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Abstract
Background: Evolutionary processes in gene regulatory regions are major determinants of
organismal evolution, but exceptionally challenging to study. We explored the possibilities of
evolutionary analysis of phylogenetic footprints in 5'-noncoding sequences (NCS) from 27 ribulose-
1,5-bisphosphate carboxylase small subunit (rbcS) genes, from three dicot families (Brassicaceae,
Fabaceae and Solanaceae).

Results: Sequences of up to 400 bp encompassing proximal promoter and 5'-untranslated regions
were analyzed. We conducted phylogenetic footprinting by several alternative methods:
generalized Lempel-Ziv complexity (CLZ), multiple alignments with DIALIGN and ALIGN-M, and
the MOTIF SAMPLER Gibbs sampling algorithm. These tools collectively defined 36 conserved
blocks of mean length 12.8 bp. On average, 12.5 blocks were found in each 5'-NCS. The blocks
occurred in arrays whose relative order was absolutely conserved, confirming the existence of
'conserved modular arrays' in promoters. Identities of half of the blocks confirmed past rbcS
research, including versions of the I-box, G-box, and GT-1 sites such as Box II. Over 90% of blocks
overlapped DNase-protected regions in tomato 5'-NCS. Regions characterized by low CLZ in
sliding-window analyses were also frequently associated with DNase-protection. Blocks could be
assigned to evolutionary hierarchies based on taxonomic distribution and estimated age. Lineage
divergence dates implied that 13 blocks found in all three plant families were of Cretaceous
antiquity, while other family-specific blocks were much younger. Blocks were also dated by
formation of multigene families, using genome and coding sequence information. Dendrograms of
evolutionary relations of the 5'-NCS were produced by several methods, including: cluster analysis
using pairwise CLZ values; evolutionary trees of DIALIGN sequence alignments; and cladistic analysis
of conserved blocks.

Conclusion: Dicot 5'-NCS contain conserved modular arrays of recurrent sequence blocks,
which are coincident with functional elements. These blocks are amenable to evolutionary
interpretation as hierarchies in which ancient, taxonomically widespread blocks can be
distinguished from more recent, taxon-specific ones.
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Background
Promoter sequences have been described as a vast and
largely uncharted territory for evolutionary biologists [1].
One impediment to exploration is the difficulty of motif
prediction in noncoding sequences (NCS): motif-discov-
ery tools achieved detection rates of only 22–35% for
transcription factor (TF) binding sites in recent bench-
mark studies [2,3]. Although it has long been recognized
in principle [4] that evidence for motifs can be enhanced
by comparing sequences of common ancestry, 'phyloge-
netic footprinting' of higher eukaryotes is still in a devel-
opment and evaluation phase [5-8]. There are also
perceived challenges in the use of sequence alignment for
phylogenetic analysis of NCS [9], as complex mutational
processes (slipped-strand mispairing, stem-loop second-
ary structure excision/repair, minute inversions, intramo-
lecular recombination) are prevalent. In practice,
however, Bremer et al. [10] found chloroplast NCS to be
of similar utility to coding sequences in phylogenetic tree
construction for asterids. This result confirmed that plant
NCS contain evolutionary signal, which might be hypoth-
esized to reside in the conserved motifs sought in phylo-
genetic footprinting. The present study sought to explore
the extent to which phylogenetic footprints in plant 5'-
NCS could be subjected to evolutionary analysis and
interpretation. For this objective, we needed to conduct
sufficiently comprehensive phylogenetic footprinting for
meaningful evolutionary analysis of conserved sequence
blocks.

We employed a greater taxonomic range than other phyl-
ogenetic footprinting studies of plant NCS, which have
been confined to single families [6,8,11,12] or to a couple
of species [13]. Much of the interest in promoter evolu-
tion lies in comparisons of paralogous genes (i.e. genes
that diverged after a duplication event). In consequence, it
must be noted, our dataset included several multigene
families, and therefore was not optimized to investigate
taxonomic phylogenies in the manner of Bremer et al.
[10].

Recognizing limitations in individual motif discovery
tools [2,3,7], we sought to maximize detection of conser-
vation by combining distinct methodologies. Analysis of
generalized Lempel-Ziv complexity (CLZ), played several
roles in our study. CLZ measures the complexity of a text as
the minimal number of steps in a defined procedure of its
synthesis with the parsing rule: the next phrase is the long-
est seen previously. Many text compression algorithms are
based on Lempel-Ziv parsing [14]. Computation of CLZ
thus involves a decomposition of the text into repeated
blocks, and an application to the discovery of structural
regularities in genetic 'texts' was realized by Gusev et al.
[15]. This method has identified arrays of conserved
sequence blocks in NCS of vertebrates from fish to

humans [16,17]. CLZ analysis has also been used to study
human mutagenic mechanisms [18,19] and genomic
architecture [20].

Our second tool was MOTIF SAMPLER, in which the
probability of finding a particular motif is estimated using
Gibbs sampling and modelling of the background
sequence with a Markov model [21].

We complemented these tools with sequence alignment,
including the DIALIGN and ALIGN-M algorithms
designed for highly divergent sequences with only local-
ized similarities, as seen in 5'-NCS. DIALIGN is based on
a segment-to-segment comparison [22,23], while ALIGN-
M uses a non-progressive local approach to guide align-
ments [24].

We focused on 5'-NCS of ribulose-1,5-bisphosphate car-
boxylase small subunit (rbcS) genes because of the excep-
tional corpus of knowledge against which analytical
outcomes could be benchmarked. As the earliest nuclear
protein-coding sequences in plants to be cloned, rbcS
genes became paradigms for functional studies of plant
promoters [25], and several classes of cis-elements were
originally defined in rbcS promoters. Thus, the prototype
of trihelix TFs was the nuclear protein GT-1, which binds
to the 14-bp Box II and related motifs in light-responsive
regions of the pea rbcS-3A promoter [26]. Box II versions
featured in the earliest rbcS promoter alignments [25,27],
and occur in other light-responsive genes [28], where they
may be targets of calcium/calmodulin phototransduction
[29].

Two further cis-elements discovered in rbcS promoters, the
G-box and I-box, are common features in light-responsive
promoters [28,30], and have been functionally character-
ized as dual components of a minimal light-responsive
unit [31]. G-box binding factors (GBFs), identified using
tomato rbcS-3A upstream sequences [32,33], are basic leu-
cine zipper TFs interacting with the G-box core, CACGTG
[34]. Dicot rbcS G-boxes interact with the HY5 GBF, which
mediates phytochrome and cryptochrome signals in con-
cert with COP and DET regulators [31,35].

The I-box, core motif GATAAGR, was also defined in rbcS
promoters [27,33,36]. Its reverse, YCTTATC, was high-
lighted in rbcS and other light-regulated promoters by
early motif searches [37,38]. Binding factors for the I-box
are still being clarified. Functional interactions occurred
in yeast between I-box sequences and recombinant zinc-
finger GATA TFs from Arabidopsis [39]. I-box binding
nuclear proteins reported in several species [40,41] may
therefore include GATA TFs, though the first cloned I-box
binding protein was a tomato Myb-like TF [42]. While the
above rbcS cis-elements are the most studied, there is evi-
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dence for numerous further elements and DNA-protein
interactions in rbcS promoters [30,32,43-48].

