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Abstract

Background: Molecular sequence data have become the standard in modern day phylogenetics. In particular,
several long-standing questions of mammalian evolutionary history have been recently resolved thanks to the use
of molecular characters. Yet, most studies have focused on only a handful of standard markers. The availability of
an ever increasing number of whole genome sequences is a golden mine for modern systematics. Genomic data
now provide the opportunity to select new markers that are potentially relevant for further resolving branches
of the mammalian phylogenetic tree at various taxonomic levels.

Description: The EnsEMBL database was used to determine a set of orthologous genes from |2 available
complete mammalian genomes. As targets for possible amplification and sequencing in additional taxa, more than
3,000 exons of length > 400 bp have been selected, among which | 18, 368, 608, and 674 are respectively retrieved
for 12, 11, 10, and 9 species. A bioinformatic pipeline has been developed to provide evolutionary descriptors for
these candidate markers in order to assess their potential phylogenetic utility. The resulting OrthoMaM
(Orthologous Mammalian Markers) database can be queried and alignments can be downloaded through a
dedicated web interface http://kimura.univ-montp2.fr/orthomam.

Conclusion: The importance of marker choice in phylogenetic studies has long been stressed. Our database
centered on complete genome information now makes possible to select promising markers to a given
phylogenetic question or a systematic framework by querying a number of evolutionary descriptors. The
usefulness of the database is illustrated with two biological examples. First, two potentially useful markers were
identified for rodent systematics based on relevant evolutionary parameters and sequenced in additional species.
Second, a complete, gapless 94 kb supermatrix of |18 orthologous exons was assembled for 12 mammals.
Phylogenetic analyses using probabilistic methods unambiguously supported the new placental phylogeny by
retrieving the monophyly of Glires, Euarchontoglires, Laurasiatheria, and Boreoeutheria. Muroid rodents thus do
not represent a basal placental lineage as it was mistakenly reasserted in some recent phylogenomic analyses
based on fewer taxa. We expect the OrthoMaM database to be useful for further resolving the phylogenetic tree
of placental mammals and for better understanding the evolutionary dynamics of their genomes, i.e., the forces
that shaped coding sequences in terms of selective constraints.
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Background

Mammalian systematics has been a pioneering field in the
use of molecular sequence data for inferring phylogenetic
relationships. Molecular phylogenies at different levels of
the mammalian evolutionary tree have accumulated since
the seminal studies published in the early 1990s. Among
the first genes to be used was the mitochondrial Cyto-
chrome b (MT-CYB) [1] which since became the "bar-
code" marker for mammals with more than 20,000
sequences currently available representing about 2,000
species. The mitochondrial 12S rRNA gene has also early
been considered but its use was limited by its less straight-
forward alignment [2]. Acknowledging the limits of single
gene phylogenies, the potential of complete mitochon-
drial genomes for reconstructing placental orders relation-
ships was early explored, but with a somewhat limited
success as judged a posteriori [3]. In parallel, the first efforts
to identify single-copy orthologous nuclear markers for
mammalian phylogenetics have been made from con-
served, large-sized exons. The exon 1 of the Retinol Bind-
ing Protein 3 (RBP3) - also known as the
Interphotoreceptor Retinoid-Binding Protein (IRBP) -
was the first to be developed [4] later followed by the exon
28 of the von Willebrand Factor gene (VWF) [5]. Since
then, other nuclear genes have acquired the status of
"standard" mammalian phylogenetic markers. This is for
example the case of the intronless Recombination Activat-
ing Gene 1 (RAGI) and «-2B Adrenergic Receptor
(ADRA2B) genes, the Growth Hormone Receptor (GHR)
exon 10, the c-myc proto-oncogen (MYC) exon 3, and the
Breast Cancer Associated protein 1 (BRCA1) exon 11.
Either used in single gene phylogenies at their beginnings
or in combination later [6,7], this handful of markers has
proven to be useful for unravelling unsuspected clades at
different levels of the mammalian taxonomy, like for
instance Afrotheria [8], Cetacea + Hippopotamidae [9],
and the grouping of shrews and hedgehogs to the exclu-
sion of moles within Eulipotyphla [10].

The choice of these useful markers has nevertheless been
mainly empirical. In fact, their initial development has
been almost entirely dependent upon the availability in
public databases of human, murine, bovine, and canine
sequences for allowing primer design. This historical con-
straint in marker choice involved that the phylogenetic
informativeness of these genes is likely to be non optimal
for many of the phylogenetic studies in which they have
been used [11]. Selecting the genes with the appropriate
resolving power for a given phylogenetic problem is a dif-
ficult task, and theoretical work has so far provided only
limited insight for guiding this choice [12,13]. In practice,
however, it has long been realized that there is an optimal
evolutionary rate associated with a given phylogenetic
question [14], and empirical procedures such as satura-
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tion plots [15] have been designed to evaluate the limits
in resolving power of a given molecular marker.

In mammals, the first attempt at specifically selecting
multiple nuclear genes for tackling a circumscribed phyl-
ogenetic question was made by Murphy and co-workers
who specifically targeted genes scattered throughout the
mammalian genome to resolve the earliest placental
divergences [16]. Their pragmatic approach was based on
the initial selection of exons long enough for easy PCR
amplification from whole genomic DNA (> 200 bp) and
for which the nucleotide identity between human and
mouse ranged between 80 and 95%. This simple proce-
dure was successful at identifying a dozen of new phylo-
genetically informative nuclear markers for resolving the
long-standing question of the evolutionary relationships
among placental orders [16].

