Abrol DP. Diversity of pollinating insects visiting litchi flowers (Litchi chinensis Sonn.) and path analysis of environmental flowers influencing foraging behavior of four honeybee species. J Apicultural Res. 2006;45:180–7.
Google Scholar
Abrol DP. Defensive behavior of Apis cerana F. against predatory wasp. J Apicultural Sci. 2006;50:39–46.
Google Scholar
Alaux C, Crauser D, Pioz M, Saulnier C, Le Conte Y. Parasitic and immune modulation of flight activity in honey bees tracked with optical counters. J Exp Biol. 2014;217:3416–24.
PubMed
Google Scholar
Ardia DR, Gantz JE, Schneider BC, Strebel S. Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Funct Ecol. 2012;26:732–9.
Google Scholar
Arca M, Papachristoforou A, Mougel F, Rortais A, Monceau K, Bonnard O, et al. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator. Behav Processes. 2014;106:122–9.
PubMed
Google Scholar
Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010;55:207–25.
CAS
PubMed
PubMed Central
Google Scholar
Barbagallo B, Garrity PA. Temperature sensation in Drosophila. Curr Opin Neurobiol. 2015;34:8–13.
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B. 1995;57:289–300.
Google Scholar
Chase DL, Pepper JS, Koelle MR. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci. 2004;7:1096–103.
CAS
PubMed
Google Scholar
Le Conte Y, Navajas M. Climate change: impact on honey bee populations and disesases. Revue Scientifique et Technique (Intenational Office of Epizootics). 2008;27:499–510.
Google Scholar
Dahlgaard J, Loeschcke V, Michalak P, Justesen J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct Ecol. 1998;12:786–93.
Google Scholar
Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation. Annu Rev Neurosci. 2006;29:135–61.
CAS
PubMed
Google Scholar
Dolph PJ, Ranganathan R, Colley NJ, Hardy RW, Socolich M, Zuker CS. Arrestin function in inactivation of G-protein coupled receptor rhodopsin invivo. Science. 1993;260:1910–6.
CAS
PubMed
Google Scholar
Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol. 2007;67:378–93.
CAS
PubMed
Google Scholar
Dyer FC, Seeley TD. Interspecific comparisons of endothermy in honey-bees (APIS): deviations from the expected size-related patterns. J Exp Biol. 1987;127:1–26.
Google Scholar
Eells JB, Lipska BK, Yeung SK, Misler JA, Nikodem VM. Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav Brain Res. 2002;136:267–75.
CAS
PubMed
Google Scholar
Freitak D, Ots I, Vanatoa A, Hõrak P. Immune response is energetically costly in white cabbage butterfly pupae. Proc R Soc London Ser B. 2003;270:220–2.
Google Scholar
Golan DE, Armstrong EJ, Armstrong AW. Principles of pharmacology. 4th ed. Wolters Kluwer Press; 2017.
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
CAS
PubMed
PubMed Central
Google Scholar
Gu G, Meng Y, Tan K, Dong S, Nieh JC. Lethality of honey bee stings to heavily armored hornets. Biology. 2021;10:484. https://0-doi-org.brum.beds.ac.uk/10.3390/biology10060484.
Article
PubMed
PubMed Central
Google Scholar
Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454:217–20.
CAS
PubMed
PubMed Central
Google Scholar
Harano KI, Sasaki M, Nagao T, Sasaki K. Dopamine influences locomotor activity in honeybee queens: implications for a behavioural change after mating. Physiol Entomol. 2008;33:395–9.
Google Scholar
Heinrich B. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. J Exp Biol. 1980;85:61–72.
Google Scholar
Heinrich B. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J Exp Biol. 1980;85:73–87.
Google Scholar
Heinrich B. The hot-blooded insects. Princeton University Press; 1994.
Google Scholar
Hosono S, Nakamura J, Ono M. European honeybee defense against Japanese yellow hornet using heat generation by bee-balling behavior. Entomol Sci. 2017;20:163–7.