There is a particularly extensive history of characterization
of rbcS promoters from pea, Petunia and tomato [25,49].
We analyzed these along with other studied rbcS 5'-NCS
such as those of Arabidopsis [50] to provide a gradation of
taxonomic relations and evolutionary distances. Con-
served features shared by the plant families analyzed
would have persisted since the Cretaceous, to which can
be dated the divergence of eurosids I (represented by the
Fabaceae) from eurosids II (Brassicaeae), and both from
asterids (Solanaceae) [51].

Results
Phylogenetic footprinting
5'-NCS of up to 400 bp including proximal promoter and
5'-untranslated regions (5'-UTRs) were analyzed for 27
dicot rbcS genes. The rosid complement comprised all
four Arabidopsis genes (three from a tandem locus), plus
genes from Brassica and the legumes Phaseolus, Medicago
and Pisum (pea). The Lycopersicon (tomato), Solanum
(potato), Petunia and Nicotiana genes included represent-
atives of all three solanaceous rbcS loci, which are distin-
guished by features including an extra (third) intron in
'locus 2' genes, and tandem duplicates at 'locus 3' [25].
Phylogenetic footprinting analyses were performed on the
entire dataset, and separately on various subgroups, e.g.
rosid, brassica, legume, or solanaceous genes, or genes of
each solanaceous locus. Three methodologies were
employed:

(1) CLZ analysis was used as proposed by Gusev et al. [15]
to search for recurrent sequence blocks in the rbcS 5'-NCS.
The CLZ measure is based on representation of a sequence
by fragments that have been encountered before (in the
same or other sequences). Let S = s1 ... sL be a nucleotide
sequence of length L. Denote by S [i:j] the substring of S
that starts at position i and ends at position j. A Lempel-
Ziv decomposition of S is a partition of S into m consecu-
tive fragments, S = S [1:i1] S [i1+1:i2]...S [im-1:L], such that
the k-th component S [ik-1+1:ik] is the longest fragment
downstream of position ik-1 for which an exact repeat has
been encountered somewhere upstream of position ik-1+1.
The number of fragments in the decomposition, CLZ (S) =
m, is called the complexity of S with respect to direct
repeats. For example, if S = TCGATCGAGAT, then the
decomposition of S with respect to direct repeats is T-C-G-
A-TCGA-GAT. Fragments 1, 2, 3 and 4 in this decomposi-
tion are of length one since respective nucleotides T, C, G
and A occur for the first time. Exact copies of fragments 5
and 6 occur in positions 1 and 3 respectively. The CLZ of
the sequence with respect to direct repeats equals 6. To
find fragments repeated in different rbcS 5'-NCS, we con-
catenated multiple sequences for CLZ analysis.

(2) Overrepresented motifs were sought with MOTIF
SAMPLER, using a range of program options for prior
probabilities, lengths, numbers and overlaps of motifs.
MOTIF SAMPLER can also vary the background Markov
model order (i.e. dependency on a given number of pre-
ceding sequence positions). Thijs et al. [52] found higher
order models improved robustness of motif recovery in
Arabidopsis data. We found that the optimal Markov
model order differed for different motifs: in 40 repeat
runs, optimal model orders were zero for detection of
blocks 06, 22 and 29, first for 10, 25 and 30, second for 23
and 28, and third for 08 and 20. (Blocks are defined in
Table 1.)

(3) Sites of local congruence were sought in multiple
sequence alignments produced by CLUSTALW, ALIGN-M
and DIALIGN, with various gap penalty options for the
first two. Collation of methodologies by mapping output
from CLZ and Gibbs sampling analyses onto alignments
yielded useful synergies. In particular, the alignments
revealed arrays of blocks that occurred in several
sequences in the same order, which increased confidence
in less conserved block versions that occurred in the
appropriate position relative to other blocks.

Our initial CLZ procedure specified blocks ≥ 8 bp with up
to two mismatches, which identified 218 instances of 34
conserved blocks (on average 90% identical with their
definitions in Table 1). Relaxation of the mismatch crite-
rion for DIALIGN-aligned versions of these 34 CLZ-
defined blocks exposed an additional 109 instances (of
average 76% identity with definitions).

Conversely, mapping blocks from other tools clarified
often complex alignments. When the full dataset was
aligned by DIALIGN, 67% of aligned blocks split into an
average 3.5 fragments, and 86% of blocks were co-aligned
on average with 1.7 others. Nonetheless, with support
from CLZ and MOTIF SAMPLER, 323 instances of 35
blocks were identified within alignments. MOTIF SAM-
PLER used independently found 291 instances of 35
blocks.

The complementarity of our different phylogenetic foot-
printing methods was demonstrated by the benchmarking
exercise in Figure 1. In this exercise, each tool independ-
ently analyzed the full set of 27 5'-NCS, to test perform-
ance (versus the methodological consensus) in scoring
each instance of the 12 most frequent blocks. Perform-
ance parameters, following Tompa et al. [3], were:

Sensitivity = nTP/(nTP+nFN)

Positive Predictive Value (PPV) = nTP/(nTP+nFP)
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where nTP = number of 'true' positives (identified blocks
found also by other tools), nFN = 'false' negatives (blocks
not found though supported by other tools), and nFP =
'false' positives (blocks found but not supported by other
tools). (Since every block instance had not been verified
as a cis-element, the 'true' and 'false' concepts in these
equations reflected sequence analysis performance rather
than functionality prediction.)

CLZ analysis and MOTIF SAMPLER showed greater PPV in
block prediction, but weaker sensitivities, than the best
alignment methods (Figure 1). MOTIF SAMPLER's sensi-
tivity for individual blocks correlated (r = 0.85, P < 0.001)
with its log-likelihood statistic [21] that is optimized dur-
ing Gibbs sampling. Among the alignment tools, DIA-

LIGN and ALIGN-M, designed for highly divergent
sequences with localized alignments, outperformed the
CLUSTALW global alignment algorithm (Figure 1). The
performance of CLUSTALW was significantly improved by
reducing the gap penalties, though the PPV of DIALIGN
and ALIGN-M remained superior (Figure 1).

