of transcription. Genes have standard abbreviations and are not scaled to real length. S1, S2, L1, and L2 designate genes for those
tRNAs recognizing the codons AGN, UCN, CUN, and UUR, respectively. Figure modified from the output of the MITOS pipeline [44].
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(see Additional file 1: Figure S1). Since the mt genome
organization of S. ventrolineatus conforms to the mol-
lusk consensus gene order (see below), it would be im-
portant to determine the origin of the highly divergent
mt genome of C. nitidulum, and discard putative se-
quencing or assembly errors.
Compared with other mollusks, the mt gene order of

S. ventrolineatus is very similar to those of Polyplaco-
phora, Cephalopoda and basal lineages of Gastropoda
(Vetigastropoda and Neritimorpha; but not of Patello-
gastropoda, [35]) (Figure 2). There are no differences in
the relative position of protein-coding genes, but the
rrnL gene is translocated in Scutopus mt genome with
respect to the above-mentioned lineages (Figure 2).
Other differences are found in the relative position of
several tRNA genes; in particular trnD, trnE, and trnN
are highly rearranged among mollusk lineages (Figure 2).
Gastropoda H. rubra cox1 cox2 atp8 atp6 F nad5 H nad4 nad4L T S2 cob n

Polyplacophora K. tunicata cox1 D cox2 atp8 atp6 F nad5 H nad4 nad4L T S2 co

Chaetodermomorpha S. ventrolineatus cox1 cox2 D atp8 atp6 F nad5 H nad4 nad4L T S

Scaphopoda G. eborea cox1 S1 N nad2 cob H cox2 Q G cox3 Y R S2 nad6 P

Bivalvia S. velum cox1 cox2 S2 T nad4L nad4 H nad5 F atp6 D atp8 cob

Cephalopoda O. vulgaris cox1 cox2 D atp8 atp6 F nad5 H nad4 nad4L T S2 co

Ancestral Mollusca cox1 cox2 atp8 atp6 nad5 nad

Nemertea Paranemertes cox1 nad2 cox2 atp8 atp6 rrn

Brachiopoda Terebratulina cox1 cox2 atp8 atp6 rrnS rrn

Entoprocta Loxosomella cox1 cox2 atp8 atp6 nad5 nad

Phoronida Phoronis cox1 cox2 atp8 nad5 nad4 nad

Figure 2 Mitochondrial gene rearrangements between different mollu
Inversions (indicated by the circular arrow) and transpositions of protein-co
Genes located in apomorphic arrangements are colored. The consensus pr
mt genomes are depicted. Genes have standard abbreviations and are not
tRNAs recognizing the codons AGN, UCN, CUN, and UUR, respectively.
The representative of an early-diverging lineage of Bival-
via (Solemya velum; Solemyoidea) also retains this gene
order although a large inversion has occurred affecting a
stretch including atp8-atp6-nad5-nad4-nad4L (Figure 2).
Hence, our results allow us to propose a consensus an-
cestral mollusk gene order for mt protein-coding and
rRNA genes (Figure 2). Only few translocation and in-
version events are required to transform this consensus
mollusk gene order into the genome organizations re-
ported for other Spiralia, particularly Phoronida, Bra-
chiopoda, Nemertea, and Entoprocta (Figure 2). The
conversion to the genome organization of Annelida re-
quires postulating additional translocations and inver-
sions [37]. In Scaphopoda, the mt gene order is rather
different to that of other mollusks, both in Graptacme
(Figure 2) and Siphonodentalium [35]. In Graptacme,
only the nad6-trnP-nad1 and the nad5-nad4-nad4L
ad6 P nad1 L2 L1 rrnL V rrnS M Y C W Q G E cox3 D K A R I nad3 N S1 nad2 