Mammalian phylogenetics is now turning into phyloge-
nomics [17] with such large-scale sequencing initiatives as
the ENCODE project [18,19] and the NISC Comparative
Vertebrate Sequencing Program [20]. The availability of
mammalian whole genome sequences provides a gold
mine for the identification of new phylogenetic markers
to further resolve the mammalian tree at different taxo-
nomic levels. However, in this new genomic era, the main
problem perhaps resides in the determination of orthol-
ogy relationships among the different genomes. Bioinfor-
matic tools have been developed for processing whole
genome sequences such as INPARANOID [21] and
OrthoMCL [22] resulting in dedicated databases of clus-
ters of orthologous groups for eukaryotes [23,24]. A recent
comparison of different orthology detection strategies has
shown that phylogenetically based methods perform bet-
ter than classical similarity search based methods [25].
Accordingly, the 2007 version of the EnsEMBL database
now implements such a phylogenetically-based strategy
using maximum likelihood and tree reconciliation meth-
ods for orthology assignment among vertebrate genomes
[26].

In an effort to synthesize all these genomic information,
we built upon the EnsEMBL database for constructing a
mammalian centred database called OrthoMaM (Orthol-
ogous Mammalian Markers). Our aim is to provide a flex-
ible resource for identifying new candidate markers for
future use in mammalian phylogenetic studies. Similar
approaches based on available genomic data have been
recently conducted in plants [27] and ray-finned fishes
[28] but they include their own determination of orthol-
ogy in the corresponding bioinformatic pipelines. By
directly relying on the EnsEMBL orthology assessment
procedure, our approach has the advantage of being rela-
tively easy to update as more mammalian complete
genomes will become available and annotated.
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We focused on orthologous exons rather than on full-
length transcripts in order to provide biologists with sin-
gle continuous fragments potentially amplifiable from
genomic DNA. Working with RNA extraction followed by
RT-PCR would require a quality of tissue preservation that
is not achieved in the vast majority of cases. Moreover,
working with genomic DNA avoids the practical problems
induced by potential differences of intron length among
taxa during the PCR amplification, provided that exons
are specifically targeted. We selected individual exons of
more than 400 bp long. Increasing this arbitrary threshold
might preclude the use of old tissue samples or museum
specimens that often contain altered total DNA. Also, low-
ering this threshold length would involve keeping a total
of 7,206 human, murine, and canine exons among which
the shorter is only 84 bp long. The minimum length for an
exon to be included in the database was thus set up to 400
bp because it offers a reasonable compromise between
technical (PCR) constraints, the number of selected candi-
dates, and subsequent sequencing efforts.

Until now, the choice of phylogenetic markers for mam-
malian systematics has been governed more by historical
constraints than by explicit criteria. This is the reason why
we developed a bioinformatics pipeline to derive evolu-
tionary descriptors related to the potential phylogenetic
informativeness of each exon. Quantifying the substitu-
tion pattern of genes is important to understand the
potential biases that might affect phylogenetic inferences
[29]. Ideally, a good marker would have an optimal evo-
lutionary rate for the given phylogenetic question, equili-
brated and homogeneous base frequencies [30,31], and
homogeneous distribution of site variability [11]. Yet the
characteristics of a valuable marker depends on the goals
of the study it will be used for, and certainly also vary from
one investigator to another. Therefore, rather than subjec-
tively selecting a subset of these candidate exons, we pro-
vide evolutionary descriptors for all of them. The values of
our evolutionary descriptors are indicated for each exon
on individual web pages with links to EnsEMBL for full
description of the loci. The corresponding sequence align-
ment and its associated maximum likelihood phyloge-
netic tree with model parameter estimates are also
presented. Note that this phylogeny should be considered
cautiously since it might not be optimal in terms of topol-
ogy because of the use of a suboptimal model (see below),
but it should nevertheless provide reliable estimates of
model parameters [32]. In any case, markers cannot be
selected directly from the ML topology they have pro-
duced in order to avoid any potential misuse of the data-
base biased by a priori phylogenetic beliefs.

A number of these evolutionary characteristics can be que-
ried directly through the web-interface. The value and reli-
ability of some of these descriptors are strongly dependent
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with one another. For example, the global GC content is
strongly related to the GC percentage at the third codon
position. Moreover, the variance on model parameter esti-
mates will be reduced with longer sequences. The
OrthoMaM web-interface allows the user to take these
interdependencies into account. On the one hand, one
can impose sequences longer than 1000 bp when expect-
ing precise estimates of model parameters. On the other
hand, the sequence length may not really matter if the
goal is to build a supermatrix with reduced GC bias by
combining markers displaying roughly equilibrated base
frequencies. Combined queries allow the easy retrieval of
orthologous genes that are present in a given number of
species for automating phylogenomic supermatrices
assembly.

