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Abstract

genes have also diversified during evolutionary time.

Background: GSK3 (glycogen synthase kinase 3) genes encode signal transduction proteins with roles in a variety of
biological processes in eukaryotes. In contrast to the low copy numbers observed in animals, GSK3 genes have
expanded into a multi-gene family in land plants (embryophytes), and have also evolved functions in diverse plant
specific processes, including floral development in angiosperms. However, despite previous efforts, the phylogeny
of land plant GSK3 genes is currently unclear. Here, we analyze genes from a representative sample of
phylogenetically pivotal taxa, including basal angiosperms, gymnosperms, and monilophytes, to reconstruct the
evolutionary history and functional diversification of the GSK3 gene family in land plants.

Results: Maximum Likelihood phylogenetic analyses resolve a gene tree with four major gene duplication events
that coincide with the emergence of novel land plant clades. The single GSK3 gene inherited from the ancestor of
land plants was first duplicated along the ancestral branch to extant vascular plants, and three subsequent
duplications produced three GSK3 loci in the ancestor of euphyllophytes, four in the ancestor of seed plants, and at
least five in the ancestor of angiosperms. A single gene in the Amborella trichopoda genome may be the sole
survivor of a sixth GSK3 locus that originated in the ancestor of extant angiosperms. Homologs of two Arabidopsis
GSK3 genes with genetically confirmed roles in floral development, AtSKT1 and AtSK12, exhibit floral preferential
expression in several basal angiosperms, suggesting evolutionary conservation of their floral functions. Members of
other gene lineages appear to have independently evolved roles in plant reproductive tissues in individual taxa.
Conclusions: Our phylogenetic analyses provide the most detailed reconstruction of GSK3 gene evolution in land
plants to date and offer new insights into the origins, relationships, and functions of family members. Notably, the
diversity of this “green” branch of the gene family has increased in concert with the increasing morphological and
physiological complexity of land plant life forms. Expression data for seed plants indicate that the functions of GSK3
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Background

Glycogen synthase kinase 3 (GSK3) proteins, also known
as SHAGGY-like kinases, have important roles in a wide
range of cellular processes throughout eukaryotes [1]. In
animal development, products of GSK3 homologs partici-
pate in the critically important Wnt signaling pathway that
regulates cellular differentiation, patterning, and growth in
perhaps all metazoans [2]. The GSK3 homolog in the
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protozoan Dictyostelium discoideum is also involved in the
regulation of development [3]. Recognition of possible
roles of GSK3 in human disease has prompted recent
interest in these genes in the field of medicine [1,4]. Com-
pared to animals, GSK3 genes have radiated into a rela-
tively large multi-gene family in land plants [5-7]. For
example, five GSK3 genes have been reported from the
moss Physcomitrella patens [8], and 10 GSK3 genes are
present in the genome sequence of the flowering plant
Arabidopsis thaliana [5]. Conceivably, therefore, GSK3
genes have had a dynamic history of gene duplication
during the course of land plant evolution. They have also
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acquired roles in plant-specific processes. For example,
different Arabidopsis GSK3 genes function in hormonal
signaling, osmotic stress responses [1], and flower devel-
opment [6,9].

Previous phylogenetic analyses suggest that four major
lineages evolved in the land plant branch of the GSK3
gene family [7], but their origins and relationships are
currently unclear. Physcomitrella GSK3 genes occupy
different positions relative to groups of angiosperm
genes in various analyses [8,10], and the positions of fern
and gymnosperm GSK3 sequences have been similarly
fluid (Figures five to seven in [10]). Such topological in-
stabilities may be an indication of inadequate sampling,
which is often a problem in phylogenetic reconstruction
[11], particularly in gene family analyses in which both
taxonomic and gene copy representation may be sparse.
For example, only three plant genomes were available to
Yoo et al. [10], and ferns and gymnosperms were repre-
sented by just seven sequences in their data set. Cur-
rently, 35 land plant genomes are publically accessible
through the Phytozome v9.0 portal [12]. We also have a
draft genome sequence for Amborella trichopoda, which
occupies a pivotal phylogenetic position as sister to all
other extant flowering plants [13]. In addition, the Ances-
tral Angiosperm Genome (http://ancangio.uga.edu/) and
1KP (http://www.onekp.com/project.html) projects pro-
vide transcriptome assemblies for taxa representing line-
ages that are critical for understanding gene family
evolution in land plants; mosses, liverworts, lycophytes,
monilophytes, and gymnosperms, as well as angiosperms.