b nad6 P nad1 L2 L1 rrnL V rrnS M C Y W Q G E cox3 K A R N I nad3 S1 nad2 

2 cob nad6 P nad1 L2 L1 rrnS M C Q Y rrnL V G W E cox3 K A R I S1 N nad3 nad2 

 nad1 atp8 I T rrnS M rrnL V A nad3 L1 L2 E W F K nad5 D nad4 nad4L atp6 C 

 nad6 P nad1 L2 L1 rnnL V rnnS M C Y W Q E G cox3 K A R N I nad3 S1 nad2 

b nad6 P nad1 L2 L1 rrnL V rrnS M C Y W Q G E cox3 K A R N I nad3 S1 nad2 

4 nad4L cob nad6 nad1 rrnL rrnS cox3 nad3 nad2 

S rrnL nad1 nad6 cob nad4L nad4 nad5 cox3 nd3 

L nad1 nad6 cob nad4L nad4 nad5 cox3 nad3 nad2 

4 nad4L cob nad6 nad1 nad2 nad3 cox3 rrnL rrnS 

4L cob nad6 nad1 rrnL rrnS cox3 atp6 nad3 nad2 

sk classes. Genes encoded by the opposite strand are underlined.
ding, tRNA and rRNA genes are depicted among the different taxa.
otein-coding gene order of mollusks, and those of selected spiralian
scaled to real length. S1, S2, L1, and L2 designate genes for those
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arrangements are conserved, whereas gene pairs that are
normally conserved in other metazoan mt genomes
(e.g. cox1-cox2 and atp8-atp6) are not found (Figure 2).
New complete mt genome sequences of more (early-
branching) lineages within Scaphopoda are needed in
order to determine whether Scaphopoda ancestrally con-
formed or not to the consensus ancestral mt gene order
of mollusks. Within Gastropoda and Bivalvia, highly de-
rived mt genome organizations can be found due to ex-
tensive gene rearrangements [28,29].

Phylogenetic relationships within Mollusca
Despite its popularity, phylogenetic inference based on
complete mt genomes has important analytical challenges.
In fact, reconstructing the monophyly and phylogenetic rela-
tionships of mollusks using solely mt genome data proved
to be difficult. A first issue was finding the appropriate out-
group. Most recent phylogenies of spiralians place mollusks
within the clade Trochozoa, which also includes annelids,
nemerteans, brachiopods, and phoronids [38]. Among avail-
able mt genomes of spiralians, we selected representatives
from one non-trochozoan spiralian (Entoprocta) and all tro-
chozoan phyla. Another important problem was LBA due
to among-lineage rate heterogeneity. Several ingroup line-
ages, notably Bivalvia, Scaphopoda, and Patellogastropoda
(within Gastropoda), exhibited long branches that produced
considerable inference biases (not shown), and they had to
be excluded in further phylogenetic analyses. At least in
several bivalves (families Donacidae, Hyriidae, Margaritiferi-
dae, Mytilidae, Solenidae, Unionidae, and Veneridae), the
occurrence of doubly uniparental inheritance (DUI) of the
mt genome [39] has been proposed to cause higher substi-
tution rates and thus faster saturation of the phylogenetic
signal, hampering their use in reconstructing deep phyloge-
nies. In addition, Neomeniomorpha and Monoplacophora
could not be incorporated into the phylogenetic analyses
because complete mt genomes are not available for these
lineages thus far. Finally, due to the relatively high substitu-
tion rates of mtDNA, saturation is another major issue af-
fecting the reconstruction of deep nodes based on mt
markers. Here, we opted to analyze mt data at the amino
acid level to reduce the effect of saturation.
The mt data set included 4870 and 2728 positions be-