Construction and content

Using the EnsEMBL orthology information

The gene annotation available through the EnsEMBL data-
base includes orthology information [26]. This annota-
tion is based on phylogenetic analyses of clusters of
homologous sequences corresponding to the longest tran-
script of each gene. Two homologous sequences can be
annotated as being paralogue or orthologue depending
on their relative position in the corresponding phylogeny.
In this phylogeny, when two sequences from different
taxa are closer to each other than to any other sequence of
the corresponding taxa, they are said to be 1:1 ortho-
logues. Such an orthology assessment is particularly inter-
esting as it avoids markers having similar copies in the
genome that can interfere during the amplification proc-
ess. The quality of the EnsEMBL annotation is ensured by
the analysis of a plethora of phylogenies of homologous
sequences [26]. This annotation requires computation
facilities far beyond those available in most laboratories,
but allows predicting orthology and paralogy relation-
ships much more accurately than the classical reciprocal
best hits approach [25]. We therefore exploited this pre-
cious annotation for further analyses rather than trying to
compete with it.

The procedure used for detecting candidate markers for
placental phylogenetics from whole genomes involves the
following steps. First, we focused on human (Homo sapi-
ens), mouse (Mus musculus) and dog (Canis familiaris),
whose genomes have been fully sequenced with a high
coverage, are well annotated, and are evolutionary diver-
gent enough so that a gene shared by these three taxa is
likely to be conserved among placental mammals. We
selected genes that are predicted by EnsEMBL to be 1:1
orthologues between Homo:Mus, Homo:Canis and
Mus:Canis. Second, for each such gene, we retrieved the
longest transcript available for the Homo sapiens gene and
for all its 1:1 orthologues among the 12 studied taxa (the
latter three, plus Pan troglodytes, Macaca mulatta, Rattus
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norvegicus, Oryctolagus cuniculus, Bos taurus, Dasypus novem-
cinctus, Loxodonta africana, Echinops telfairi, and Monodel-
phis domestica). Then, we considered each exon of the
human transcripts and searched for the corresponding
orthologous exon in transcripts of other species. We
assumed that the most similar exon of the orthologous
transcript is actually the orthologous exon provided its
sequence shared more than 50% of similarity with the
human sequence. This similarity test just checks for the
fact that there is an exon that matches with the one cur-
rently tested. More difficult problems about gene orthol-
ogy, gene annotation, or pseudogene occurrence are
already handled upstream by the EnsEMBL annotation
system [33].

All orthologous exons that matched the previous criteria
are stored in our database as a set of candidate phyloge-
netic markers. A total of 3,170 exons among 2,498 genes
has been identified, among which the majority is availa-
ble for 9 taxa (Figure 1). A subset of 118 exons is available
for all 12 mammals, and, for fair comparisons among
markers, will subsequently constitute the core dataset to
illustrate the OrthoMaM properties. This figure is quite
low as compared to the 3,170 initial markers available,
but is easily explained by the low coverage of recently
sequenced genomes. For example, 1,252 candidate mark-
ers were found for the 2X-coverage genome of Dasypus
novemcinctus, versus 2,623 for the Bos taurus genome
sequenced with a more comprehensive 6X-coverage.

A bioinformatic pipeline to describe the evolutionary
dynamics of exons

The following section describes the tools used by our
pipeline to estimate the descriptors of the molecular evo-
lutionary properties of the markers. A suite of phyloge-
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Figure |

Relation between the number of candidate exons and
the number of mammalian taxa. Raw and cumulative
numbers of exons as a function of the number of taxa for
which they are retrieved are respectively given by the histo-
gram and the red circles.
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netic analyses was conducted to characterize each exonic
marker. Since these analyses are time consuming, we
relied on a Beowulf-class cluster supercomputer. Dedi-
cated scripts have been developed to parallelize this step
so that the database can be regularly updated. This was
necessary due to the frequent updates of the EnsEMBL
database. Moreover, our scripts are flexible enough to eas-
ily integrate new species when they become available as
well as phylogenetic software updates. This ensures the
upgradeability of our OrthoMaM database.

First, the DNA sequences of exons were aligned with the
help of amino acid translation using the transAlign soft-
ware [34]. Because some exon sequences were shorter
than others at 5'- or 3'-extremities (for example because of
either lower genomic coverage or too preliminary annota-
tion), alignment extremities were trimmed for sites with
missing nucleotides for at least half of the taxa. For a pre-
liminary, fast screening of potential misaligned exons or
divergent paralogues, a neighbor-joining (NJ, [35]) analy-
sis on uncorrected pairwise distances was conducted with
PAUP* version 4b10 [36]. Alignments yielding a NJ tree
with a total branch length (TBL) exceeding 2 substitutions
per site were discarded.

Second, base composition of the exons was characterized.
For this purpose, we used the relative composition varia-
bility (RCV) [31] whose exact formula is:

t
3 (JAi=A"HCi=C G =G [HT;=T))
RCV = =1

S.t2

where A;, C;, G, T; denote the numbers of each nucleotide
for taxon i, and A*, C*, G* and T* are averages across the
t taxa, and s is the total number of sites. RCV therefore
quantifies the extent of overall base composition variabil-
ity among sequences.

