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Abstract

Background: The rapid evolution of genital morphology is a fascinating feature that accompanies
many speciation events. However, the underlying patterns and explanatory processes remain to be
settled. In this work we investigate the patterns of intraspecific variation and interspecific
divergence in male genitalic morphology (size and shape) in the cactophilic sibling species Drosophila
buzzatii and D. koepferae. Genital morphology in interspecific hybrids was examined and compared
to the corresponding parental lines.

Results: Despite of being siblings, D. buzzatii and D. koepferae showed contrasting patterns of
genital morphological variation. Though genitalic size and shape variation have a significant genetic
component in both species, shape varied across host cacti only in D. buzzatii. Such plastic
expression of genital shape is the first evidence of the effect of rearing substrate on genitalic
morphology in Drosophila. Hybrid genital morphology was not intermediate between parental
species and the morphological resemblance to parental strains was cross-dependent.

Conclusion: Our results suggest the evolution of different developmental networks after
interspecific divergence and the existence of a complex genetic architecture, involving genetic
factors with major effects affecting genital morphology.

Background

The evolutionary processes governing the divergence of
animal genitalia are mostly unknown and constitute one
of the most intriguing pieces of a mayor puzzle that is spe-
ciation [1-5]. In many arthropod groups male genitalia
evolves at particularly high rates and this special feature
constitutes the mechanistic basis of its use as a specific
diagnostic trait [6,7]. Notwithstanding the taxonomic
importance of genitalic morphology, intraspecific studies

addressing the causes and consequences of intraspecific
morphological variation are scarce. Such studies, using
methods successfully applied in evolutionary biology,
offer the opportunity to gain new insights into the evolu-
tionary processes and forces involved in genitalic evolu-
tion [3].

Three main hypotheses have been proposed to explain the
evolution of genital morphology: the lock and key, the
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pleiotropy and the sexual selection hypotheses. The lock
and key hypothesis [8] states that male genitalia evolve as
a species-specific trait in order to properly fit in female
genitalic organs. This theory predicts a canalized develop-
ment of male genitalia and low levels of phenotypic and
genotypic variation, since genitalic traits are expected to
be under strong stabilizing selection [3,9].

The pleiotropy hypothesis assumes that genital variation
is largely neutral. Since genital and non-genital morpho-
logical traits are implicitly genetically correlated, changes
of allele frequencies at loci pleiotropically affecting gen-
eral morphology and genitalia may lead to rapid and arbi-
trary evolution of genitalic traits [2,10,11]. The sexual
selection hypothesis states that morphological differences
in male genitalia are related to variation in fertilization
success and that morphological divergence is driven by
sexual selection [3].

The study of the evolution of male genitalia may be even
more complicated not only because it may be influenced
by both natural and sexual selection, but also because it's
phenotypic expression might be influenced by environ-
mental factors [12] as occurs for other morphological
traits. Thus, the joint study of intraspecific variation and
interspecific divergence may provide a useful approach for
the understanding of the underlying genetic architecture
of genital traits and the evolutionary processes involved
[13-15]. In this sense, it has been suggested that differ-
ences in genital morphology between closely related spe-
cies would be largely polygenic [16]. Such claim is based
on the single study comparing the morphology of male
posterior lobe in two closely related species of Drosophila
and their hybrids [17]. Therefore, it is clear that more
studies are necessary to further support this affirmation
and to determine whether simple genetic differences can
account for the evolution of fast evolving and complex
structures such as male genitalia.

The aedeagus, which is the intromittent organ of male
genitalia [18], is considered the main diagnostic trait for
species recognition in the Drosophila repleta group [6]. To
this group belong the South American D. buzzatii and D.
koepferae [19,20], which are morphologically undistin-
guishable except for conspicuous differences in male gen-
italia. These species are reproductively isolated by partial
ecological isolation [21], sexual isolation and post mating
barriers [22]. Both species can breed and feed on the
necrotic tissues of several cacti species [23,24], however
they exhibit a certain degree of niche separation; D. buzza-
tii is mainly adapted to breed on decaying tunas (genus
Opuntia), while D. koepferae prefers the necrotic stems of
columnar cacti of the genera Cereus and Trichocereus [21].
Though sexual isolation between these species is strong,
behavioral barriers can be forced in the laboratory, since
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D. buzzatii males can inseminate D. koepferae females and
female hybrid offspring can be successfully backcrossed to
D. buzzatii males [25]. Furthermore, recent population
genetic studies have provided indirect evidence of past or
recent gene flow between these species [26,27].