fore and after sites of ambiguous positional homology
were discarded. The fact that 44% of the initial length of
the alignments was excluded by GBlocks suggests that mt
genome amino acid sequence data have complex evolu-
tionary patterns at higher levels of divergence, which would
produce phylogenetic reconstruction biases if conflicting
positions were not removed. ML (-lnL = 57186.85) and BI
(arithmetic mean of the two runs, -lnL = 67264.29) arrived
at relatively different trees (Figure 3). In ML, the mono-
phyly of Mollusca is recovered with low bootstrap support
whereas in BI, Brachiopoda +Annelida are recovered with
maximal posterior probability support as sister group of
Chaetodermomorpha + Polyplacophora, rendering Mol-
lusca non-monophyletic. Within mollusks, the clades
Aculifera and Conchifera received maximal posterior
probability support in BI and low (<50%) bootstrap sup-
port in the ML analysis. The phylogenetic analyses failed
to recover the monophyly of gastropods due to a LBA
artifact (highly supported) between Roboastra +Micromelo
(Heterobranchia) and Scaphopoda, both in ML and BI.
This clade is the sister group of remaining gastropods with
low bootstrap support in ML or of cephalopods with max-
imal posterior probability support in BI (Figure 3).
Recently, two phylogenies of Mollusca have been recon-

structed based on large concatenated data sets of hun-
dreds or thousands of nuclear gene fragments [24,25].
Here, we selected nuclear genes from those matrices that
minimized missing data and maximized taxon coverage to
resolve the question at hand. The partial deduced amino
acid sequences of 13 nuclear ribosomal protein genes (see
also [22]) were aligned for 5 outgroup taxa and main mol-
lusk lineages (19 species). The concatenation of ribosomal
proteins yielded an alignment of 2362 positions after re-
moval of ambiguous sites. Phylogenetic analyses under ML
(-lnL = 33338.02) and BI (arithmetic mean of the two runs,
-lnL = 36866.21) recovered similar topologies that only dif-
fered on the relative position of the neritimorph Theodoxus
(sister group of Caenogastropoda +Heterobranchia in ML
and sister group of Vetigastropoda + Patellogastropoda in
BI) and on the closest sister group to mollusks (a nemer-
tean in ML and the annelids in BI) (Figure 4). In both ML
and BI, Aplacophora and Aculifera were recovered as
monophyletic (as in [24,25]), although with low support
(except Aculifera in BI that has a posterior probability of
0.99). In contrast, both phylogenetic analyses failed to re-
cover the monophyly of Conchifera because Cephalopoda
was placed as sister group of Aculifera (with low support
in ML but with maximal Bayesian posterior probability)
(Figure 4). In both ML and BI, Bilvavia was recovered as
sister group of Scaphopoda + Gastropoda in agreement
with [25]. Interestingly, Scaphopoda and Lottia showed
relatively long branches, which clearly classify them as
rogue taxa, showing extremely fast evolutionary rates for
both mt and nuclear genes; [33,40]. The reconstructed
trees based on the nuclear data set improved previous re-
sults obtained from ribosomal nuclear protein [22] and
the 18S rRNA gene [40], which recovered Cephalopoda as
the sister group of Chaetodermomorpha or Neomenio-
morpha, respectively. However, our reconstructed trees
resemble those based on housekeeping genes [23,40]
that also placed Cephalopoda a sister group to Aculifera.
The odd placement of Cephalopoda here and in the
above-mentioned studies [22,23,40] contradicts the gen-
eral agreement placing cephalopods within Conchifera [9].
This might be a tree reconstruction artifact produced by
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LBA biases generated by the inclusion of relatively dis-
tantly related spiralian phyla in the outgroup.
Although with a different lineage sampling and species

representation, the mt and nuclear data sets rendered ra-
ther congruent trees with several nodes in common.
Therefore, we concatenated the nuclear and mt data
sets. The phylogenetic analyses of the combined (mt and
nuclear) data set (5032 sites after removal of ambiguous
positions) under ML (-lnL = 101714.93) and BI (arith-
metic mean of the two runs, -lnL = 116220.97) arrived at
very similar topologies that only differed in the relative
position of Bivalvia and Scaphopoda (Figure 5). The
monophyly of Aplacophora, Aculifera and Conchifera
were recovered both by ML and BI (Figure 5). The cor-
responding nodes received relatively high support except
Conchifera in ML and Aplacophora in BI (Figure 5). In
ML and BI, Cephalopoda and Cephalopoda + Scaphopoda
were recovered as sister group of the remaining ana-
lyzed conchiferan classes, respectively (Figure 5). In ML,
Gastropoda was recovered as sister group of Bivalvia +
Scaphopoda, whereas in BI Bivalvia was placed nested
within Gastropoda, rendering the latter non-monophyletic
(Figure 5). These results agree with most recent phyloge-
nomic studies [24,25] in the basal position of Cephalopoda
within Conchifera, and favor either a close relationship of
Gastropoda and Bivalvia to the exclusion of Scaphopoda
[24] or the classical Diasoma hypothesis uniting Bivalvia
and Scaphopoda [9]. It is noteworthy that the recon-
structed phylogeny based on the combined data set dif-
fers from the nuclear-based tree indicating that addition
of mt data has a significant (and distinct) contribution
to the overall phylogenetic inference. Furthermore, previ-
ously encountered LBA artifacts when mt data was ana-
lyzed alone (related to Scaphopoda, Bivalvia and Lottia)
were ameliorated in the combined analysis.