Here, we use the newly available genomic resources
reviewed above to reconstruct the phylogenetic history
of GSK3 genes in land plants (embryophytes). We in-
clude sequences of two chlorophyte algae as outgroups.
Specifically, we: (1) clarify the phylogenetic relationships
among land plant GSK3 genes via our greatly increased
taxon sampling, (2) reconstruct the history of gene dupli-
cation and extinction during land plant diversification,
and (3) identify shifts in tissue-preferential expression that
may relate to functional diversification in seed plants.

Results and discussion

Our Maximum Likelihood phylogeny of land plant
GSK3 genes (schematic summary in Figure 1, details in
Figures 2, 3, 4, 5), rooted with the chlorophyte algae
Volvox and Chlamydomonas, is largely congruent with
established organismal relationships (e.g. [14,15]). The
basal branches constitute a grade of “bryophyte” se-
quences, above which the tree topology reveals three an-
cient gene duplication events along the branches leading
to extant tracheophytes (vascular plants), euphyllophytes
(monilophytes and seed plants), and spermatophytes (seed
plants), respectively (A1-A3, Figure 1). These duplication
events together produced four groups of seed plant genes
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that correspond with the gene groups previously identified
in Arabidopsis [5,10]. A subsequent duplication along
the branch leading directly to extant angiosperms (A4,
Figure 1) produced additional angiosperm-wide gene
lineages that we designate as subgroups.

Ancestral GSK3 copy number in land plants

At the base of the tree, a single gene from the moss
Physcomitrella is sister to all other land plant genes, and
successive branches lead to a clade of six other genes in
the Physcomitrella genome, followed by a clade in which
a single Sphagnum (moss) sequence is sister to three
sequences from two Marchantia species (liverworts).
The branching sequence among these genes implies a
duplication event in the ancestral lineage of land plants,
with one of the two descendant lineages surviving as a
single gene only in Physcomitrella. However, since the
available sampling of mosses and liverworts is relatively
sparse, the present topology might not accurately repre-
sent gene phylogeny. Therefore, origin of the isolated
Physcomitrella gene through a more recent duplication,
perhaps on the branch leading directly to Physcomitrella
or extant mosses, remains feasible.

Duplication along the ancestral branch to tracheophytes
The first duplication in the land plant lineage of GSK3
genes appears to have occurred along the ancestral
branch to tracheophytes (Al in Figure 1), a clade that
emerged during the Silurian period about 415 mya [16].
This “tracheophyte duplication” produced sister gene
lineages (orange bars in Figure 1) whose subsequent his-
tories have resulted in disproportionate representation
among extant taxa. The larger descendant lineage in-
cludes three of the four groups of seed plant GSK3 genes
(I, II, and III), and sequences from Selaginella and
Huperzia (lycophytes) are sister to all euphyllophyte
genes. Its sister lineage, which includes the Group IV
GSK3 genes, must have also originated along the ances-
tral branch to tracheophytes, but does not include
lycophyte sequences (Figures 1 and 2). An alternative
scenario in which lycophyte genes are placed sister to all
euphyllophyte genes, shifting the Al duplication to the
ancestral branch to euphyllophytes, was rejected by an
Approximately Unbiased (AU) test [17], P = 0.0003.
Therefore, the Group IV GSK3 gene lineage has been
lost from lycophytes sometime during their evolutionary
history. The Selaginella genome lacks a Group IV gene,
but since the transcriptome data for Huperzia may not
be exhaustive, it is still unclear whether the gene loss
event pre-dates lycophyte diversification.