The knowledge of the ecology of these cactophilic Dro-
sophila [21,24,28,29], coupled with the possibility to pro-
duce interspecific hybrids in the laboratory and the
potential for natural hybridization, makes this pair of spe-
cies into an excellent model for speciation studies, partic-
ularly those addressing the genetic and ecological basis of
morphological change associated to interspecific diver-
gence.

In this work we investigate the sources of phenotypic var-
iation, genetic and environmental, by examining genitalic
size and shape in flies of several isofemale lines of both
species and interspecific hybrids raised in two different
species of host cacti.

Results
A total of 606 males were analyzed in this study (252 D.
buzzatii, 294 D. koepferae and 60 interspecific hybrids).

The total number of principal components explaining a
significant proportion of shape variation was 13 in D.
koepferae and 12 in D buzzatii (results not shown). The
cumulative contribution of the first 5 principal compo-
nents of the elliptic Fourier descriptors (EFDs) of the gen-
ital outlines accounted for over 74% and 77% of total
shape variance in D. koepferae and D. buzzatii, respectively
and nearly 84% of shape variation in the interspecific
analysis (Table 1). The proportion of morphological vari-
ation summarized by each PC is illustrated in Figure 1.

Parental species size and shape variation

We detected significant differences in aedeagus size
between species but more notably between flies reared in
different cacti (Table 2a). However, in a nested ANOVA
design as ours, the random factors Line in Species and
Line by Cactus are the error terms of the fixed factors (Spe-
cies, Cactus and their interaction). Large values of these
terms may provide unreliable results in the testing of the
fixed factors. Consequently we performed "a posteriori"
contrasts of the Species by Cacti interaction to confirm the
general results. Post hoc comparisons showed that D. buz-
zatii male flies reared in Opuntia had larger male genitalia
than those grown in T. candicans (Tukey, p = 0.028) while
in D. koepferae differences between flies grown in different
cactus media were not significant (Tukey, p = 0.69). As vis-
ually observed, D. buzzatii and D. koepferae significantly
differed in their genitalic shape and presented morpho-
logical variation not only among lines within species but
also interacting with the breeding substrate (Table 2a).
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Table I: Shape variation.
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Intraespecific analyses

Interespecific analysis

D. koepferae D. buzzatii Parental species + hybrids
Shape variables Eigenvalue Proportion(%) Eigenvalue Proportion(%) Eigenvalue Proportion(%)
PCI 1.94E-03 36.6 2.63E-03 303 6.26E-03 504
PC2 8.95E-04 16.8 1.57E-03 18.1 2.02E-03 16.3
PC3 4.85E-04 9.1 1.21E-03 13.9 1.05E-03 84
PC4 3.70E-04 7 8.16E-04 9.4 5.57E-04 4.5
PC5 2.50E-04 47 5.22E-04 6 4.97E-04 4

Percent of genital morphological variance explained by the first 5 principal components (PCs) in intraspecific and global (Dorosphila buzzattii + D.

Koepferace + hybrids) analyses.

The results of intraspecific ANOVAs also revealed impor-
tant differences (Table 2b). In D. buzzatii the Cactus by
Line interaction was significant and accounted for a rela-
tively high percentage (12.1%) of phenotypic variance in
aedeagus size. However, only the Line factor was signifi-
cant in D. koepferae, neither the Cactus effect nor the Cac-
tus by Line interaction were significant.

In summary, according to our experimental design, based
on the isofemale line technique [30], shows that aedeagus
size is not only phenotypically plastic, but also that sub-
stantial heterogeneity exists among lines in their plastic
response, suggesting that plasticity has a genetic basis in
D. buzzatii. In D. koepferae, in contrast, our results show
that variation in aedeagus size has a genetic component,
devoid of any plastic response in relation to the breeding
substrate. According to the results of the MANOVAs, vari-
ability among lines in aedeagus shape was significant in
both species (Table 2a, b). The proportion of total shape
variation explained by the interaction Cactus by Line also
differed between species. Approximately 9% of total
shape variance was explained by the Cactus by Line inter-
action in D. koepferae. This interaction was significant for
PC3 which is related with variation in thickness in both
dorsal and ventral median portions of the organ (Figure
1). Conversely, in D. buzzatii, the Cactus by Line interac-
tion was significant for PC1, which describes changes in
the process of the ventral margin (Figure 1) and accounts
for an important proportion (30%) of the explained mor-
phological variance.