Conclusions
Reconstructing the monophyly and internal phylogenetic
relationships of Mollusca based on molecular data has
been challenging over the years. Earlier studies were
mostly based on partial gene sequences with insufficient
informative characters to reconstruct robust and resolved
trees [18]. Recent phylogenomic studies [24,25] based on
concatenated nuclear genes have produced well-resolved
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related species/genera/families/superfamilies (for which there is strong evidence for their monophyly) were merged in some instances.
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trees. However, comparison of these trees showed some
contradicting but highly supported nodes. Another alter-
native is to investigate phylogenetic information contained
in complete mt genomes. A first attempt to use whole mt
genome data for clarifying the relative phylogenetic pos-
ition of mollusks within bilaterians was not satisfying
[35]. Our phylogenetic analyses reveal that the use of
mt genome data for reconstructing the internal phylo-
genetic relationships of mollusks is flawed by the exist-
ence of high heterogeneity of evolutionary rates among
lineages. In particular, the mt genomes of Bivalvia and
Lottia introduce detrimental LBA biases. After remov-
ing taxa that exhibit long branches in the phylogenetic
analyses, mt data are capable of recovering the mono-
phyly of each Aculifera, and Conchifera, in agreement
with nuclear data (which additionally recover the mono-
phyly of Aplacophora). Moreover, our analyses indicate
that the phylogenetic performance of mt and nuclear
data improves when both are combined. At present, the
complete mt genomes of several important mollusk
lineages (namely Neomeniomorpha and Monoplacophora)
are still missing, and the possibility of finding mt genomes
with lower substitution rates in Bilvalvia and Patellogas-
tropoda needs to be further explored. It is foreseeable
that the addition of these additional mt genomes will
improve phylogenetic analyses. In parallel, gapped re-
gions in nuclear genomic data sets will be increasingly
reduced allowing in combination with mt data the re-
construction of a robust tree of Mollusca. Such a robust
phylogenetic hypothesis has been long-needed as the
framework for evolutionary comparative studies within
this highly diversified metazoan phylum.