Duplication along the ancestral branch to euphyllophytes
The two loci produced by the “tracheophyte duplication”
have evolved into three euphyllophyte-wide gene lineages
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Figure 1 Phylogenetic relationships among land plant GSK3 genes. Four major groups (I - IV) and four major gene duplication events (A1 -
A4) are recognized. Numbers above branches indicate bootstrap support values (%). Gene lineages composed of angiosperms, gymnosperms,
monilophytes, lycophytes, liverworts, mosses, and algae are labeled. Color bars to the right demarcate gene lineages that originated in the
ancestors of extant tracheophytes (red), euphyllophytes (purple), and seed plants (green).

(purple bars in Figure 1). Two of these, Group I+II and  scenario that requires loss of one Group IV lineage, prior
III) share an immediate sister relationship and therefore  to the diversification of extant euphyllophytes.

originated through a duplication event along the ancestral

branch of the euphyllophytes (A2 in Figure 1). The single  Duplication(s) along ancestral branch to spermatophytes
euphyllophyte-wide gene lineage in the collective sister Of the three GSK3 loci present in the euphyllophyte
group of Groups I+II and III, Group IV (Figures 1 and 3), ancestor, at least one was subsequently duplicated on the
suggests that the above duplication affected only one of ancestral branch of seed plants, producing four GSK3 gene
the duplicate loci in the euphyllophyte ancestor. A more lineages (demarcated by green bars in Figure 1). This
global duplication event, for example an euphyllophyte  duplication event (A3) is unambiguously inferred by the
whole-genome duplication (WGD), is a less parsimonious  immediate sister relationship between two lineages of seed
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Figure 4 Phylogenetic relationships within Monilophyte | & Il and among Group Il GSK3 genes. Upper left insert indicates the position of
the depicted phylogeny relative to the overall land plant GSK3 gene tree depicted in Figure 1. Stars correspond to postulated whole-genome
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plant genes, Groups I and II, which are collectively sister
to a clade of monilophyte genes (Figures 1 and 4). The A3
duplication coincides with the proposed WGD in the an-
cestral lineage of extant seed plants, ~320 Ma ago [18],
and a synchronous duplication event may have affected
the ancestral Group III locus in the seed plant ancestor.
The phylogeny of seed plant Group III genes resolves as a
single angiosperm lineage (Angiosperm III) and two
gymnosperm lineages (Gymnosperm III-1 and III-2) that
are paraphyletic with respect to Angiosperm III (Figures 1
and 3). Gymnosperm III-1 includes representatives of all
extant gymnosperm lineages (cycadophytes, Ginkgo,
gnetophytes and pinophytes), while Gymnosperm III-2
lacks gnetophytes (possibly a sampling artifact), and is sis-
ter to the Angiosperm III gene clade (Figure 4). The gene
tree therefore implies a gene duplication event on the
branch to extant seed plants with subsequent loss of one
descendant lineage along the branch leading to extant an-
giosperms. This inferred Group III “seed plant duplica-
tion” genes would be congruent with that in its sister
clade (which produced Groups I and II), increasing the
likelihood of a WGD influencing both events. However,
the third gene lineage inherited by seed plants from the
euphyllophyte ancestor, Group IV, contains no clear evi-
dence of a seed plant WGD. Here, the gene tree resolves
as five sequential branches leading to representatives of
the ginkgophytes, cycadophytes, pinophytes, gnetophytes,
and angiosperms, respectively (Figure 2).