Third, we used maximum likelihood (ML) analyses [37]
to describe and compare the nucleotide substitution pat-
tern among exons. The best fitting model for each of the
3,170 candidate markers was chosen by ModelTest ver-
sion 3.7 [38] based on the Akaike Information Criterion
[39]. Among the 3,170 best models identified, we report
those that occurred the most frequently (Figure 2). Nine-
teen different substitution models contribute for best fit-
ting 99% of the exon alignments, and they involve either
a I distribution (8 times/19), or a fraction of invariable
sites (6/19), or a combination thereof (5/19). The best-fit-
ting model that is most often selected by ModelTest is
GTR+T, i.e., the General Time Reversible (GTR) model of
nucleotide substitution [40] with substitution rate hetero-
geneity among sites described by a Gamma distribution of
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% of occurrence among 3170 best models
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Figure 2

A variety of models account for the substitution pat-
terns of the 3170 exons. Best-fitting models of sequence
evolution selected for 99% of the candidate markers are here
illustrated. The 22 other best-fitting models that describe the
remaining 1% of the exons are here not represented. Blue,
orange, and green colours respectively depict models involv-
ing Gamma distribution (I'), invariable sites (I), and a combi-
nation thereof (I'+1). Abbreviations: GTR (General Time
Reversible), TVM (Transversional model), HKY (Hasegawa,
Kishino, Yano 85), TrN (Tamura-Nei 93), TIM (Transitional
model), K8/ (Kimura 81), and SYM (Symmetrical model); ef
(equal base frequencies), and uf (unequal base frequencies).

shape o [41]. For this reason, and for fair comparison of
model parameters among exonic alignments, OrthoMaM
reports GTR+I" estimates for all candidate markers. Specif-
ically, we used PAUP* to provide users with ML estimates
of o parameter, base frequencies, and A-C, A-G, A-T, C-G,
and C-T GTR substitution rates between nucleotides (rela-
tive to G-T = 1.0).

Fourth, an important descriptor of the utility of a phylo-
genetic marker is its relative evolutionary rate: faster
(respectively slower) evolving markers will be more suita-
ble for lower (respectively deeper) taxonomic levels. In a
first approximation, the TBL of the highest-likelihood tree
is a reasonable descriptor of the evolutionary rate of a
given exon. However, the TBL will preclude fair compari-
sons among different exons when the taxon sampling dif-
fers: the higher the species number, the longer the TBL. To
circumvent this problem, we used the Super Distance
Matrix (SDM) approach [42], with a three-step procedure:
(i) The ML tree inferred from each of the 3170 exons was
converted into a matrix of additive distances by comput-
ing the path-length between each pair of species. (ii) Each
of the 3170 matrices was brought closer to the others by a
factor (@), according to the least-squares criterion; this
operation is equivalent to multiplying by a, every branch
length of the initial trees. (iii) Optimal values of the ¢,

P
parameters are calculated following SDM* in reference
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[42], and, as ¢, are inversely proportional to the evolu-
tionary rates, 1/, values provide a measure of rate heter-
ogeneities among exons even if the number of taxa differs.
In addition, the quality of the highest-likelihood tree was
also measured through its treeness, i.e., the relative contri-
bution of the sum of internal branches to the TBL [31]. If
a star tree is inferred from a given marker, this lack of phy-
logenetic signal will be reflected by a treeness value of
zero. Conversely, the higher the treeness, the better the

resolution of the internal parts of the tree will be.

In order to better evaluate the contrast level of evolution-
ary dynamics among codon positions, some calculations
were also conducted separately on first, second, and third
codon positions. The distribution of variability over the
three codon positions was evaluated for each exonic
marker by calculating the contribution of first, second,
and third codon positions relative to the total number of
variable sites. This allows distinguishing between exons
with variability concentrated on third positions versus
exons with a more even distribution over the three codon
positions. Such a distinction might be useful for maximiz-
ing the number of phylogenetically informative characters
when selecting an exon for further sequencing in a given
taxonomic group. For example, the widely used exon 11
of BRCA1 has been shown to have an almost equal distri-
bution in the number of substitutions among the three
codon positions [43,44]. This property associated with a
relatively slow overall substitution rate made BRCA1 a
particularly informative marker for resolving placental
mammal earliest divergences [44,45].

Utility and discussion

User interface

To search the OrthoMaM database, a request form is avail-
able (Figure 3). A range of values of the evolutionary
dynamics descriptors can be given, either independently
or in combination. This includes the number of species
for which the orthologous exons are available (set to a
maximum of 12 for the current version), the relative evo-
lutionary rate of the markers (as measured by the SDM
procedure on highest-likelihood trees), their level of
among-site substitution rate heterogeneity as measured by
the a shape of the T distribution, and their percent of GC
at third codon positions. Moreover, this query can be
associated with a query about genomic descriptors includ-
ing gene symbol, human-murine-canine chromosome
numbers, and exon length for the three reference species
Homo, Mus and Canis. The result of the query is visualized
as a recapitulative table of the different descriptors with
link to the alignment in Fasta format (Figure 4). Once the
marker is chosen by the user, the synopsis of all its
descriptors can also be obtained with direct links to
EnsEMBL for details on each individual sequence (Figure
5).
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Figure 3

Screenshot of the query form of OrthoMaM. In this
example, the user requests orthologous exons available for
all 12 mammals, characterized by a relative evolutionary rate
ranging from 0.8 to 1.2, and a length ranging from 800 to
1,500 bp for human, mouse, and dog.