MOTIF SAMPLER outputs statistical data, which helped
estimate the significance of our phylogenetic footprinting
results. Ten dummy datasets with different randomiza-
tions of every sequence were analyzed by MOTIF SAM-
PLER using background model orders 0–3.
Randomization caused MOTIF SAMPLER to find on aver-
age 6.5-fold fewer pseudo-motif instances. Log-likelihood
scores [21] for pseudo-motifs in the 10 dummy datasets

Table 1: Conserved Blocks in rbcS 5'-NCS

Block Definitiona Associated motifsb

01 GCGTCTGATTT (?)ARR1 site
02 AAGGAGCCAAAAGC (?)Dof site
03 AACCGATCAAGTGGAGA (?)MYC site
04 AAAAATGAAAAACTTGTC (?)GT-1 site
05 AACCATACACA (?)MYB site
06* ATCACACATT rbcS Box III* [32]
07 ATATCCTCTTCCTACCCCCAT (?)PHR1 site; (?)MYB site
08* GATGAGATAAGA rbcS I-box [31]; rbcS-CMA5 [28]
09* TTTGAGATAAGGA rbcS I-box [31]; Manzara 5 [27]
10* ACACGTGGCA rbcS G-box [31]; rbcS-CMA4/5 [28]
11* TCCTATTGGTGGCT rbcS-CMA4 [28]; Manzara 4/8 [27]
12* GATAAGGCT rbcS I-box [31]; rbcS-CMA4 [28]
13 TCAACACCTTTCCTT (?)RAV1-A site; (?)Dof site
14 GGCACTTAGCTCCAATT (?)CCAAT-box
15 TTTCCAACC (?)MYB site
16* AGGGGTTAAA Manzara 6 [27]; (?)GT1-core [32]
17* ATCTTGTGTGGTTAAT rbcS Box II [32]; rbcS-CMA3 [28]; Manzara 8 

[27]
18 AACGACGTTATCATGAAT (?)ACGT element; (-)I-box [27]
19* GCAAAGTTT rbcS 3AF-5 site [43]; rbcS-CMA3 [28]
20* TGTAATGTCA Manzara 9 [49]; (?)(-)W-box
21* ATCATTTTCAC rbcS Box III [32]; rbcS-CMA3 [28]
22* CCACATAA rbcS-CMA2 [28]; Manzara 10 [49]
23* TCCAATGGTTA rbcS-CMA2 [28]; Manzara 12–13 [49]; CAAT-

box
24 ACCCTTTGATCATTA (?)(-)Dof site
25* TCTAAGATGAGGTTTGCT rbcS-CMA2 [28]; Manzara 15 [49]
26 TACCACAATTT (?)CAAT-box
27 ACCATAATATTGGAA rbcS-CMA1 [28]; (?)(-)CCAAT-box
28* TTGTGTCCGTTAGATG Manzara 16 [49]; (?)MYB site
29* CCTTATCAT rbcS-CMA1 [28]; LRE [49]
30* TATATAAA rbcS-CMA1 [28]; TATA-box [49]
31 GAGGGGGA (?)WT-1 site
32 ATGACAAAACCA (?)W-box; (?)MYB site
33* AAGCTTTGCAA rbcS Box V [90]; (?)(-)Dof site
34 GCAATAACCCTCTT (?)CAAT-box
35 AAGAAGAAGA -
36 TTTTCAGCA -

aTypical instances (full list in Additional File 1). b(?)PLACE database match; (-)reverse-strand motif. *Noted previously in rbcS genes: references in 
square brackets.
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were much lower (mean = 49.6, standard deviation =
17.3) than those of the original sequence motifs (mean =
188.7, standard deviation = 60.2), which differed from
random at significance levels of P < 0.0001 (Kruskal-Wal-
lis tests).

In summation, phylogenetic footprinting defined 36 con-
served blocks, representing contiguous nucleotide
sequences occurring in two or more rbcS 5'-NCS, and
being of sufficient length, sequence fidelity and positional
similarity to make their common evolutionary origin
probable. A total of 338 instances of these blocks were
identified in the dataset. A large majority (275 instances of
33 blocks) were supported by all three methodologies. Of
these 33 blocks, another 37 instances were supported only
by CLZ and alignments, and 5 more only by CLZ and

MOTIF SAMPLER. Two other blocks (11 instances) were
defined using only MOTIF SAMPLER and alignments, and
a single block (10 instances) only by CLZ analysis.

Conserved blocks
All block instances are mapped for the rosid (brassica and
legume) 5'-NCS in Figure 2, and solanaceous 5'-NCS in
Figure 3. An average of 12.5 blocks were found in each
gene. The blocks occurred in arrays whose relative order
was absolutely conserved, so that the number-codes
detailed in Table 1 consistently reflect relative block posi-
tions from 5' to 3' in all sequences. We therefore con-
firmed observations of Argüello-Astorga and Herrera-
Estrella [28] on the existence in light-responsive plant
promoters of 'conserved modular arrays' (CMAs), which
they defined as 'short promoter regions, including at least

Comparison of phylogenetic footprinting tools in predicting the 12 most frequent blocks in the 27 dicot rbcS 5'-NCSFigure 1
Comparison of phylogenetic footprinting tools in predicting the 12 most frequent blocks in the 27 dicot rbcS 5'-
NCS. See text for Sensitivity (equation 1) and PPV (equation 2) performance parameters. MOTIF SAMPLER was run 8 times 
each for background model orders 0–3, and with the prior probability of motif (p) at 0.3, the empirical value from the analytical 
consensus. Other option settings were s 0, M 1, n 3, w 11, x 0, r 5. Gap penalties for CLUSTALW (1) were: opening 15.0, 
extension 6.66; and for ALIGN-M and CLUSTALW (2): opening 8.0, extension 0.5. Mean performance parameters shown with 
standard deviation bars. Values sharing alphabet labels were not significantly different (Mann-Whitney U test, P > 0.05).
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two different DNA stretches larger than 6 bp (putative
individual factor binding sites or phylogenetic foot-
prints), in which nucleotidic sequence, spacing, and posi-
tion relative to the transcription start site are conserved in
a phylogenetic series'.

Over a third of blocks were conserved in two or more
plant families, but the remainder were distinctive to single
families, or, in the case of the solanaceous genes, to par-
ticular orthologous loci identified by Dean et al. [25].

Blocks are listed in Table 1 with 'definitions' as typical
instances, since for variable blocks a consensus would be
dominated by ambiguous IUPAC code. The degree of con-
servation of each instance relative to the 'definition' is
indicated by the vertical block dimensions in Figures 2
and 3; the 'definitions' were chosen to maximize these
dimensions and do not necessarily represent importance
in functional terms. Full sequences and locations of all
block instances are in Additional File 1.

The 18 blocks asterisked in Table 1 have been recognized
in past rbcS research. Of these, the motif most represented
was the I-box (blocks 08, 09, 12, 18, 29). The reverse-
strand I-box (block 29) immediately upstream of the
TATA-box (block 30) was found by Grob and Stüber [37],
who termed it the light-responsive element (LRE).

The I-box block 08 functions in a light-responsive dual
unit with the G-box block 10 [31]. The I-G boxes unit rep-
resented by blocks [08–10] was found to be common in
light-responsive promoters, and termed rbcS-CMA5 by
Argüello-Astorga and Herrera-Estrella [28]. In rosid NCS,
a second I-box downstream (block 12) occurred in an I-G-
I boxes array postulated as ancestral by these authors. The
TG-rich block 11, between the G-box (10) and second I-
box (12), formed part of rbcS-CMA4 of Argüello-Astorga
and Herrera-Estrella [28]. Block 11 usually corresponded
to Motif 4 of Manzara and Gruissem [27] (but see later on
Box II).