Duplication on the ancestral branch to angiosperms

Sister angiosperm-wide gene lineages (Angiosperm I-1
and I-2) imply duplication of the ancestral Group I locus
along the branch to extant flowering plants with reten-
tion of both duplicate copies (A4 in Figures 1 and 5).
This duplication coincides with a proposed WGD event
that occurred between 300-192 Mya along the ancestral
lineage of angiosperms [18]. Synchronous “angiosperm”
duplications are not obvious for the other angiosperm
GSK3 gene lineages, but the two Amborella genes in the
Group II clade may be noteworthy. One occupies the
expected position at the base of a pan-angiosperm gene
lineage (Angiosperm II-1), while the other is placed
within a paraphyletic group of gymnosperm genes
(Gymnosperm II) (Figure 4). The paraphyly of Gymno-
sperm II is primarily due to three clades of sequences
from conifers, two of which are sister to Ginkgo and
gnetophyte sequences, respectively. This topology may
be an artifact of inadequate sampling of non-conifer
genes rather than a representation of the true gene tree.
The placement of an Amborella gene among Gymno-
sperm II sequences may also be an artifact of phylogeny
reconstruction. Otherwise, the gene tree implies that
three seed plant clades exist among these Group II
genes; one with broad angiosperm and gymnosperm
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representation, a second represented in Amborella and
gymnosperms, and the third represented only in coni-
fers. Perhaps instead, two angiosperm lineages (II-1 and
I1-2) originated through a single gene duplication event
along the branch to extant angiosperms, followed by loss
of the Angiosperm II-2 lineage after the separation of
Amborella from other flowering plants. On the basis of
the other 22 completely sequenced nuclear genomes in
our sample (Additional file 1), the Angiosperm II-2 gene
lineage would have become extinct early in angiosperm
evolution, certainly prior to the divergence of monocots
and eudicots. The placement of the surviving Amborella
Angiosperm II-2 gene among the Gymnosperm II genes,
instead of their sister, could therefore be interpreted as
an artifact of phylogeny reconstruction, rather than a
reflection of true relationship.

Gene family expansion in individual land plant lineages
We have identified seven GSK3 genes in the genome se-
quence of Physcomitrella, two more than previously
reported [10], indicating a dramatic increase in gene
family members over the course of moss evolution. The
genome of the lycophyte Selaginella contains only two
GSK3 loci, but a gene loss event may have contributed
to this condition (see above). Gene duplication and ex-
tinction events are also evident during the diversification
of individual euphyllophyte lineages.

Monilophytes

Clades of five Equisetum diffusum sequences are present
in both Groups IV and III genes (Figures 2 and 3), indicat-
ing multiple duplications affecting GSK3 loci in this spe-
cies. Similarly, multiple clades of Asplenium platyneuron,
Cyathea spinulosa, and Onoclea sensibilis sequences in
Monilophytes I +II and III (Figures 3 and 4) indicate du-
plications in these leptosporangiate ferns. These duplica-
tion events in GSK3 gene lineages are consistent with the
widely recognized role of polyploidy in the evolutionary
history of monilophyte taxa [19].

Gymnosperms

The gymnosperms Ginkgo biloba, Picea glauca, and
Welwitschia mirabilis each possess duplicate Group IV
GSK3 genes (Figure 2) likely derived from separate dupli-
cation events unique to their respective lineages. Relatively
recent duplications are evident for the Pinaceae in both
clades of Gymnosperm III genes (Figure 3). The Gymno-
sperm II lineage includes three clades of sequences
representing conifers (Figure 4), but uncertainty regarding
the relationships of these genes relative to other gymno-
sperm taxa obscures their evolutionary origin. All Group I
gymnosperm sequences form a clade (Gymnosperm I),
with separate duplications in gnetophytes, Pinaceae, and
Zamia vazquezii (Figure 5).
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Angiosperms

Among the Angiosperm IV group (Figure 2), duplications
in Arabidopsis and Glycine max coincide with postulated
WGD events for these taxa [20,21] (Table 1). Duplications
are also evident in Helianthus annuus, perhaps reflecting
an ancient WGD in Heliantheae [22], and Manihot
esculenta, which has not been associated with polyploidy.
Group IV genes have not been found among non-Poaceae
monocots, possible reflecting a sampling artifact, but their
absence in the sequenced genome of a member of the
Ranunculaceae (Aquilegia caerulea) and in extensive tran-
scriptome data for Eschscholzia californica (Papaveraceae)
indicates a gene loss event early during the diversification
of the Ranunculales.

Similar gene loss events are not apparent in the Angio-
sperm III gene lineage, and, instead, duplications are
prominent (Figure 3). These have occurred in both asterid
and rosid taxa (ie., Arabidopsis, Helianthus annuus,
Lactuca sativa, legumes, Manihot esculenta, Populus
trichocarpa, and Solanaceae), as well as the monocot Zea
mays, and several coincide with postulated WGD events
(Table 1). As discussed above, one descendant lineage of
the Group II “angiosperm” duplication has been almost
completely lost but its sister lineage has diversified exten-
sively in angiosperms. In this gene-rich lineage, 38 species
encode at least 107 GSK3 genes with duplications coincid-
ing with nine of the 15 postulated WGD events, including
the core eudicot “hexaploidy” event [likely two closely
placed WGD; 19, 21, 22] (Figure 4). The two subclades of
Angiosperm I genes have had contrasting evolutionary