Evolutionary descriptors

To illustrate the importance of providing various descrip-
tors of the evolutionary dynamics of the 3,170 exonic
markers currently included in the OrthoMaM database,
we summarized the range of values for some of them
(Table 1). For fair comparison among markers with
respect to missing taxa, only descriptor values for the 118
exons present in all 12 species are here presented. People
interested in getting the maximum number of molecular
characters from a single PCR amplification will focus on
longer exons. For example, the alignment of the longest
conserved exon (EnsEMBL gene ENSG00000189079: AT
rich interactive domain 2 gene [ARID2], human exon 15)
spans ~2.8 kb among the 12 mammals. On average,
exonic alignments contain one-third (35.7%) of variable
sites, among which two-third (68.4%) occur at third
codon positions. Some exons retain > 90% of their varia-

14 result(s) for your request

| marker identifier | symbol [length species rate lalpha %GC %GC3 | text file
v 4_AP P AP1GBP1 957 12 1.050.54 49 % 44 % alignment
I+ ENSGO0000006432 MAP3KY 002 MAP3K9 813 12 1.06 0.39 62 % |65 % alignment
v ENSGO0000020129 NCDON_000 NCDN 969 12 0.850.2 62 % 72 % alignment
I+ ENSG0O0000033100 CHGUT _HUMAN 001 CHGUT_HUMAN| 1308 12 1.0210.25 65% 72 % alignment
[+ ENSGOO 30828 CASR CASR 888 12 0.9 0.25 52 % 63 % alignment
~ ENSGO0000084676 _NCOAL 000 NCOAL 1347 12 0.92/0.47 47 % 47 % alignment
[~ ENSG00000112739 PRPF4B_000 PRPF4B 1200 12 [0.88(0.29 42 % 37 % alignment
[~ ENSG00000123700_KCN12_ 000 KCNI12 1287 12 1.19/0.17 53 % |68 % alignment
" ENSC 141298 SSH2 SSH2 834 12 1.17 0.48 .54 % 59 % alignment
[+ ENSG0O0000157542 KCN16_000 KCN16 918 12 0.950.16 53 % 69 % alignment
7 EM 1 7 _PRICKLE2 PRICKLE2 876 12 1.02/0.21 63 % 81 % alignment
[ ENSGO0000165494 _PCF11_001 PCF11 1128 12 0.8 0.41 39 % 31 % alignment
[~ ENSG00000170820 FSHR 000 FSHR 1236 12 0.85/0.58 47 % 57 % alignment
[~ ENSG00000171385 KCND3 000 KCND3 1104| 12 |0.830.13 59 % 85 % alignment
.
Figure 4

Screenshot of the result sheet. The result of the query
previously submitted (see Figure 3) is shown. Fourteen candi-
date exons are recovered with a recapitulation of their phyl-
ogenetic descriptors.
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Exon informations
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Mus_[ENSM 161 5 1| 4206 24101134
Rattus  [ENSRNOGO0000010486 4 1 1303 5960046 I
Pan_ | [ENSPTRGOODD00TSBET 7 T [ 1308[151774341 (151775643 [ENSPTRT00000055122 [ENSPTRE00000196884.
[TEchinops |[ENSETEGO0000003703 | GeneScaffold 261 [ 1 | 1308 a41q 6721[ENSETE 100000003703 [ENSETEE00000046861
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[ Bos | G 1 4 1| 1299 64358107 | 64359405 ENSBTAT00000019108 |[ENSBTAEC0000155498 |
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7
:
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Figure 5

Screenshot of the recapitulation of the evolutionary
descriptors of CHGUT_HUMAN. Details about the avail-
able exon of each mammal are presented, including EnsEMBL
gene/transcript/exon identifiers, chromosome location, and
chromosome coordinates. Phylogenetic information is also
provided, including base frequencies, GTR matrix of the rela-
tive substitution rates between nucleotides, various evolu-
tionary descriptors, and a summary of site variability. The
alignment and the corresponding highest-likelihood tree are
also given (not shown here).

bility at third codon positions (the maximum is 93.4%).
Others possess a more evenly distributed variability, with
a maximum variability of 34.4% on first codon positions,
and 28.6% at second codon positions. Evenly distributed
site variability is associated with a high value of the a-
shape parameter and potentially reduces the level of
homoplasy as nucleotide substitutions could accumulate
at each codon position over the whole exon [44]. About
base composition, the mean GC3 is 58.7%, with a very
wide range from 29.3% to 89.3%. Nucleotide substitution
patterns are fairly variable as well, with e.g. the relative C-
T substitution rate ranging from 1.1 to 34.5, and the aver-
age transition/transversion rate ratio ranging from 0.8 to
6.5. Moreover, the relative evolutionary rate among
exons, as estimated by SDM, exhibited a more than 10-
fold variation between slowest- and fastest-evolving can-
didates.