In the present study, the largest CMA found in all three
plant families comprised blocks [06-08-10-11], in dotted-
line boxes in Figures 2 and 3. Block 06 is a previously
overlooked motif, but we found identical versions in sim-
ilar relative locations in the caryophyllid genes Mesembry-
anthemum crystallinum rbcS-1 [EMBL L10212, -241 bp]
and Spinacia oleracea rbcS-1 [EMBL X73236, -363 bp]. In
pea rbcS-3A, block 06 overlapped the 5' flank of the box
III* inverted GT-1 site [32], and so might be a site for a fac-
tor like 3AF5, a light-regulated phosphoprotein that binds
the 5' flank of the similar downstream Box III [43]. The
pea rbcS-3A 3AF5 and Box III sites themselves corre-
sponded to legume-specific blocks 19 and 21, which with

block 17 are equivalent to rbcS-CMA3 of Argüello-Astorga
and Herrera-Estrella [28].

Block 17 coincided with the pea rbcS-3A Box II element,
which is the prototype of GT-1 trihelix TF binding sites
and a target of the calcium phototransduction pathway
[26,29]. The variability of Box II-like motifs [28] was
reflected in the low MOTIF SAMPLER consensus score
[21] for block 17 (1.04), but this block was recognized by
MOTIF SAMPLER with 85% sensitivity, and aligned in all
dicot NCS by DIALIGN and ALIGN-M on its relatively
conserved TGTGG sub-fragment. The Box II motifs of ear-
lier alignments [25,27] corresponded to block 17 for most
sequences, but to block 11 for tomato rbcS-2 and rbcS-3A.
(Local alignments of sequences not available to the earlier
authors confirm our assignments.)

The solanaceous 5'-NCS (Figure 2) yielded further previ-
ously identified motifs, whose functions generally remain
uncertain. Blocks 22, 23 and 25 were components of rbcS-
CMA2 [28] and identified by Manzara et al. [49] (Table
1). Likewise, the blocks 20 and 28 flanking rbcS-CMA2
were found by Manzara et al. [49] (Table 1).

On average, 10.2% of the length of those sequences with
known transcription start sites was occupied by 5'-UTRs,
though these were highly variable in extent (Figures 2, 3).
Blocks 32–34 occurred in the proximities of transcription
start sites. Only two blocks, 35 and 36, were located fully
within 5'-UTRs, but each featured in multiple sequences
in several species (Figures 2, 3).

Precisely half the blocks in Table 1 were newly identified
in this study. These novel blocks were confined to single
plant families, apart from the brassica blocks 02, 24 and
35 also found in a legume species. In most of the novel
blocks, potential cis-elements could be speculatively iden-
tified using promoter databases (Table 1).

Protein-DNA interactions in tomato rbcS 5'-NCS have
been extensively mapped by Gruissem and colleagues,
using DNase I footprinting of promoter fragments in
nuclear extracts from different organs [49,53,54]. As
shown for locus 3 (Figure 4), over 90% of our conserved
blocks overlapped with DNase-protected regions in the 5'-
NCS where these authors had defined DNase footprints
for both DNA strands. DNase-protected regions also
included blocks 31, 34, 36, which have not been defined
in past studies.

On the other hand, one-third of DNase-protected regions
did not overlap with well defined blocks (Figure 4). These
additional DNase-protected sequences tended to be very
variable between genes and dominated by particular
nucleotides (e.g. AT-rich regions). The latter feature can be
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formally translated as low complexity, as shown by the
sliding-window profiles of CLZ [55] with respect to the
[AT] [GC] alphabet in Figure 4. The association of DNase-
protection with CLZ troughs implied functional roles for
low-complexity regions.

One characterized mechanism for the introduction of AT-
richness (and thus low CLZ) into an rbcS 5'-NCS sequence
is the Stowaway-Le2 inverted repeat element in the tomato
rbcS-1 sequence (Figure 3) [56,57]. Sliding-window CLZ
profiles confirmed the Stowaway-Le2 sequence as one of
the main low-complexity regions of the tomato rbcS-1 5'-
NCS (not shown). DNase-protected regions do occur
within the Stowaway-Le2 sequence [53,56,57].

Evolutionary analysis
The absolutely conserved relative order of blocks indi-
cated common ancestry of all the dicot 5'-NCS studied
(Figures 2, 3). This provided basic confirmation of the
potential for evolutionary analysis of phylogenetic foot-
prints, as these must share the evolutionary history of the
plant taxa or gene loci with which they are associated.
Minimum ages for blocks found in different species were
estimated by reference to molecular clock dates for rele-
vant taxon divergences (Table 2). For blocks common to
paralogous loci, further evidence on minimum ages was
available from recent studies of ancestral genome duplica-
tions (Table 2). Blanc et al. [58] produced a database of 45
duplicate chromosome segment pairs in the Arabidopsis

Block structures of rosid rbcS 5'-NCSFigure 2
Block structures of rosid rbcS 5'-NCS. Blocks individually coloured, and numbered (as Table 1) on first appearance from 
top. Horizontal dimension = block length (bp), vertical dimension proportional to identity with definitions in Table 1 (range: 
40–100%). Complete [06-08-10-11] CMAs in dotted-line boxes. Blocks common to brassica and legume 5'-NCS joined by lines 
with block numbers in boxes. Blocks also found in solanaceous 5'-NCS indicated by unfilled arrowheads on Arabidopsis ats1A 
and Phaseolus rbcS-2. Red arrowheads show experimentally determined transcription start sites [46, 50, 86, 87].
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Block structures of solanaceous rbcS 5'-NCSFigure 3
Block structures of solanaceous rbcS 5'-NCS. Sequences grouped as the 3 loci of Dean et al. [25]. Blocks individually col-
oured, and numbered (as Table 1) on first appearance from top. Horizontal dimension = block length (bp), vertical dimension 
proportional to identity with Table 1 definitions (range: 47–100%). Complete [06-08-10-11] CMAs in dotted-line boxes. Blocks 
also in rosid 5'-NCS indicated by unfilled arrowheads on Nicotiana rbcS-8B. Red arrowheads show experimentally determined 
transcription start sites [53, 54, 88, 89]. Stowaway-Le2 transposable element is mapped in tomato rbcS-1 [56].
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genome, one of which (Figure 5) encompassed the ats1A
and B genes. Comparisons of synonymous substitutions
(Ks) in the duplicate genes indicated the relevant poly-

ploidy event was roughly twice as ancient as the Brassica-
Arabidopsis divergence [58]. Bowers et al. [59] similarly
identified a duplication event, prior to the Brassica-Arabi-

Protein binding relative to sequence structure in rbcS 5'-NCS of tomato locus 3Figure 4
Protein binding relative to sequence structure in rbcS 5'-NCS of tomato locus 3. Round-cornered rectangles with 
alphabet labels correspond to mapped regions of DNase protection, colour-coded by organ [53, 54]. Square-cornered rectan-
gles are conserved blocks as Figure 3. Line plots show local CLZ bp-1 with respect to the [AT][GC] alphabet in 6-bp sliding-win-
dow profiles in 2-bp steps.
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dopsis split, that generated 34 chromosome segment pairs,
of which their segment α 25 encompassed the ats1A and
B genes.