Methods
DNA extraction, PCR amplification, cloning and
sequencing
Several specimens of Scutopus ventrolineatus Salvini-
Plawen, 1968 (Mollusca; Chaetodermomorpha) were col-
lected in March 2010 close to Bergen, in the Norwegian
west coast. Total genomic DNA of a single specimen
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was isolated following standard phenol-chloroform ex-
traction procedures [41]. Two fragments correspond-
ing to partial mt cox1 cox2 genes were PCR -amplified
using appropriate universal primer pairs: LCOI 1490,
HCO 2198 [42] and cox2F1, cox2R1 [43], respectively.
PCR reactions contained 2.5 μl of 10x Ex Taq Buffer,
2 μl of dNTP Mixture (2.5 mM each), 1.5 μl of each
primer, 0.5 μl of template DNA, 0.16 μl Ex Taq Hot
Start DNA polymerase (5 units/μl; TaKaRa Bio Inc.,
Otsu, Shiga, Japan), and sterilized distilled water up to
25 μl. The following temperature profile was used: an
initial denaturing step at 98°C for 2 min; 35 cycles of
denaturing at 98°C for 10 s, annealing at 50°C for 30 s,
and extending at 72°C for 1 min; and a final extending
step at 72°C for 1 min. PCR products were purified by
ethanol precipitation, and sequenced in an automated
DNA sequencer ABI PRISM 3700 using the BigDye
Terminator v3.1 cycle-sequencing kit (Applied Biosystems;
Foster City, CA, USA), and PCR primers.
Newly determined partial sequences of mt cox1 and
cox2 were used to design two pairs of specific primers
for long range PCR amplification (SVCOX1.F: 5'-TTT
TTG ACC CTG CTG GAG GTG GAG AC-3';
SVCOX1.R: 5'-AGA GGG GGG TAT ACA GTC CAC
CCA GTC-3'; SVCOX2.F: 5'-TCC CAG CAT TGG
GAG TAA AAG CCG AC-3'; SVCOX2.R: 5'-CTC CGC
AGA TTT CTG AAC ATT GAC CA-3'). The full mt
genome was amplified in two overlapping fragments of
13003 bp and 1771 bp, respectively, using the TaKaRa
LA-PCR kit (TaKaRa Bio Inc., Otsu, Shiga, Japan). PCR
amplifications were carried out in 50 μl reactions con-
taining 5 μl of 10x LA Buffer II (Mg+2 plus), 8 μl of
dNTP Mixture (2.5 mM each), 1 μl of each primer,
0.1 μl of template DNA and 0.5 μl Taq DNA polymerase
(5 units/μl). The following temperature profile was used:
an initial denaturing step at 94°C for 1 min; 45 cycles of
denaturing at 98°C for 10 s, annealing at 57°C for 30 s,
and extending at 68°C for 1 min per Kb; and a final
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extending step at 68°C for 10 min. Sequencing of the
two long PCR fragments was achieved with the shotgun
technique using the TOPO-Shotgun subcloning Kit
(Invitrogen; Life Technologies, Paisley, UK). Random
clone libraries were constructed from purified PCR
products by shearing them into fragments of 1–3 Kb in
size, by repairing fragment ends to form blunt-ends, and
by cloning blunt-ended fragments into pCR 4Blunt-
TOPO vectors. Clones were sequenced in an automated
DNA sequencer ABI PRISM 3700 using the BigDye Ter-
minator v3.1 cycle-sequencing kit (Applied Biosystems;
Foster City, CA, USA), and M13 forward and reverse uni-
versal primers.

Genome assembly and annotation
The complete mt genome was assembled into a single
contig from the shotgun clone sequences using
Sequencher v. 5.0.1 (Gene Codes Co.; Ann Arbor, MI,
USA). The mt genome was annotated using the MITOS
[44] and DOGMA [45] webservers. Briefly, protein-
coding genes were annotated by identification of their
open reading frames and similarity searches against
other reported mollusk mt genomes. Ribosomal RNA
genes were identified by sequence comparison with
other reported mollusk mt genomes, and assumed to ex-
tend to the boundaries of adjacent genes. Transfer RNA
genes were identified using tRNAscan-SE v. 1.21 [46]
and ARWEN v. 1.2 [47], which can infer cloverleaf sec-
ondary structures of the corresponding gene products.
The complete mt genome sequence reported in this
paper has been deposited at NCBI GenBank under ac-
cession number KC757645.
The gene order of the mt genome of S. ventrolineatus

was compared to the following mollusk mt genomes:
Chaetoderma nitidulum (Chaetodermomorpha; Dreyer
and Steiner, unpublished), Katharina tunicata (Polypla-
cophora; [31]), Graptacme eborea (Scaphopoda; [34]),
Octopus vulgaris (Cephalopoda; [27]), Solemya velum
(Bivalvia; [48]), and Haliotis rubra (Gastropoda; [49]).
The following spiralian mt genomes were also included
in the gene order comparisons: Paranemertes cf. pere-
grina (Nemertea; [50]), Terebratulina retusa (Brachio-
poda; [51]), Loxosomella aloxiata (Entoprocta; [52]), and
Phoronis architecta (Phoronida; [53]).