Development of new phylogenetic markers

We illustrate the potential utility of the OrthoMaM data-
base with the development of two new markers for pla-
cental phylogenetics. We focused on the 118 candidates
retrieved for all 12 mammals, and we chose among exons
with a length ranging between 800-1500 bp for the three-
species core (human, mouse and dog), with an intermedi-
ate relative rate of evolution, i.e., SDM value ranging from
to 0.8 to 1.2 (Figure 3). Fourteen candidate exons satisfied
the combination of these three criteria, among which
CHGUT_HUMAN (1,308 bp) and NCOAI (1,347 bp)
were the longest (Figure 4). We thus selected the corre-
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Table I: Descriptors of the evolutionary dynamics of the |18 exons available for 12 mammals (human, chimp, macaque, mouse, rat,

rabbit, cow, dog, elephant, tenrec, armadillo, and opossum).

DESCRIPTORS MEAN SE MIN MAX
Exon length 800 465 405 2883
Variability 357 10.0 15.7 60.6
% var |st 19.5 6.2 5.9 344
% var 2nd 12.1 7.1 0 28.6
% var 3rd 68.4 12.8 42.0 934
o (I distribution) 0.4 0.2 0.1 1.3
%GC 52.8 7.5 39.5 69.4
%GC3 58.7 15.2 293 89.3
RCV (% 1000) 6.8 29 1.7 16.3
A-C 1.5 0.9 0.4 6.7
A-G 6.1 34 1.4 24.4
A-T 1.0 0.7 0.2 38
C-G 1.1 0.7 0.1 36
C-T 7.7 4.8 .1 345
G-T 1.0 0 1.0 1.0
TilTv 2.8 0.9 0.8 6.5
TBL 0.9 0.4 0.2 1.9
Relative rate (SDM) 1.0 0.4 0.2 2.6

Mean, standard-error (SE), minimum (MIN) and maximum (MAX) values are given for exon length, variability (% of variable sites on the complete
alignment), relative variability (% var) among codon positions (% of the variable sites that respectively occurred on first [Ist], second [2nd], and
third [3rd] codon positions), substitution rate heterogeneity among sites (ct), Guanosine + Cytosine content on all (GC) and third (GC3) codon
positions, relative composition variability (RCV), relative GTR substitution rates (A-C to G-T), average transition/transversion rate ratio (Ti/Tv),
total branch length (TBL) of the tree, and relative evolutionary rate (as measured by the SDM procedure).

sponding alignments containing sequences that are
orthologous to exon 4 of the human CHondroitin sulfate
GlucUronylTransferase gene (EnsEMBL gene reference
ENSG00000033100), and to exon 11 of the human
Nuclear receptor CO-Activator 1 gene (ENSG000000
84676).

Our in silico approach for development of new markers
was then validated by the successful amplification and
sequencing of CHGUT_HUMAN exon 4 orthologues for
species belonging to two of the most evolutionary distant
groups of placental mammals: xenarthrans (member of
Atlantogenata, the clade of southern origin), and rodents
(member of Boreoeutheria, the clade of northern origin)
[46]. The xenarthran species was the anteater Tamandua
tetradactyla. The rodent species were a caviomorph (the
degu, Octodon degu), a sciurid (the Guianan squirrel, Sciu-
rus aestuans), a dipodid (the lesser Egyptian jerboa, Jaculus
jaculus), and two sigmodontine muroids (the MacCon-
nell's rice rat, Oryzomys macconnelli, and the Guiana bristly
mouse, Neacomys guianae). Similarly, we obtained
sequences of NCOA1 exon 11 orthologues for rodents,
including Octodon, Jaculus, Oryzomys, Neacomys, and also a
glirid (the garden dormouse, Eliomys quercinus) and an
anomalurid (a scaly-tailed flying squirrel, Anomalurus sp.).

All ethanol preserved tissues were extracted using QlAamp
DNAminikit following manufacturer (QIAGEN) instruc-
tions. A 1.1 kb portion of CHGUT_HUMAN exon 4 ortho-

logues was amplified by Polymerase Chain Reaction
(PCR) with forward 1F (5'-GCYCAGATCCGGAACCT-
GAC-3') and reverse 1R (5'-AACCGGAGGAAAACATC-
CATCACC-3'") primers. A 1.2 kb portion of NCOAI exon
11 orthologues was amplified with forward 1F (5'-CAGT-
GGCCTITTCTCCTCAAG-3') and reverse 1R (5'-ACCIT-
TACRTCATCCAGGC-3') primers. Amplification reactions
were carried out in 20 pl including 50 uM of each primer,
dNTP (200 uM), 1x Taq buffer, 1 U Taq polymerase (Tri-
ple Master PCR System Eppendorf) and 50-100 ng genomic
DNA. Amplifications were performed in Mastercycler gra-
dient (Eppendorf) using denaturation at 94°C (4 min), fol-
lowed by 29 temperature cycles of 94°C (20 sec), 53°C to
60°C (20 sec) and 72°C (1 min 30 sec), with a final exten-
sion at 72°C (10 min). The temperature gradient was nec-
essary for PCR optimisation on all taxa. PCR products
were purified from 1% agarose gels with the DNA gel
extraction kit (Millipore) and directly sequenced using the
1F/1R external primers, and two internal ones: 3F (5'-
GTGGARATCCTGCCYATGCC-3') and 2R (5-CACCT-
GGGAMGGKGCCTC-3") for CHGUT_HUMAN, and 2F
(5'-CAAACAATTCATTTCCTCC-3') and 2R (5'-GCAT-
GCCGTAACTGCTG-3') for NCOA1. The Bigdye Termina-
tor kit v1.1 (Applied Biosystem) was used and sequencing
reactions were run on an ABI 310 (Applied Biosystem) auto-
mated sequencer. Sequences have been deposited in the
EMBL database under accession numbers AM900835 to
AM900846.
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Newly obtained CHGUT_HUMAN and NCOAI
sequences were added to the ones of the 12 mammals
included in the OrthoMaM database, complemented by
other species downloaded from ongoing genome projects
and traces (Equus caballus, Myotis lucifugus, Felis catus,
Tupaia belangeri, Otolemur garnettii, Cavia porcellus, Sper-
mophilus tridecemlineatus, and Dipodomys ordii). Maximum
likelihood analyses of the final alignments under the best-
fitting GTR+I" model yielded trees conforming to the cur-
rent view of the placental phylogeny (Figure 6). The four
major clades Afrotheria, Xenarthra, Laurasiatheria, and
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Euarchontoglires are recovered. Among the latter group,
the rabbit (Lagomorpha) is the sister group of rodents,
forming the Glires clade. Monophyletic rodents subdivide
into three subclades respectively containing Guinea-pig
related, squirrel-related, and mouse-related species, in
agreement with recent multigene phylogenies of Rodentia
[47,48].