Allometric patterns

Correlation analysis between aedeagus size and shape
also revealed important interspecific differences. On one
hand, aedeagus shape was strongly correlated with size in
D. buzzatii (more than 16% of the total shape variation
was allometric, Table 3). Conversely, none of the 5 princi-
pal shape variables in D. koepferae were significantly asso-
ciated with genital size (Table 3).

We also studied the relationship between variables
describing size of male genitalia and wing length. These
variables were not significantly correlated in D. koepferae
(r=0.13, p = 0.07), whereas in D. buzzatii, we detected a
significant allometric relationship (r = 0.32, p < 0.001).
Furthermore, aedeagus size and wing length varied iso-
metrically in D. buzzatii as suggested by a coefficient of
allometry not significantly different from 1 (slope value of
linear adjusted function = 0.82; 95% confidence interval
values [0.42 to 1.23]).

Aedeagus morphology in interspecific hybrids

Four interspecific crosses, out of 25 attempted, (crosses
4855, 4853, 8832 and 3512) yielded enough hybrid prog-
eny as to perform the present study. These results are in
agreement with previous studies reporting strong premat-
ing isolation between D. buzzatii and D. koepferae [31]. In
order to asses hybrid male fertility, and prior to dissection,
hybrid males were aged for 1 week and placed for 5 days
in vials with several mature virgin females of D. buzzatii or
D. koepferae. In all cases hybrid males failed to produce
offspring even though copulation attempts were observed
in the vials. Hybrid progeny obtained in crosses 4853 and
8832 could only be tested in vials prepared with the
medium prepared with fermenting Opuntia due to low
numbers of hybrid larvae, while in the other crosses the
yield of hybrid progeny was high enough to be reared in
both cactus media.

Regarding size, differences among genotypes (hybrids
plus both parental lines) were significant in all crosses
(Table 4). In Figure 2 we illustrate size differences among
crosses and genotypes reared in Opuntia, the rearing sub-
strate where all crosses were able to be tested. F1 hybrid
males from crosses 4853 and 8832 reared in Opuntia vials
presented intermediate values that differed significantly
from both parental strains (p < 0.05 in both cases, Tukey's
post hoc comparisons). In the other crosses, in which
hybrids could be reared in both cacti, a significant Geno-
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Shape variation. Outlines represent the variation in shape
accounted by the first five principal components. Each outline
was reconstructed from the estimated coefficients by letting
the score of the corresponding principal component be equal
to the mean and mean plus or minus two standard deviations
(SD) and the remaining components set to zero. Black line,
blue line and red line stand for mean shape, mean + 2 SD and
mean - 2 SD respectively.

type by Cactus interaction (F, 9= 4, 49, p <0.01) was only
detected in cross 4855. Hybrids male progeny in this cross
presented larger aedeagi than males of the parental D. buz-
zatii line in Opuntia, while differences between hybrids
and the D. buzzatii parent were not significant in Trichocer-
eus. In all cases, D. koepferae presented the largest genitalia
in both cacti. In one cross (3512) mean genitalic size in
hybrids was significantly lower than the male parental D.
buzzatii line (p = 0.025, Tukey's test). Based on the corre-
lation matrix, only PC1 scores were correlated with organ
size in hybrids accounting for 50.4% of shape variation
(Table 3). Unfortunately, the low number of hybrids and
the high proportion of individuals with improperly
unfolded wings precluded the analysis of allometric rela-
tionships between wing size and the variable describing
aedeagus size.

Significant shape differences among genotypes were
detected in all crosses (Table 4). Post hoc comparisons
showed that all genotypes differed from each other in the
shape of the genitalia at least in PC1 shape scores (p <
0.001 in all cases). However, neither the Cactus factor nor
the Cactus by Genotype interaction were significant in the
crosses in which hybrids were raised in the two cactus
media (4855 and 3512).

http://www.biomedcentral.com/1471-2148/7/77

In figure 3 we present a plot of the first two principal com-
ponents describing shape variation (PC1 and PC2). The
species differentiate themselves along the first shape axis
(PC1) and the hybrid scores fall within the parental val-
ues. As can be observed the mean PC1 values of D. buzzatii
lines involved in successful interspecific crosses tended to
be negative and those of D. koepferae positive. However,
hybrids failed to present intermediate values for both
shape variables simultaneously. For instance, hybrids of
cross 8832 had shape scores for both PC1 and PC2 that
placed them in the morphological space closer to the D.
koepferae parent (Line 88) than to D. buzzatii (Line 32).
On the contrary, in cross 3512 a hybrid genital morphol-
ogy was more similar to D. buzzatii for PC1 (Linel2) but
the mean for PC2 was more extreme than any of the
parental lines. Suggestively, as explained above, hybrids in
3512 also presented smaller genitalia than both parental
lines.