Within the duplicate segments containing the ats1A and B
genes, the latter were among several examples of tandem
arrays, others including LRK10L receptor-like Ser/Thr
kinases [60]. Such tandem arrays, presumed due to une-
qual crossing over, account for up to 17% of all Arabidopsis
genes [61], but their age range is currently uncertain [62].

In the Solanaceae, a large-scale genome duplication was
dated to 18–23 million years ago (mya) from Ks distribu-
tions of duplicate tomato and potato genes [62]. Ks values
for inter-locus comparisons of tomato rbcS coding
sequences were consistent with formation of the 3 loci in
this event (Figure 6). This must have occurred in a com-
mon ancestor, as Ks values for tomato and potato rbcS
orthologues (Figure 6) were consistent with the much
more recent speciation date estimated at 1.6–3.3 mya by
Blanc and Wolfe [62].

Estimated dates for major lineage divergences implied
that 13 taxonomically widespread blocks were of Creta-
ceous antiquity at least (Table 2). These included the [06-
08-10-11] CMA, block 12 (the second I-box in rosids),
and blocks 17 (Box II), 23 (CAAT-box), 29 (LRE) and 30
(TATA-box). Another, block 20, remains poorly character-
ized in functional terms, but does bind protein (Figure 4),
and was further noted in genes from the Amaranthaceae
(Spinacia oleracea rbcS-1 [EMBL X73236, -191 bp]), and
Malvaceae (Gossypium hirsutum rbcS [EMBL X54091, -186
bp]). Other Cretaceous blocks were three rosid blocks (02,
24 and 35) discovered in the present study. The remaining
blocks were found only in single families but could be
dated by clade divergence or gene duplication events to
18–54 mya (Table 2).

The occurrence of particular phylogenetic footprints at
different levels in the taxonomic hierarchy (Table 2) indi-
cated that the 5'-NCS might be amenable to phylogenetic
analysis. Opinions differ, however, about phylogenetic
analysis of NCS, particularly at higher taxonomic levels.
NCS are seen as problematic for alignment and phyloge-
netic analysis because of their structural constraints, non-
randomness of evolution, and mutational changes such as
slipped-strand mispairing, stem-loop secondary structure
excision/repair, minute inversions, and intramolecular
recombination [9]. In practice, however, Bremer et al. [10]
found chloroplast NCS to be of similar utility to coding
sequences for asterid phylogenetics.

In view of the technical uncertainties and limited prece-
dents for exploring evolutionary relations between 5'-NCS
[9,10], we compared several distinct methodologies. First,

given the role of CLZ analysis in our phylogenetic foot-
printing, comparison of the 5'-NCS based on this method-
ology was pertinent. A set of N sequences can be described
in terms of their pairwise complexities, in the form of N
vectors each containing N components. The (i,j) compo-
nent is the pairwise CLZ with respect to direct repeats
between sequences i and j. To some extent, pairwise CLZ
measures an evolutionary distance between sequences by
the number of steps required to produce sequence j from
sequence i using it as a source of building blocks. Hierar-
chical cluster analysis of 5'-NCS in this format produced
the dendrogram in Figure 7A. (As CLZ depends on
sequence length, 5'-NCS shorter than the maximum
length of 400 bp had the potential to yield anomalous
results. Short sequences were therefore analyzed only if
overall topology was robust to their inclusion; only Petu-
nia SSU11A was omitted in consequence.)

Secondly, more conventional analyses based on DNA par-
simony or distance were applied to 5'-NCS aligned using
DIALIGN, or CLUSTALW with the gap penalties found to
be most effective in phylogenetic footprinting (Figure 1).
(ALIGN-M was not usable as it does not produce complete
alignments where sequence tracts are too divergent.) Fig-
ure 7B shows a consensus of most-parsimonious trees of
DIALIGN-aligned 5'-NCS. (The short Petunia SSU11A
sequence was also omitted from this tree for reasons dis-
cussed for Figure 7A.)

Our third method (Figure 7C) was a cladistic analysis of
character-states defined as presence or absence of con-
served blocks. All blocks in Figures 2, 3 were included: of
these 96.9% had ≥ 50% identity with the definitions in
Table 1. The remainder averaged 45.6% identity, and all
but one had been found by three phylogenetic footprint-
ing methods. Close inspections of aligned locations
scored as absences were often suggestive of degenerate res-
idues of blocks.

Several points of congruence between the dendrograms
produced by these diverse analyses were identifiable,
though bootstrap support for nodes was often moderate
or weak (Figure 7). Themes included the clustering of the
5'-NCS by gene loci rather than by species. Thus, 5'-NCS
of the Arabidopsis atsB tandem locus showed more affinity
with the Brassica sequence than with Arabidopsis ats1A.
This accorded with the conclusion of Bowers et al. [59]
that the ancestral α duplication event occurred prior to the
Brassica-Arabidopsis split, because 49–64% of relevant
Brassica genes were more similar to one Arabidopsis gene
than was the Arabidopsis duplicate.

Another theme was the segregation of the solanaceous 5'-
NCS as the three loci deduced by Dean et al. [25] (Figure
7). Pairings of tomato and potato orthologues received
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particularly strong bootstrap support, consistent with a
recent speciation [62]. In contrast, the coding sequences
of tomato and potato locus3 instead segregated by species
(Figure 8). Similar discrepancies between noncoding- and
coding-sequence trees in several organisms have been
attributed to gene conversion processes that have a greater

effect on coding sequences [63]. Also consistent with gene
conversion in the locus3 coding sequences were very low
intralocus Ks values that would imply tandem duplication
near the tomato-potato speciation time (Figure 6), which
would be hard to reconcile with the more ancient rela-
tionships of their 5'-NCS to Petunia orthologues (Figure

Table 2: Minimum Age Estimates for rbcS 5'-NCS Blocks

Blocks Occurrence Minimum age 
(106 years)

Calibration events

04, 07, 09, 14, 15, 16, 22, 25, 28, 31, 34, 36 Solanaceae 18–23 Duplication of ancestral rbcS loci [62]; divergence of Petunia clade 
[51]

19, 26, 27 Pisum &Medicago 24 Pisum-Medicago divergence [91]
01 Brassicaceae 24 Arabidopsis-Brassica divergence [92]
02, 03, 05, 13, 18, 32 Brassicaceae 48 Duplication of ancestral ats loci [58]
21, 33 Fabaceae 54 Divergence of Phaseolus clade [91]
02, 12, 24, 35 Brassicaceae, Fabaceae 105 Divergence of eurosids I & II [51]
06, 08, 10, 11, 17, 20, 23, 29, 30 Brassicaceae and/or Fabaceae, Solanaceae 125 Divergence of rosids & asterids [51]