Data sets and sequence alignment
Amino acid sequences derived from the 13 mt protein-
coding genes were used to assemble the mt data set, which
included 14 representatives of the main extant mollusk
lineages and 6 species representing several metazoan phyla
other than Mollusca (see Additional file 1: Table S1). Simi-
larly, a nuclear data set was constructed with the deduced
amino acid sequences of the genes coding for 40S riboso-
mal proteins S8 and S15, and 60S ribosomal proteins L3,
L4, L5, L6, L7, L8, L10a, L16_L10, L17, L18a, and L32.
These genes were extracted from Kocot et al. (2011) and
were selected among available genes because they mini-
mized missing data. This nuclear data set included five spe-
cies representing several metazoan phyla other than
Mollusca and 19 representatives of the main extant mol-
lusk lineages (see Additional file 1: Table S2). A third data
set was constructed combining the mt and nuclear data
sets. The three data sets were designed to test specifically
the monophylies of Mollusca and Aculifera. Since our
phylogenetic analyses were focused on the order level or
above, and in order to maximize the completeness of the
nuclear and combined data sets, sequences from related
species/genera/families/superfamilies (for which there is
strong evidence for their monophyly) were merged in some
instances (see Additional file 1: Table S2; [24]). Note that
the original study from which nuclear data was extracted
[24] already merged closely related species to maximize
gene coverage. The species showing the shortest branches
were selected as representatives of the different lineages in
the three data sets.
Deduced amino acid sequences of the different mt and

nuclear protein-coding genes were downloaded from
GenBank and aligned separately using MAFFT v. 7 [54]
with default settings. Ambiguously aligned positions
were removed using Gblocks, v. 0.19b [55] with default
settings.

Phylogenetic analyses
Alignment format conversions were performed using the
ALTER webserver [56]. For the three analyzed data sets,
best-fit partition schemes and models of amino acid re-
placement were identified using the Akaike information
criterion (AIC; [57]) as implemented in PartitionFinder-
Protein [58]. For the mt data set, we tested the following
a priori partition schemes: (1) all genes combined; (2)
genes by functional group (atp, cox, nad, cob); (3) all
genes separately except atp8/atp6 and nad4L/nad4, and
(4) all genes independently. For the nuclear data set we
tested (1) all genes combined, (2) by functional group (40S
and 60S genes), and (3) all independent. For the combined
data set, we tested all above-mentioned partition schemes.
The AIC favored independent gene partitions in the nu-
clear and the combined data sets, whereas the best parti-
tion scheme for the mt data sets was that with all genes
analyzed separately except for atp8/atp6 and nad4L/nad4.
The resulting best-fit models for each partition are shown
in Additional file 1: Table S3.
Phylogenetic relationships were inferred using max-

imum likelihood (ML) and Bayesian inference (BI). ML
analyses were conducted with RAxML v. 7.0.4 [59] using
the rapid hill-climbing algorithm. For BI, we used
MrBayes v. 3.1.2 [60] running two independent analyses,
each consisting in four simultaneous MCMC (Markov



Osca et al. BMC Evolutionary Biology 2014, 14:197 Page 9 of 10
http://www.biomedcentral.com/1471-2148/14/197
chain Monte Carlo) for 10 million generations, sampling
every 1,000 generations, and discarding the first 25%
generations as burnin (as judged by plots of ML scores
and low SD of split frequencies) to prevent sampling be-
fore reaching stationarity of Markov chains. Support for
internal branches was evaluated by non-parametric boot-
strapping [61] with 1,000 replicates (ML) and by poster-
ior probabilities (BI).

Additional file

Additional file 1: Figure S1. Comparison of mitochondrial gene
orders of Scutopus ventrolineatus and Chaetoderma nitidulum. Table S1.
Complete mitochondrial genomes used in the phylogenetic analyses.
Table S2. Fragments of nuclear ribosomal proteins used in phylogenetic
analyses. Table S3. Best-fit partitions and models selected by Protein
Partition Finder.
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