In order to evaluate the degree of resemblance of the mor-
phology of hybrids to each parental line, we calculated the
Euclidean distance to the morphological centroid of each
parental strain using the shape (PCs) scores of each indi-
vidual hybrid. As a rough index of morphological dissim-
ilarity, hybrids would show equal mean distances to the
centroids of both parental clouds of points if they have
intermediate aedeagus morphology. Expression domi-
nance of one genome over the other would produce phe-
notypes resembling more closely one parental strain or
the other. Morphological dominant expression was tested
with an ANOVA in which the variable was the Euclidean
distance of each hybrid male to the centroid of each
parental species (mean parental shape) with Cross and
Parents as fixed factors. The ANOVA revealed significant
differences among crosses though it should be noted that
hybrid resemblance to parental strains were not inde-
pendent of the cross (F;1,=17.59; p < 0.0001; Figure 4).

Discussion

Aedeagus morphology is a diagnostic trait that along with
chromosomal inversions provides a guide for species
identification in the genus Drosophila and particularly in
the D. repleta species group [6,19,20,32]. Several studies
have, recently, turned the attention to the D. buzzatii clus-
ter, a guild of cactophilic flies, in active cladogenesis, that
inhabit the arid regions of Southern South America [33].
However, recent molecular phylogenetic studies [34] cast
doubts on the reliability of male genital (aedeagus) mor-
phology to infer the evolutionary relationships in the D.
buzzatii cluster [33]. For instance, mitochondrial DNA
sequence data place D. koepferae as the sister species of D.
buzzatii, albeit the comparative analysis of aedeagus mor-
phology indicates a close relationship with D. serido and
allied species [34]. These results indicate that rates of evo-
lution of male genitalia may be heterogeneous among
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Table 2: Sources of variation of male genitalia in Drosophila buzzatii and D. koepferae.

Sources of variation df Size Shape
PCI PC2 PC3 PC4 PC5
a)

Species (Sp) | 1812.95% 3519.85% 3.39 0.15 0.11 5.07*
Cactus | 6.56* 0.04 0.95 1.47 0.39 2.62
Species x Cactus | 0.77 0.53 0.02 0.99 1.42 1.18
Line(Sp) 28 2.05% 5.91* 2.36* 3.66* 3.08* 1.75
Line(Sp)*Cactus 28 1.99% 1.33 1.72% 0.99 |.88%* |.74%

Error 487

b)
Drosophila koepferae

Line 14 471* 6.99* 4.35% 3.97* 3.29* 2.63*
Cactus | 4.02 0.62 0.24 0.5 0.49 0.23
Line x Cactus 14 1.12 0.89 I.1 2.00* 1.41 1.35

Error 264

Drosophila buzzatii

Line 14 1.39 3.25% 3.71% 4.08* 6.87% 3.65%
Cactus | 3.31 0.07 1.67 271 1.88 0.04
Line x Cactus 14 2.47* 2.18*% 1.1 1.06 1.25 1.33

Error 224

F values of the ANOVAs and MANOVA:s for aedeagus size and shape respectively in interspecific (a) and intraspecific (b) analyses. * p < 0.0l

branches of the clusters' phylogenetic tree. In this context,
our study, motivated by such inconsistency between
molecular and morphological data, provides valuable
information that could help to distinguish the relevant
factors involved in morphological variation of male geni-
talia in D. buzzatii and D. koepferae, a pair of species in the
heart of an evolutionary conflict.

The first issue raised by our study is that aedeagus size and
shape vary substantially in both species, and, that a signif-
icant portion of variation is genetically determined. More-
over, the inclusion, in our experimental design, of semi-
natural rearing media prepared with different cactus hosts
permitted the characterization of morphological variation
in terms of phenotypic plasticity in both species. In this
sense, phenotypic plasticity in genital morphology was

evident in D. buzzatii: flies emerged in alternative cactus
hosts showed significant differences in aedeagus size and
shape. Moreover, the analysis of the sources of variation
also revealed a significant Line by Cactus interaction in D.
buzzatii, i.e. isofemale lines did not respond in the same
way to the two environments tested, suggesting that the
plastic response of genital morphology has a genetic basis
[35]. Such a plastic expression of genital morphology con-
stitutes the first evidence of a rearing substrate affecting
genital morphology in Drosophila, and is in line with a
recent study showing a plastic response of aedeagus mor-
phology in relation to rearing temperature in D. mediop-
unctata [12]. In contrast, comparisons between males of
D. koepferae emerged in different cactus media did not
reveal any sign of phenotypic plasticity, suggesting a more
canalized (non plastic) development of male genitalia.