Levels of synonymous substitutions (Ks) in solanaceous rbcS coding sequencesFigure 6
Levels of synonymous substitutions (Ks) in solanaceous rbcS coding sequences. Mean Ks (with standard deviation 
bars) are shown for comparisons of: all gene pairs from the 3 loci within tomato (white bars) or potato (black bars); or all 
paired tomato-potato (T-P) orthologues (grey bar). Brackets indicate Ks distribution peaks attributed by Blanc and Wolfe [62] 
to genome duplication or speciation events.
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Duplicated segment pairs on Arabidopsis chromosomes 1 and 5 encompassing ats1A and B family genesFigure 5
Duplicated segment pairs on Arabidopsis chromosomes 1 and 5 encompassing ats1A and B family genes. Dupli-
cate genes linked by inter-chromosome lines, with dotted lines for tandem arrays. Gene labels are for clarity, and may refer 
merely to putative functions. Based on block 0105451100840, PARALOGONS IN ARABIDOPSIS THALIANA database [73].
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Dendrograms of rbcS 5'-NCS relations constructed by 3 methodsFigure 7
Dendrograms of rbcS 5'-NCS relations constructed by 3 methods. Groupings highlighted for rosid (brassica and leg-
ume) genes, and the 3 solanaceous loci. Non-unique gene symbols prefixed with binomial species initials. (A) Hierarchical clus-
ter analysis, with each sequence defined as vector of CLZ values from pairwise decomposition by each of the others. Numerals 
indicate nodes with multiscale bootstrap resampling values ≥ 50% obtained by PVCLUST. (B) Parsimony analysis by PAUP* of 
DIALIGN alignments. 50% majority-rule consensus of 234 most-parsimonious trees shown with bootstrap values ≥ 50%. (C) 
Parsimony analysis by PAUP* of sequences defined by block characters. 50% majority-rule consensus of 882 most-parsimoni-
ous trees shown with bootstrap values ≥ 50%.
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7). Gene conversion in the Petunia locus 3 genes them-
selves was suggested by Dean et al. [64].

The locus 3 5'-NCS presented a consistent picture in that
the tomato and potato A genes were resolved as basal
members of a monophyletic group (Figure 7). In fact,
tomato rbcS-3A was the only gene retaining the ancestral
[06-08-10-11] CMA in the analyzed region (Figure 3). The
most likely counterpart among the Petunia 5'-NCS ana-
lyzed was SSU11A (Figure 7C). Petunia SSU112, SSU491
and SSU911 grouped with the more derived 5'-NCS of the
tomato and potato B and C genes.

The remaining solanaceous 5'-NCS grouped into loci 1
and 2 (Figure 7). In evolutionary trees based on CLUS-
TALW rather than DIALIGN alignments, the Petunia locus
1 gene SSU611 formed the outgroup to locus 2, while the
tomato and potato locus 1 genes grouped with the A genes
of locus 3 (not shown). The DIALIGN trees were preferred
as they were supported by the alternative dendrograms,
and because we rated the alignments from this algorithm
most highly (Figure 1). Moreover, CLUSTALW alignments
of transit peptides supported affinity of SSU611 with the
other solanaceous locus 1 genes (not shown).

The basal solanaceous locus could not be confidently
identified, as the basal position of locus 2 in two of the
dendrograms in Figure 7 had only moderate bootstrap
support. Clear guidance was not forthcoming from the
coding sequence Ks values (Figure 6), or from parsimony

analyses (Figure 8), in which outgroup choice influenced
topology with respect to these two loci.

Discussion
Conserved blocks revealed by phylogenetic footprinting
in dicot rbcS 5'-NCS formed an evolutionary hierarchy,
from those common to plant families that diverged in the
Cretaceous, to family-specific blocks with minimum esti-
mated ages of only about 20 million years. Similar heter-
ogeneity in longevity and clade-specificity of promoter
motifs has been found in other organisms of ancient
divergence. Among homologous human and rodent TF
binding sites, for example, Dermitzakis and Clark [65]
found 33 with shared functions, while 14 were human-
specific and 17 rodent-specific.

The most ancient conserved blocks we found included
those recognized earliest in rbcS research on the basis of
functional importance (I-boxes, G-box, Box II, CAAT-box,
TATA-box) [25,27,32], though several relatively unknown
ones also fell in this category. Furthermore, we were able
to extend CMAs postulated in previous studies [28].
Younger blocks were generally of less widely recognized
function, and presumably had acquired roles in the more
recent clades in which they had evolved. Simulations by
Stone and Wray [66] of the acquisition by point mutation
of novel TF binding sites, and their subsequent fixation
within populations, indicated the evolution of new sites
must be virtually inevitable over millions of years. In a
theoretical population of 106 Arabidopsis plants with two
generations per year, the fixation time for two 6-bp bind-
ing sites in a 200-bp region was only 270,000 years.

Evolutionary information in the 5'-NCS was sufficient for
several formal computational methods to produce den-
drograms in accordance with the existing classification of
solanaceous rbcS loci based descriptively on sequence
similarities, intron features and linkage relations
[25,27,67]. The solanaceous locus 2 genes are distin-
guished as the only land plant rbcS genes with introns at
three positions, while locus 3 is a distinctive tandem array
of three 2-intron rbcS genes in tomato and potato, and
probably six in Petunia. Gene duplications appear to have
provided additional impetus in functional evolution of
rbcS genes. For instance, the strongly expressed locus 3
tomato genes rbcS-3B and rbcS-3C [68] represented the
most derived members of tandem arrays according to our
dendrograms. It has been suggested that gene duplicates
are conserved and subfunctionalized by regulatory muta-
tions, because each duplicate must survive to complement
lost expression for essential subfunctions in the other
[69]. Duplicate gene preservation by such a process could
be < 4 million years for a gene with ≥ 5 regulatory ele-
ments and a mutation rate of 10-7 per year [69]. Such a
rapid preservation of duplicates may need to be invoked

Parsimony analysis of solanaceous rbcS coding sequences aligned by CLUSTALWFigure 8
Parsimony analysis of solanaceous rbcS coding 
sequences aligned by CLUSTALW. 50% majority-rule 
consensus of 182 most-parsimonious trees from branch-and-
bound search shown with pea rbcS-3C as outgroup. Numerals 
indicate bootstrap values of nodes. Gene labels as Figure 7.
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for locus 3, because of coincident estimates (18–23 mya)
for the major ancestral genome duplication event [62]
and for divergence of the Petunia clade [51]. In our den-
drograms, segregation of Petunia SSU112, SSU491 and
SSU911 with the more derived tomato and potato genes
of locus 3 indicated that tandem duplications at locus 3
had occurred prior to the Petunia divergence, and had
undergone relatively little subsequent sequence evolu-
tion.

Point mutations do not appear to have been the only evo-
lutionary processes governing protein interactions in the
rbcS 5'-NCS. Mechanisms such as slipped-strand mispair-
ing [9] probably generated the relatively extensive and
variable low-complexity tracts that coincided with known
DNase footprints in the locus 3 tomato genes. Another
example of the gross mutational processes that can occur
in 5'-NCS was the Stowaway-Le2 transposable element in
the tomato rbcS-1 sequence (Figure 3). The absence of this
transposable element from the potato sequence [57]
implies a recent insertion event in tomato.