Table 1 Duplication events muliplying GSK3 gene
lineages during seed plant diversification coincide with
postulated whole-genome duplication events

Ancient Name of the WGD GSK3 clades with evidence
duplication of WGD

v 1] | ]
1% Eudicot hexaploidy - - v v
2% Arabidopsis alpha v v v v
3% Arabidopsis beta - - - -
4% Brassica hexaploidy - - - -
5% Poplar tetraploidy - v v v
7% Apple tetraploidy - - - -
8% Soybean tetraploidy v v v J
9%k Legume tetraploidy - v v v
10% Columbine tetraploidy - - - Vv
11% Flowering plant tetraploidy - - v J
12% Seed Plant tetraploidy - v - -
13% Grass tetraploidy - v v v
14% Monocot tetraploidy A - - v J
15% Monocot tetraploidy B - - - v
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histories (Figure 5). All major angiosperm lineages are
represented in the Angiosperm I-1 lineage, but the I-2
lineage was apparently lost early in the evolution of the
monocots. Only Acorus, the sister group of other mono-
cots, is represented in this lineage. The precise timing
of this gene loss remains to be determined, but absence
from available sequenced monocot genomes (i.e.,
Brachypodium distachyon, Oryza sativa, Setaria italica,
Sorghum bicolor, and Zea mays) indicates loss prior to
the origin of the Poaceae. More globally, the Angio-
sperm I-1 lineage has experienced a dramatic expansion
in gene copy number relative to Angiosperm -2, and
seven duplication events coincide with postulated WGD
events during angiosperm diversification (Table 1). For
example, the WGD responsible for the ancestral “hexa-
ploidy” of core eudicots [23-25] is evident as duplicate
clades including Vitis vinifera, Fabidae, Malvidae,
Lamiideae, and Campanulidae. As no such duplications
are evident in Angiosperm I-2, widespread loss of dupli-
cates must have followed WGD in this gene lineage.

Evolution of GSK3 gene expression in seed plants
To assess the evolution of GSK3 gene expression and, by
inference, function, we examined gene expression levels
in a functionally diverse set of tissues, including roots,
aerial vegetative shoots, and reproductive organs, in six
seed plant species (Figure 6). Members of most GSK3
gene lineages are expressed in almost all tissues exam-
ined, supporting their involvement in a wide variety of
biological processes. However, these expression data also
reveal several instances of tissue preferential expression
that suggest roles in specific developmental programs.
Of the three Arabidopsis genes implicated in floral
development, the roles of Group I genes, AtSKI11 and
AtSKI12, have been confirmed genetically [6], Notably,
Group I-1genes from Aristolochia, Liriodendron, Persea,
and Nuphar exhibit floral-preferential expression,
suggesting that the floral function of AtSK11 and AtSKI2
(recent duplicates in Group I-1) may be evolutionarily
conserved in most angiosperms. The Amborella Group I-
1 gene is also expressed in flowers, but appears to be pref-
erentially expressed in roots. Similarly, Group I genes
from Zamia are expressed at comparable levels in both
vegetative and reproductive tissues. These expression pat-
terns suggest an evolutionary conserved shift to flower
preferential expression by Group I-1 GSK3 genes after the
divergence of Amborella from other angiosperms.
Seedling lethality in mutants [26] have obscured the pre-
cise function of AtSK31 (a Group III gene). According to
the microarray data, AzSK31 is specifically expressed
during the latter stages of floral development, where it is
closely associated with pollen development in mature
stamens [27]. Other Group III genes do not exhibit con-
gruent expression patterns. The Aristolochia homolog of



Qi et al. BMC Evolutionary Biology 2013, 13:143
http://www.biomedcentral.com/1471-2148/13/143

Page 10 of 13

-

2500 Wroot Wleaf W shoottip M seedling Wstem W premeiotic flower & postmeiotic flower & open flower w root

2000

1500

1000

0+ .