Table 3: Within organ allometry. Correlation coefficients between size and each one of the principal components (PC) scores
accounting for shape variation in the aedeagus of D. koepferae, D. buzzatii and F1 hybrids.

Shape variables

Genital size

D. koepferae D. buzzatii Fl Hybrids
PCI -0.08 -0.17* 0.61*
PC2 -0.07 0.45* -0.21
PC3 -0.03 0.24* 0.1
PC4 0.02 0.16* 0.14
PC5 0.03 0.01 -0.02
Total allometric shape variance (%) 0.0 16.6 30.7

Allometric shape variance was calculated as the sum of partial allometric variance of each PC significantly correlated with size. * p < 0.05.
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Table 4: Sources of variation of male genitalia interspecific crosses.

http://www.biomedcentral.com/1471-2148/7/77

Sources of Crosses
variation
3512 4855 8832 4853
Size
df F df df F df F
Genotype 2 359.96** 2 204.17%* 2 609.06** 2 176.73%*
Cactus | 0.33 | - -
Genotype X 2 0.14 2 4.49* - -
Cactus
Error 38 69 56 34
Shape
df A df df A df A
Genotype 20 0.015%* 20 0.095%* 20 0.015%* 20 0.014%*
Cactus 10 0.865 10 0914 - -
Genotype X 20 0.635 20 0.672 - -
Cactus

F values of the ANOVAs and Wilk's lambda of MANOVAs for aedeagus size and shape respectively. *p < 0.05; ** p < 0.01

Another relevant point is that patterns of allometry within
(aedeagus size and shape) and between organs (aedeagus
and wing size) also differed between D. buzzatii and D.
koepferae. In the latter, shape and size of male genitalia, as
well as aedeagus size and wing length, appeared to be
largely uncoupled as suggested by the low level of within
and between organ allometries. These results suggest that

30000

25000

20000

Aedeagus size

15000

10000

Dk F1 Db

Figure 2

Hybrid genital size. Mean area size (in pixels) of aedeagus
of individuals reared in vials with fermenting Opuntia. Dk: Dro-
sophila koepferae; Db: Drosophila buzzatii. Cross 3512 (@);
Cross 4853 (H); Cross 4855 (#); Cross 8832 (A).

differences among flies in wing length are not expected to
be accompanied by changes in the size of the genitalia,
indicating that the factors involved in development of
wings and male genitalia are largely independent in D.
koepferae. In contrast, aedeagus shape and size were signif-
icantly correlated in D. buzzatii, suggesting that factors
affecting size (for instance the type of cactus host) may
also indirectly affect the shape of the organ.

In D. buzzatii, body size related traits (such as wing
length), known to be under natural selection [36-38], are
affected by the nature of the breeding substrate [21,39-
41]. Furthermore, a positive correlation between body
size and male reproductive success is well known in this
species [38,42-44]. If the phenotypic correlation observed
between aedeagus size and wing length has a genetic basis,
any directional selective pressure affecting body size (wing
length) would indirectly affect the evolution of male gen-
italia.

Several features of the mating system, such as female
remating frequency, premating time, copulation duration,
interval between successive matings, and progeny num-
bers, have been shown to be genetically variable in D. buz-
zatii [45]. However, the connection between these traits
and male genital morphology has not been explored.
Indeed, the implications of our present results in genital
evolution and speciation would obviously depend on the
kind of relationship between genital morphology and
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Figure 3

Hybrid genital shape. Bivariate plot of mean shape scores
of each genotype for the first two principal dimensions of
shape variation (and percent of variance explained). The lines
drawn connect genotypes involved in the same cross. Out-
lines below the graphic depict the genital shape variation
accounted for the first principal component. Outlines to the
left of the plot represent the genital shape variation
accounted for the second principal component. Dk: Dro-
sophila koepferae; Db: Drosophila buzzatii, FI: hybrids. Cross
3512 (@); Cross 4853 (H); Cross 4855 (#); Cross 8832 (A).

mating success, as it was reported to occur in other insect
taxa such as Heteroptera [46] and Coleoptera [15].