A primary factor that facilitated our study was a suite of
phylogenetic footprinting tools that complemented and
cross-validated each other. The least known member of
our toolkit was probably CLZ analysis, whose use deserves
to increase with its availability as an internet tool [55]. Its
intuitive process of sequence decomposition by repeated
fragments proved useful not only for identification of
conserved motifs, but also for highlighting low-complex-
ity regions such as AT-rich tracts, and as a similarity meas-
ure for global sequence comparisons and hence
dendogram construction. Otu and Sayood [70] formally
examined CLZ as a new sequence distance measure for
phylogenetic tree construction, and demonstrated that its
lack of dependence on alignments or evolutionary models
was particularly suited for sequences subject to segment-
based modifications, including whole mitochondrial
genomes of eutherian mammals. Promising alternative
alignment-independent methods of sequence compari-
son have also been proposed using the general informa-
tion theoretical concept of Kolmogorov complexity
[71,72], of which CLZ is one explicitly computable imple-
mentation.

The dendrograms we produced using CLZ, and those
obtained by parsimony analysis of DIALIGN alignments
or block characters, were of sufficient consistency to con-
firm the presence of evolutionary information in plant 5'-
NCS. The dataset was not designed to investigate taxo-
nomic phylogenies, as it included several multigene fam-
ilies. Moreover, we would not claim that the dendrograms
rival in quality those produced using coding sequences, as
bootstrap support for nodes was often moderate or weak,
and there were points of variance between the dendro-

grams. Further investigation is needed to establish the
extent to which NCS might contribute to molecular phyl-
ogenetics. We do, however, conclude that current compu-
tational methods provide the potential for analysis of the
evolution of gene expression in terms of promoter struc-
ture.

Conclusion
Comprehensive phylogenetic footprinting of dicot 5'-NCS
revealed conserved modular arrays of recurrent sequence
blocks. Transcriptional functionality was confirmed as an
evolutionary basis for this conservation by coincidence of
recurrent blocks with cis-elements and protein-binding
sites. Evolutionary hierarchies were discernible within the
assemblage of blocks, such that taxonomically wide-
spread, and hence ancient, blocks could be distinguished
from taxon-specific, more recent, ones.

Methods
Database information
Noncoding sequences (NCS) up to 400 bp including and
immediately 5' to the ATG codon were obtained for the
following genes [accession numbers, bp analyzed]: Arabi-
dopsis thaliana ats1A [EMBL:X13611, 400], ats1B
[EMBL:X14564, 400], ats2B [EMBL:X14564, 400], ats3B
[EMBL:X14564, 400]; Brassica napus rbcS [EMBL:X61097,
400]; Phaseolus vulgaris rbcS-2 [EMBL:AF028707, 400];
Pisum sativum rbcS-E9 [EMBL:X00806, 400], rbcS-3A
[EMBL:M21356, 400], rbcS-3C [EMBL:X04334, 331];
Medicago sativa rbcSK-1A [EMBL:X96847, 400]; Lycopersi-
con esculentum rbcS-1 [EMBL:X05982, 338], rbcS-2
[EMBL:X05983, 400], rbcS-3A [EMBL:X05984, 380], rbcS-
3B [EMBL:X05985, 283], rbcS-3C [EMBL:X05986, 300];
Petunia × hybrida SSU112 [EMBL:X12990, 351], SSU11A
[EMBL:X03821, 281], SSU301 [EMBL:X12986, 400],
SSU491 [EMBL:X12988, 400], SSU611 [EMBL:X12987,
400], SSU911 [EMBL:X12989, 400]; Nicotiana plumbag-
inifolia rbcS-8B [EMBL:X13711, 400]; Solanum tuberosum
rbcS-1 [EMBL:X69759, 400], rbcS-2A [EMBL:X69760,
400], rbcS-2B [EMBL:X69761, 400], rbcS-2C
[EMBL:X69762, 400], rbcS-3 [EMBL:X69763, 382]; Zea
mays rbcSZm1 [EMBL:S42508, 400]. Coding sequences
were from the same accessions, except P. sativum rbcS-3A
[EMBL:X04333] and Zea mays ZmrbcS [EMBL:Y00322].

Duplicated ancestral chromosome segments encompass-
ing the Arabidopsis ats genes were identified (as block
0105451100840) in the PARALOGONS IN ARABIDOP-
SIS THALIANA database [58,73]. Potential cis-elements in
the 5'-NCS were identified using the PLACE [74,75] data-
base.

Sequence analysis

Recurrent sequence blocks were identified in rbcS 5'-NCS
by Lempel-Ziv complexity (CLZ) decomposition. Lempel
Page 15 of 19
(page number not for citation purposes)

http://www.ebi.ac.uk/cgi-bin/dbfetch?X13611
http://www.ebi.ac.uk/cgi-bin/dbfetch?X14564
http://www.ebi.ac.uk/cgi-bin/dbfetch?X14564
http://www.ebi.ac.uk/cgi-bin/dbfetch?X14564
http://www.ebi.ac.uk/cgi-bin/dbfetch?X61097
http://www.ebi.ac.uk/cgi-bin/dbfetch?AF028707
http://www.ebi.ac.uk/cgi-bin/dbfetch?X00806
http://www.ebi.ac.uk/cgi-bin/dbfetch?M21356
http://www.ebi.ac.uk/cgi-bin/dbfetch?X04334
http://www.ebi.ac.uk/cgi-bin/dbfetch?X96847
http://www.ebi.ac.uk/cgi-bin/dbfetch?X05982
http://www.ebi.ac.uk/cgi-bin/dbfetch?X05983
http://www.ebi.ac.uk/cgi-bin/dbfetch?X05984
http://www.ebi.ac.uk/cgi-bin/dbfetch?X05985
http://www.ebi.ac.uk/cgi-bin/dbfetch?X05986
http://www.ebi.ac.uk/cgi-bin/dbfetch?X12990
http://www.ebi.ac.uk/cgi-bin/dbfetch?X03821
http://www.ebi.ac.uk/cgi-bin/dbfetch?X12986
http://www.ebi.ac.uk/cgi-bin/dbfetch?X12988
http://www.ebi.ac.uk/cgi-bin/dbfetch?X12987
http://www.ebi.ac.uk/cgi-bin/dbfetch?X12989
http://www.ebi.ac.uk/cgi-bin/dbfetch?X13711
http://www.ebi.ac.uk/cgi-bin/dbfetch?X69759
http://www.ebi.ac.uk/cgi-bin/dbfetch?X69760
http://www.ebi.ac.uk/cgi-bin/dbfetch?X69761
http://www.ebi.ac.uk/cgi-bin/dbfetch?X69762
http://www.ebi.ac.uk/cgi-bin/dbfetch?X69763
http://www.ebi.ac.uk/cgi-bin/dbfetch?S42508
http://www.ebi.ac.uk/cgi-bin/dbfetch?X04333
http://www.ebi.ac.uk/cgi-bin/dbfetch?Y00322