AtSK12 AtSK13 AtSK21 AtSK22 AtSK23 AtSK31 AtSK32 AtSK41 AtSK42
Group I.1 Group 1.2 Group 1.1 Group I1.1 Group 1.1 Group Il Group Il Group IV Group IV

800
700
600 -
500 -
400 -
300 |
200 4 =
i | TSR] = , et W
Aristolochia_b4_c4273 Aristolochia_b4_c923 Aristolochia_b4_c5059 Aristolochia_b4_c5381
Group .1 Group I1.1 Group Il Group IV
700 -
600 -
500 -
400 - £
300 -
200 - ®
o | I Bl | h.‘iu.u
0 - - — - -~
Liriodendron_b4_c3638 Liriodendron_b4_c6446 Liriodendron_b4_c734 Liriodendron_b4_c1224 Liriodendron_b4_c6916
Group I.1 Group 1.2 Group I1.1 Group Il Group IV

:hhhhﬁﬂlulmHﬁJuLhLmJM

Persea_b4_cd514 Persea_b4_c5117 Persea_b4_c5963 Persea_b4_c3378 Persea_b4_c4085 Persea_b4_c7936 Persea_b4_c4957 Persea_b4_c9725 Persea_b4_c6472 Persea_b4_c3764

Group .1 Group .1 Group .2 Group II.1 Groupl.1 Groupl.1 Group Il Group Il Group IV Group IV
300 4
250 <
200
150 -
100 - ng
o+ . ‘__n;‘_u 3 e S-S .
Nuphar_b4_c7439 Nuphar_b4_c15797 Nuphar_b4_c25205 Nuphar_b4_c24467 Nuphar_b4_c10985
Group 1.1 Group |.2 Group II.1 Group Il Group IV
250
200
150 -
100 = g z
0 + v - X - — L - .
Amborella_b5_c7151 Amborella_b5_c9124 borella_b5_c8192 Amborella_b5_c3004 Amborella_b5_5537 Amborella_b5_c5868
Group 1.1 Group 1.2 Group I1.1 Group 1.2 Group Il Group IV
1400 4 o leaves wstem wopen useeds
1200 4
1000 4
800 4
600 -
400 -
= maccill M
I T ST . : :
Zamia_b2_c1954 Zamia_b2_c2867 Zamia_b2_c3402 Zamia_b2_c657
Group | Group | Group IIl Group IV

Figure 6 (See legend on next page.)




Qi et al. BMC Evolutionary Biology 2013, 13:143
http://www.biomedcentral.com/1471-2148/13/143

Page 11 of 13

(See figure on previous page.)

Figure 6 Expression profiles of GSK3 genes across floral and vegetative plant tissues in representative seed plants. Histograms compare
gene expression levels in root, stem, seedling, leaf, flower/cone (during pre-meiotic, post-meiotic, and post-anthetic developmental stages), and
fruit/seed of each species, where available. Column heights indicate normalized RPKM values per tissue, except for Arabidopsis genes where they

indicate normalized microarray signal intensities per tissue.

AtSK31 is up-regulated in leaves as well as fruits, but all
other angiosperm Group III genes, including AtSK32 (the
paralog of AtSK31), show relatively even expression levels
across multiple floral and vegetative tissues. The floral
function of AtSK31 is therefore likely to be an example of
neo-functionalization after the duplication event that pro-
duced paralogous Group III loci in Arabidopsis. Approxi-
mately two-fold up-regulation of a Zamia Group IV gene
in open female cones and seeds relative to other tissues
may represent another example of independent recruit-
ment of a GSK3 gene to a role in reproduction; in a
gymnosperm in this instance.

Conclusions

The diversification of the land plant branch of the GSK3
gene family has been reconstructed in unprecedented de-
tail by our phylogenetic analyses. Four ancient gene dupli-
cation events are inferred: in chronological sequence, they
occurred along the ancestral branches leading to extant
tracheophytes, euphyllophytes, seed plants, and flowering
plants, respectively. If these gene duplications were always
the result of WGD events, the expected increase in gene
lineages was typically countered by loss of at least one des-
cendant lineage. Local duplications affecting single ances-
tral loci could also explain the asymmetric gene tree
topology that our phylogenetic analyses reconstruct. How-
ever, multiple examples of gene losses soon after duplica-
tion are also apparent. For instance, among flowering
plants, Amborella alone may contain all the GSK3 gene
lineages descended from duplications along the ancestral
branch to extant angiosperms. Gene expression data sug-
gest that the Group 1.1 genes have an evolutionarily con-
served role in floral development, while members of other
GSK3 genes lineages have been independently recruited to
reproductive roles, for example, a Group III gene in
Arabidopsis and a Group IV gene in Zamia.