A phylogenomic approach on placental mammals

As a second illustration of the utility of the OrthoMaM
database, we used it in a phylogenomic perspective. To

NCOA1
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Maximum likelihood phylogenies reconstructed from alignments of orthologues to the human CHondroitin
sulfate GlucUronylTransferase (CHGUT_HUMAN) exon 4 [left], and to the human Nuclear receptor CO-Acti-
vator | gene (NCOAI) exon |1 [right]. Values on nodes are ML bootstrap support. Taxa for which the CHGUT_HUMAN
and NCOA| exons were obtained in vivo are indicated in bold + asterisk. Sequences from other taxa were recovered in silico
from traces, pre-assembled, and assembled EnsEMBL genomes. The name of major clades is provided on the right, and blue
rectangles correspond to Euarchontoglires mammals. The outgroup Monodelphis is drawn with midpoint rooting. Horizontal
branch lengths are proportional to the DNA divergence (same scale for both exons = 0.1 nucleotide substitutions per site).
Maximum likelihood details about CHGUT_HUMAN|NCOA| phylograms are respectively as follows: log-likelihoods are InL = -
8,868.8|8,899.4, and estimates of model parameters are: %A = 15.6/29.2, %C = 32.6|27.5, %G = 33.0|21.2, and %T = 18.8|22.1
for base frequencies ; A-C = 1.11]0.63, A-G = 4.61]|4.04, A-T = 1.38|0.68, C-G = 0.44|0.54, C-T =4.17|3.31,and G-T = 1.00 for
GTR relative substitution rates ; and o = 0.30|0.51 for rate heterogeneity among sites.
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that aim, we combined the 118 exons present for all 12
species (human, chimp, macaque, mouse, rat, rabbit, cow,
dog, elephant, tenrec, armadillo, and opossum), and
obtained a supermatrix of 94,739 sites. We only used
exons detected in these 12 mammals by our automatic,
bioinformatic pipeline, to minimize the amount of miss-
ing character states which is as low as 4.8% due to incom-
plete 5'/3' coverage and gapped sites. The highest-
likelihood topology calculated by PAUP* was well-
resolved, as evaluated through ML bootstrap support,
except for the position of the placental root (Figure 7).
Rodents (Mus and Rattus) and the lagomorph (Oryctola-
gus) are grouped into Glires as a sister-group of catarrhine
primates (Homo, Pan and Macaca) to form Euarchontog-
lires. Euarchontoglires branch with Laurasiatheria (here
represented by Bos and Canis) into Boreoeutheria, all with
100% bootstrap support.

Our topology is thus fully compatible with the new under-
standing of placental mammal phylogeny revealed by
early multigene analyses to the exception of the position
of the root [6,16,49]. However, other recent studies based
on phylogenomic data sets claimed support for a closer
evolutionary relationship between primates and carni-
vores relative to muroid rodents [50-52]. Such results

Monodelphis
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Loxodonta
Bos I LAURASIA-
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Macaca S
' Homo % PRIMATES
100 §
Pan :
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Figure 7

Maximum likelihood phylogeny reconstructed from a
94-kb alignment of |18 concatenated orthologous
exons present for all 12 mammals. The log-likelihood of
the phylogram is InL = -407,623.4, and estimates of model
parameters are: %A = 25.9, %C = 27.0, %G = 25.0, and %T =
22.1 for base frequencies ; A-C = .29, A-G = 4.69, A-T =
0.72, C-G = 1.21, C-T = 5.75, and G-T = 1.00 for GTR rela-
tive substitution rates ; INV = 31.7% for the fraction of invar-
iable sites, and o = 0.74 for rate heterogeneity among the
remaining sites. Values on nodes are ML bootstrap support.
Sequences from the 12 taxa were in silico recovered from
assembled EnsEMBL genomes. The outgroup Monodelphis is
drawn with midpoint rooting. Horizontal branch lengths are
proportional to the DNA divergence (scale = 0.05 nucleotide
substitutions per site).
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appear all the more surprising given that the monophyly
of rodents plus primates relative to carnivores and cetarti-
odactyls observed in Figure 7 is also supported by a large
body of independent evidences including multigene
mitochondrial and nuclear DNA phylogenies [7,44,53-
55], indel protein signatures [56], and SINEs insertions
[57].