To this point we have presented basic features of the pat-
terns of variation of aedeagus morphology in D. buzzatii
and D. koepferae, now, we would like to examine whether
our data allow a critical evaluation of the plausibility of
the three main hypotheses proposed to explain genital
evolution. Though our results are not entirely conclusive
in this respect, the extensive phenotypic and genetic vari-
ation in aedeagus morphology are strong evidence against
the "lock and key" hypothesis, that predicts low levels of
variation (both phenotypic and genetic) in genital struc-
tures. However, the correlation between aedeagus mor-
phology and wing length, along with the condition
dependence (phenotypic plasticity in relation to cactus
hosts) are in agreement, at least in D. buzzatii, with predic-
tions of the hypothesis of pleiotropy. Concerning the
third hypothesis, sexual selection, we must await for the
results of experiments testing the relationship, if any,
between genital morphology and reproductive perform-
ance.

The final issue we would like to address is whether our
study allows us to envisage the genetic architecture under-
lying differences in male genitalia between D. buzzatii and
D. koepferae. In this sense, our results seem in conflict with

http://www.biomedcentral.com/1471-2148/7/77

the single available work comparing genital morphology
in hybrids and parental species [17,47]. Genital size and
shape of hybrid males were not intermediate and the mor-
phological resemblance of hybrids to either D. buzzatii or
D. koepferae varied among crosses. In fact, hybrid's mor-
phological distance to D. buzzatii and D. koepferae
depended on the parental strains employed in the crosses.
In none of the 4 crosses hybrid morphology was pheno-
typically intermediate (Figure 4). Hybrids from crosses
4853 and 8832 tended to be more similar to the D. koep-
ferae parental strain, while in crosses 3512 and 4855 the
morphology of the hybrid genitalia resembled closer that
of D. buzzatii male parent. These results seem to be incom-
patible with the idea that interspecific differences in the
morphology of male genitalia are caused by polygenes
with small additive effects as claimed by Coyne and Orr
for D. simulans and D. mauritiana [16] (however, it should
be noted that the authors in [47] acknowledged some
degree of dominance and epistasis). Actually, our results
suggest a complex genetic architecture probably involving
a certain degree of dominance and the involvement of
genetic factors with large effect.

However, there are certain differences between our study
and Liu et al's [47] that are worth mentioning. The first
relates to the part of the genitalia examined in each case,
the intromittent organ in D. buzzatii and D. koepferae and
the posterior lobe (a particular element of male genitalia
in the D. melanogaster group [48]) in D. simulans and D.
mauritiana. These organs perform different functions dur-
ing copulation [48] and therefore their evolution might
be governed by different processes. The second is method-
ological and can be avoided by applying our methodol-
ogy to Liu et al's dataset. To this end, we captured the
outlines available in the digital version of [47], and tested
for shape differences between F1 hybrids and parental
species. This reanalysis confirmed that F1 hybrids have an
intermediate morphology between D. simulans and D.
mauritiana (the morphological distances between hybrids
to both parental phenotypes were not significantly differ-
ent: F; 5=, 008, p =0, 93). Another non trivial point, that
may complicate our interpretation is the difference in the
time of divergence between the members of the two pairs
of species, since development in interspecific hybrids is a
result of a balance between the effects of the degree of het-
erozygosity and the degree of genomic coadaptation
(expected to increase/decrease as a function of divergence,
respectively) and the outcome of the past selection pres-
sures on the species studied (see [49]). D. simulans and D.
mauritiana are two recently derived species that shared
their last common ancestor 0.6 - 0.9 million years ago
[50], while D. koepferae and D. buzzatii are older species
that diverged 5 million years ago [26]. Finally, D. simulans
and D. mauritiana are homosequential species, i.e. their
basic polytene chromosome banding patterns are identi-
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Figure 4

Analysis of the morphological resemblance of hybrids
to their corresponding parental strains. Hybrid mean
Euclidean distances (and confidence intervals) to each mean
parental shape of each cross. Dk: Drosophila koepferae; Db:
Drosophila buzzatii. Cross 3512 (@); Cross 4853 (H); Cross
4855 (#); Cross 8832 (A).

cal [51], whereas two inversions became fixed since diver-
gence in D. buzzatii and D. koepferae. In addition, rich
second chromosome inversion polymorphisms have
evolved independently in the latter pair of species [20,23].
Our knowledge of inversion polymorphisms is mostly
restricted to D. buzzatii, in which polymorphic inversions
are known to affect morphological and fitness related
traits (see [52] and references therein). Although there is
no direct evidence linking inversions and genital mor-