BMC Evolutionary Biology 2007, 7:51 http://www.biomedcentral.com/1471-2148/7/51
and Ziv [76] suggested measurement of sequence com-
plexity by the number of steps required for the iterative
generation (recovery) of a given sequence S from scratch,
using two possible 'recovery' operations per iteration:
either copy a fragment that has already been encountered
in the recovered part of the sequence; or add (generate) a
new symbol not encountered before. This iterative proc-
ess, called a decomposition, represents a sequence S as a
concatenation of m consecutive fragments, H(S) = S
[1:i1]S [i1+1: i2]...S [im-1+1: im = N], where S [ik-1+1: ik] is a

fragment copied or generated at k-th step, N is the length
of the sequence and m = mH(S) is the number of steps in

decomposition process. Among all possible decomposi-
tions the one with the minimum number of steps defines

sequence complexity, i.e. . The min-

imum is ensured by copying at each step of the decompo-
sition process the longest fragment that has been
encountered before. Similarly, one can define a pair-wise
complexity of sequences S and Q, C(S|Q), as the number
of steps needed to recover Q from S (or S from Q). In this
case, each fragment in the decomposition of Q is the long-
est one whose copy occurs anywhere in sequence S. Gusev
et al. [15] proposed a linear algorithm for sequence
decomposition and computation of CLZ with respect to

various types of repeat (including direct and inverted
repeats or any combination of them). Its implementation
is available online at LZCOMPOSER [55,77].

The full algorithm used in this study follows. Step 1. For
N 5'-NCS denoted as S1,..., SN (with corresponding
lengths |S1|,..., |SN|), a new, concatenated sequence  =
S1#...# SN of length L = Σ |Si|, i = 1,..., N was defined. (The
arbitrary symbol # separated the concatenated
sequences.) Step 2. A Lempel-Ziv decomposition of  into
m consecutive fragments,  [1:i1] [i1+1:i2] ...  [im-1: L], was
computed, such that  [ik-1+1:ik] was the longest fragment
downstream of position ik-1 for which a direct repeat
occurred starting from position j(k) somewhere upstream
of position ik-1+1, and  [ik-1+1:ik] did not contain #. Point-
ers j(k) were expressed as pairs (sequence number, posi-
tion within the sequence). Step 3. Fragments ≥ 8 bp that
were common for at least two sequences were included in
a vocabulary of 'blocks'. Only exact matches were consid-
ered in the decomposition process. However, when two or
more consecutive fragments of a decomposition were
identical to the respective substrings in another sequence,
and when these fragments were separated by a similar
number of nucleotides (± 1) then they were merged into
a single block. All remaining sequences from the given
dataset were scanned for the occurrence of these blocks.
For each block, the origin in the decomposition and the

entire track of occurrences in different sequences were
traced, ensuring that the fragments found were independ-
ent of the sequence order in . Step 4. Fragments defined as
the same block were aligned, including an extra 10 bp
either side to check for possible block extension, and their
consensus sequence was defined allowing for a given
number of mismatches (initially two). Step 5. All
sequences were then scanned for each block defined by its
consensus. No steps involved a priori knowledge of cis-ele-
ments. A similar algorithm was used to search for inverted
repeats [16], but we found too few of these for detailed
analysis. The decomposition process is available online at
LZCOMPOSER [55,77].

Matrices (N × N) of pairwise CLZ values for N sequences
were produced on LZCOMPOSER (using the symmetrized
matrix output with diagonals adjusted to 0). Sliding-win-
dow profiles of local CLZ along single sequences were also
generated on LZCOMPOSER.

Overrepresented motifs in the 5'-NCS were also sought
using MOTIF SAMPLER v3.1 [21]. The 5'-NCS were ana-
lyzed in 19 combinations, with program options in the
following ranges: search (s), single stranded; prior proba-
bility of motif (p), 0.3–0.8; length of motif (w), 9–25 bp;
number of different motifs (n), 3–20; number of instances
of each motif per sequence (M), 1, 2 or undefined;
allowed overlap (x), 1–9 bp; program repeat runs (r), 0–
99. Background models of order 0–3 were used in the
analysis.

Multiple alignments of 5'-NCS were performed with three
algorithms: CLUSTALW v1.83 [78]; DIALIGN 2 [22] in
the QALIGN v1.10T software of Sammeth et al. [79]; and
ALIGN-M v2.3 [24]. Unless stated, gap penalties in both
CLUSTALW and the S2P step of ALIGN-M were: opening
8.0; extension0.5. In the search process for conserved
blocks, a total of 26 different sequence combinations were
aligned with DIALIGN and/or ALIGN-M, and the blocks
from CLZ analysis and MOTIF SAMPLER were mapped in
the alignments.

Levels of synonymous substitutions (Ks) were obtained by
multiple alignment of all the tomato and potato rbcS cod-
ing sequences by CLUSTALW (default gap penalties), fol-
lowed by estimation of the matrix of pairwise Ks values by
the method of Li [80] implemented in the R package
SEQINR [81].

Dendrograms
Three strategies were used to produce dendrograms of the
27 dicot sequences, with the 5'-NCS of Zea rbcSZm1
included as outgroup. (1) Hierarchical cluster analysis
was performed on matrices of pairwise CLZ values (see
above), using Euclidean distance to measure similarity of

C S m SLZ
H

h( ) min{ ( )}=
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the different rows. Dendrograms were produced by the
unweighted pair group method with arithmetic mean
(UPGMA), using PAST v1.34 [82] and the R package
PVCLUST [81]. Statistical support was assessed using
PVCLUST to calculate the approximately unbiased (AU)
values of Shimodaira [83] by multiscale bootstrap resam-
pling of 1000 pseudoreplications. (2)Evolutionary trees
were produced from multiple sequence alignments cre-
ated with DIALIGN or CLUSTALW. Trees were obtained,
using PAUP* v4.0b10 [84] and PHYLIP v3.64 [85], by
DNA parsimony or, by the neighbour-joining, UPGMA or
Fitch-Margoliash methods, from DNA distance matrices
produced with the Jukes-Cantor substitution model.
(3)Cladistic analysis, using PAUP* v4.0b10 and PAST
v1.34, was performed on the conserved blocks identified
by sequence analyses. A character-state matrix of absence
(0) or presence (1) of each block was created. Characters
were assigned equal weight and Dollo status (i.e. a block
could evolve only once, but could disappear at several
points on the tree). The tree-bisection-reconnection heu-
ristic was used to search for the most parsimonious topol-
ogies. For methods (2) and (3), the Zea sequence rbcSZm1
was specified as outgroup, and nodal support was esti-
mated from 100 tenfold-replicated bootstrap pseudorep-
licates.

Evolutionary trees of coding sequences were obtained by
bootstrapped parsimony analysis in PAUP*v4.0b10 of
sequences aligned by CLUSTALW (default gap penalties)
or DIALIGN.

List of abbreviations
CLZ, Lempel-Ziv complexity; CMA, conserved modular
array; GBF, G-box binding factor; LRE, light-responsive
element; Ks, level of synonymous substitutions; mya, mil-
lion years ago; PPV, Positive Predictive Value; NCS, non-
coding sequences; TF, transcription factor; UPGMA,
unweighted pair group method with arithmetic mean;
UTR, untranslated region.
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