The main commonality among these three recent phylog-
enomic studies is their use of reduced taxon samplings
associated with whole genome sequences, a situation
where statistical phylogenetic inconsistency is particularly
prone to occur [29,58]. Interestingly, in our dataset, the
evolutionary rate of muroid rodents appears 2.7 times
faster than the one of primates as attested by relative
branch lengths of the ML phylogram (Figure 7). Neverthe-
less, Mus, Rattus and Oryctolagus grouped with Macaca,
Homo and Pan, whereas a long-branch attraction (LBA)
phenomenon [59] would have attracted muroids towards
the distant marsupial outgroup.

In order to test for this LBA hypothesis, we restricted our
analysis to the 8-taxon sampling of Cannarozzi et al. [50]
including only human, chimp, macaque, mouse, rat, cow,
dog, and opossum. The use of a sub-optimal and under-
parameterized model, i.e. GTR without I'+INV, led to a
ML topology conforming to the results obtained by Can-
narozzi et al. [50]: Mus + Rattus branched to the most
basal position among placentals, with a 99% bootstrap
support for grouping Bos + Canis with primates. However,
under the better-fitting GTR+I"'+INV model, the ML analy-
sis recovered with 100% bootstrap support the initial
topology (cf. Figure 7) in which primates and rodents are
grouped together to the exclusion of carnivores + cetartio-
dactyls. Here, the more sophisticated model seems to cor-
rect the long-branch attraction artefact of muroid rodents
towards the opossum branch.

Further investigations were conducted by adding the rab-
bit in order to break the long isolated muroid branch.
Under the GTR model (without I'+INV), Glires appeared
monophyletic and branched with primates to the exclu-
sion of Canis and Bos, and the ML bootstrap support for
the euarchontoglires clade was 77%. A denser taxon sam-
pling (i.e., the addition of Oryctolagus) therefore reduces
the LBA phenomenon, and here compensates for model
underparameterization. The use of the better-fitting
GTR+I'+INV model confirmed this trend, and provided
100% bootstrap support for grouping rodents with pri-
mates. Finally, the reanalysis of the 12-taxon OrthoMaM
supermatrix of 118 exons under a GTR model but without
I'+INV yielded 100% bootstrap within boreoeutherians
for the topology of Figure 7. These analyses confirm the
crucial impact of taxon sampling for accurate phyloge-
netic inference, especially when long isolated branches are
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involved [58,60]. Moreover, accounting for among-sites
rate variation through a Gamma distribution is important
to accurately discriminate among alternative topologies,
especially when the taxon sampling is depauperate
[61,62].

From our ML analyses, it seems that the basal position of
rodents observed in the three recent phylogenomic stud-
ies [50-52] is likely a LBA artefact associated with the use
of a reduced taxon sampling and/or inadequate phyloge-
netic reconstruction methods. Our study strongly sup-
ports the phylogenetic affinities of rodents with primates
to the exclusion of carnivores (Figure 7), and adds credit
to the view that they should no longer be considered as
contentious [63]. The same phylogenetic relationships
among rodents, primates and carnivores is obtained from
a GTR+I' ML analysis of the supermatrix of characters
resulting from the combination of all 3,170 exons of the
OrthoMaM database (3,047,860 sites for 12 taxa ; 32%
missing character states ; results not shown).

The only unresolved node in our phylogenomic analysis
(Figure 7) involves the position of the root of the placen-
tal tree. There has been debate to know whether xenar-
thrans are sister-group of all remaining placentals (the
Epitheria hypothesis) [57,64], or branch with Afrotheria
(the Atlantogenata hypothesis; [65]), or with Boreoeuthe-
ria (the basal Afrotheria hypothesis [53,54]). Here, the
combination of the 118 exons yielded bootstrap support
of 45% for Atlantogenata (the highest-likelihood branch-
ing pattern), 46% for Epitheria, and 9% for basal Afroth-
eria. Indel signatures [46] and larger datasets [66,67]
actually seem to favour the Afrotheria + Xenarthra branch-
ing. However, it has been argued that the latter two results
might reflect an artefact of using concatenated likelihood
models whereas partitioned models rather favour the
basal Afrotheria hypothesis [68].

Conclusion

The OrthoMaM database provides an intuitive interface
for querying thousand of orthologous exons of potential
use in placental mammal systematics. It also allows the
easy retrieval of large sets of conserved orthologous exons
among the available mammalian genomes to perform
phylogenomic analyses. The evolutionary descriptors
characterizing each candidate marker are of particular
interest for phylogenetic marker choice and for compara-
tive analyses of molecular evolution at the genome scale.
The bioinformatic pipeline behind OrthoMaM allows
envisioning that the database will be dynamically
updated on a regular basis to follow the evolution of
EnsEMBL and thereby ensure its accuracy. We expect the
OrthoMaM database to prove useful for further resolving
the phylogenetic tree of mammals and for understanding

http://www.biomedcentral.com/1471-2148/7/241

the selective pressures that shaped the evolution of their
genomes.
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