Drosophila koepferae

Drosophila buzzatii

0.1 mm.
Figure 5
Aedeagus morphology. Lateral aspect of the intromittent
organ in Drosophila koepferae and D. buzzatii (modified with
permission from [6]). Shaded areas represent the portion
excluded from the shape quantification (See [6] for details of
the morphology of male genitalia).
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phology, inversions may affect aedeagus morphology via
its effect on general body size (recall the allometric rela-
tionship detected between aedeagus size and wing length
in D. buzzatii). In this context, the idea that morphology
(size and shape) of an organ potentially involved in spe-
cies recognition (such as aedeagus morphology), might be
associated to polymorphic inversions is consistent with
recent theories linking chromosomal rearrangements and
reproductive isolation [53,54], and deserves further inves-
tigation.

Conclusion

Our comparative study of patterns of intraspecific varia-
tion in male genital size and shape and intra and inter-
organ allometries in D. koepferae and D. buzzatii suggest
different scenarios of genital evolution and probably the
evolution of different developmental networks. Moreo-
ver, our study suggests that extrapolations across species
are unwarranted, different evolutionary mechanisms
might be involved in the evolution of genital morphology
even in closely related species.

Methods

Experimental design

Fifteen isofemale lines (lines hereafter) of each species,
derived from collections in the locality of Suyuque (San
Luis province, Argentina), were employed in the experi-
ments outlined below. In this area both species coexist in
nearly equal proportions (45% of captured females were
D. koepferae, 55% D. buzzatii). The advantages of the use
of the isofemale line technique in quantitative evolution-
ary genetics have been thoroughly described in [30].
Briefly, the isofemale line technique is a convenient meth-
odology for the analysis of quantitative traits under labo-
ratory conditions. All experiments described below were
conducted 24 generations after the foundation of isofe-
male lines.

Thirty first-instar larvae from each line were seeded in
vials containing 6 ml. of media prepared with artificially
fermented cactus (see [41] for details). Two different cac-
tus species, Opuntia sulphurea and Trichocereus candicans
which are commonly used as breeding substrates by D.
buzzatii and D. koepferae in the locality sampled, were
employed for the preparation of the semi-natural media.
For each line, 4 replicated vials were run in each cactus

type.

Five lines of each species were randomly chosen to gener-
ate interspecific hybrids. All possible combinations were
attempted (25 potential crosses). F1 hybrids were pro-
duced by crossing 25 virgin females of a D. koepferae line
with 50 males of a D. buzzatii line. The reciprocal cross
invariably failed to produce viable progeny. Crosses were
identified according to the number of the female parental
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line (D. koepferae) preceding the number of the male
parental (D. buzzatii) line (e.g. the cross between D. koep-
ferae line 48 and D. buzzatii line 55 was designated as
4855). Batches of 30 first-instar hybrid larvae were trans-
ferred to culture vials containing one of the two 'semi-nat-
ural' media. Four replicated vials were run per every
combination of cactus and cross when the number of
hatched larvae allowed it. The hybrid status of the
descendants was ascertained by the cytological analysis of
the polytene chromosomes of progeny larvae grown in
vials run in parallel.

All cultures were maintained at 25 +/- 1°C with a 12:12
light/dark photoperiod until the emergence of adults.
Adult flies were simultaneously collected and sexed under
light CO, anesthesia.

The aedeagus and both wings were dissected from 2 to 5
males emerged in each replicate. Aedeagi were mounted
on slides and photographed with a digital camera
mounted on a microscope at 400 x magnification. Wings
were also mounted and ventral views of wing images were
captured with a digital camera attached to a binocular
microscope (25 x) connected to a computer. In each
image, we scored total wing length (WL) using TpsDig
[55].