Availability of supporting data

The data sets supporting the results of this article are
available in the TreeBASE and Dryad repositories
[http://purl.org/phylo/treebase/phylows/study/TB2:514373
and [http://dx.doi.org/10.5061/dryad.76nr2, respectively].

Methods

Data retrieval, sequence alignments, and phylogenetic
analysis

To reconstruct the phylogeny of the GSK3 gene family, we
searched five sequence databases for plant GSK3 genes:

the Phytozome (http://www.phytozome.net/), Ancestral
Angiosperm Genome Project (AAGP; http://ancangio.
uga.edu/), TIGR Plant Transcript Assemblies (http://
plantta.jcviorg/), 1KP project (http://www.onekp.com/),
and NCBI nucleotide databases. NCBI's dbESTs database
was specifically searched for monilophytes, gymnosperms,
asterids, and non-Poaceae monocots. The OneKP EST
database was searched for GSK3 genes from liverworts,
mosses, lycophytes, and monilophytes to improve the
sampling of these lineages. To identify GSK3 homologs we
used a reciprocal blast strategy: nucleotide sequences of
Arabidopsis GSK3 genes [10] were first used to seed
tblastx searches to identify potential GSK3 homologs in
the above sequence data bases, and these were next used
as queries in tblastx searches of all Arabidopsis genes.
Only those genes with best hits to an Arabidopsis GSK3 in
the second blast search were considered to be true GSK3
homologs. Some EST data were assembled into contigs,
and ORFs were determined using Geneious Pro 5.4.6 [28]
prior to phylogenetic analyses (see Additional file 1). ORFs
covering less than 50% of complete genes were discarded.
In total, we collected 445 GSK3 genes from 67 species
representing all major green plant lineages: green algae
(2 species, 3 sequences), liverworts (2 species, 3 se-
quences), mosses (2 species, 8 sequences), lycophytes (2
species, 3 sequences), monilophytes (8 species, 51 se-
quences), gymnosperms (12 species, 73 sequences), and
angiosperms (39 species, 329 sequences). Accession
numbers for all sequences in their relevant databases
are provided in Additional file 1.

Nucleotide sequences translation aligned using the
MAFFT program [29] with the FFT-NS-i x1000 option in
Geneious Pro 5.4.6 [28]. Maximum likelihood (ML) [30]
phylogenetic analyses were conducted using RAXML 7.3.0
[31] with the GTRCAT model of evolution with bootstrap
support calculated over 1000 replications. Sequences from
the green algae Chlamydomonas reinhardtii and Volvox
carteri were specified as outgroups. All phylogenetic
analyses were performed on the University of Florida
High Performance Computing cluster (http://hpc.ufl.edu/).
Phylogenetic trees were viewed and edited with FigTree
v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). The AU
test [17] for an alternative position of the single lycophyte
clade was performed using CONSEL [32].

Gene expression
Our data for GSK3 gene expression are from global RNA-
Seq analyses of transcriptomes assembled for Amborella
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trichopoda, Aristolochia fimbriata, Liriodendron tulipifera,
Persea americana, Nuphar advena, and Zamia vazquezii,
by the AAGP (Chanderbali et al. in prog.). For this study,
data sets for each species were searched to obtain reads
per kilobase per million mapped (RPKM) values [33] for
each GSK3 gene across multiple vegetative and reproduct-
ive tissues. For comparisons with Arabidopsis GSK3 genes,
normalized signal intensity values were obtained for corre-
sponding tissues from the AtGenExpress microarray data
set [27].

Additional file

Additional file 1: Accession data and group membership of GSK3
homologs analyzed in this study. Gene designations representing
contigs constructed from multiple sequences have several accession
numbers.
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