Morphological quantification

As shown in Figure 5 there are conspicuous differences in
aedeagus morphology between D. buzzatii and D. koep-
ferae that preclude the possibility of determining an ade-
quate number of reliable homologous landmarks.
However, the aedeagus is a flat quitinous organ that can
be effectively described in shape and size in two dimen-
sions when flattened under a cover slip. Consequently, we
decided to employ an approach based on elliptic Fourier
descriptors (EFDs) [56] as a proper resolution to the prob-
lem of shape quantification [47]. This is a type of analysis
in which differences in x and y coordinates of the outline
of the studied organ are fit separately as functions of arc
length by Fourier analysis, so that the outline can be
decomposed into a weighted sum of sine and cosine func-
tions designated as harmonics. Outlines from digital
images were used to obtain Fourier coefficients for a pol-
ynomial function of 30th degree which were computed
with SHAPE v1.2 package, [57] using Elliptic Fourier anal-
ysis [56,58,59]. For the quantification of organs' shape we
only considered the distal part of the aedeagus excluding
the apodeme and the gonopods (Shaded areas in Figure 1.
Thus, we simplified the studied contour by taking into
account only the portion of the organ effectively involved
in the penetration of female genitalia.

The area of each aedeagus (in pixels) was calculated from
the digital images and considered as an estimator of the

http://www.biomedcentral.com/1471-2148/7/77

size of the organ. We performed a normalization of the
descriptors based on the first harmonic ellipse that corre-
sponds to the first Fourier approximation to the contour
information (reviewed in [60]). Thus, size, orientation
and starting position of the contours were standardized in
accordance with the size and alignment of the major axis
of the first ellipse, leading to representations of the organs
that are only based on internal properties of the outlines
(i.e. shape) [56].

The variance-covariance matrix of the 120 (4 per har-
monic) estimated EFDs coefficients was used as input in a
principal components analysis. This procedure allowed us
to summarize the information assessed in the coefficients
and reduce the dimensionality of the variables [61] in a
lower number of principal components (PC). Thus, the
resulting scores of each PC of each specimen could be con-
sidered as reorganized uncorrelated morphological traits
representing different aspects of total shape variation [57]
that were used as shape descriptor variables in subsequent
analyses. For the sake of simplicity and in order to avoid
components accounting for possible biologically mean-
ingless morphological variation only the first 5 compo-
nents of both intraspecific and interspecific analyses were
considered as shape variables in the ANOVAs.

We worked with two sets of PC scores. The first set of prin-
cipal components were calculated from the matrix of coef-
ficients derived form the analysis of the outlines of the
genitalia of males of the parental lines employed in suc-
cessful interspecific crosses and the hybrids. The second
set was obtained separately for each species improving the
assessment of intraspecific variation in aedeagus mor-
phology by avoiding the noise resulting from conspicuous
interspecific morphological differences in the estimation
of the PCs. This set was used in the evaluation of intraspe-
cific sources of shape variation. Preliminary analyses with
this technique showed that it is repeatable and reliable in
species discrimination [62].

Analysis of variance of aedeagus size and shape

Both interspecific and intraspecific size differences were
investigated by means of ANOVAs, with Species (2 levels,
fixed factor), Cactus (2 levels, fixed factor) and Line
(nested in Species random factor) as main sources of var-
iation. The variable was log-transformed to ensure homo-
scedasticity. According to our experimental design, in the
ANOVAs for species, a significant cactus effect (C) may be
interpreted as phenotypic plasticity, while significant dif-
ferences among isofemale lines as due to genetic differ-
ences (since all lines were reared under the same
conditions). Finally, a significant L x C interaction may be
construed as an estimation of genotype by environment
interaction (GEI) or more explicitly, that the response of
isofemale lines is not independent of the rearing cactus.
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Shape variation was assessed by means of MANOVAs
using the scores of each PC as dependent variables and
Cactus and Line as main sources of variation.

In the presence of allometry, a fraction of the changes in
shape might be explained by changes in the size of the
organ. We were interested to comparatively evaluate the
amount of allometric change in genital morphology in
these species. Thus, we calculated Pearson's product-
moment correlation matrix among shape scores and
aedeagus size in each species separately to explore the
relationship between aedeagus shape and general size of
the aedeagus (within organ allometry).

We also evaluated the allometric relationship between
aedeagus size and wing length, a trait correlated with over-
all body size, which in the studied species are known to be
affected by the rearing substrate [41]. Size data were log-
transformed prior to all analysis.

The principal components scores obtained by means of
the general assessment of interspecific shape variation of
parental lines and F1 hybrids were used in the examina-
tion of morphological patterns of variation in the off-
spring of interspecific crosses. Size was analyzed by means
of an ANOVA and shape with a MANOVA. In both cases
the principal factor was Genotype (both parents and the
hybrids) and in those crosses in which hybrid larvae could
be reared in both cactus hosts, Cactus was also considered
as a fixed factor.

Statistica 6.0 [63] was used for statistical analyses and in
all cases the corresponding assumptions were properly
tested.
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