Google Scholar
Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften. 2007;94:247–67.
CAS
PubMed
Google Scholar
Junca P, Sandoz JC. Heat perception and aversive learning in honey bees: putative involvement of the thermal/chemical sensor AmHsTRPA. Front Physiol. 2015;6:1–15.
Google Scholar
Ken T, Hepburn HR, Radloff SE, Yusheng Y, Yiqiu L, Danyin Z, Neumann P. Heat-balling wasps by honeybees. Naturwissenschaften. 2005;92:492–5.
PubMed
Google Scholar
Kikawada T, Saito A, Kanamori Y, Nakahara Y, Iwata K, Tanaka D, et al. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci. 2007;104:11585–90.
CAS
PubMed
PubMed Central
Google Scholar
King AM, MacRae TH. Insect heat shock proteins during stress and diapause. Ann Rev Entomol. 2015;60:59–75.
CAS
Google Scholar
Kleinhenz M. Hot bees in empty broodnest cells: heating from within. J Exp Biol. 2003;206:4217–31.
PubMed
Google Scholar
Kohno K, Sokabe T, Tominaga M, Kadowaki T. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J Neurosci. 2010;30:12219–29.
CAS
PubMed
PubMed Central
Google Scholar
Koo J, Son TG, Kim SY, Lee KY. Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. J Asia-Pacific Entomol. 2015;18:583–9.
CAS
Google Scholar
Kramer KJ, Muthukrishnan S. Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol. 1997;27:887–900.
CAS
PubMed
Google Scholar
Kwon Y, Shim HS, Wang X, Montell C. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci. 2008;11:871–3.
CAS
PubMed
Google Scholar
Ma L, Pei G. Β-Arrestin signaling and regulation of transcription. J Cell Sci. 2007;120(2):213–8.
CAS
PubMed
Google Scholar
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86:883–901.
CAS
PubMed
Google Scholar
Matsuura M. Ecological study on vespine wasp (Hymenoptera: Vespidae) attacking honeybee colonies. I. Seasonal changes in the frequency of visits to apiaries by vespine wasps and damage inflicted, especially in the absence of artificial protection. Appl Entomol Zool. 1988;23:428–40.
Google Scholar
Minke B, Peters M. Rhodopsin as thermosensor? Science. 2011;331:1272–3.
CAS
PubMed
Google Scholar
Monceau K, Arca M, Leprêtre L, Bonnard O, Arnold G, Thiéry D. How Apis mellifera behaves with its Invasive Hornet Predator Vespa velutina? J Insect Behav. 2018;31:1–11.
Google Scholar
Montell C. Drosophila visual transduction. Trends Neurosci. 2012;35:356–63.
CAS
PubMed
PubMed Central
Google Scholar
Murray RK, Bender DA, Botham KM, Kenelly PJ, Rodwell VW, Weil PA. Harper’s illustrated biochemistry 28th edition; 2009.
Mustard JA, Pham PM, Smith BH. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J Insect Physiol. 2010;56:422–30.
CAS
PubMed
Google Scholar
Nakao K, Katsuura G, Morii N, Itoh H, Shiono S, Yamada T, et al. Inhibitory effect of centrally administered atrial natriuretic polypeptide on the brain dopaminergic system in rats. Eur J Pharmacol. 1986;131:171–7.
CAS
PubMed
Google Scholar
Nation JL. Insect physiology. CRC Press; 2015.
Google Scholar
Neely GG, Keene AC, Duchek P, Chang EC, Wang QP, Aksoy YA, et al. TrpA1 regulates thermal nociception in Drosophila. PLoS ONE. 2011;6:e24343.
CAS
PubMed
PubMed Central
Google Scholar
Nouvian M, Reinhard J, Giurfa M. The defensive response of the honeybee Apis mellifera. J Exp Biol. 2016;219:3505–17.
PubMed
Google Scholar
Oldroyd BP, Wongsiri S. Asian honey bee. Harvard University Press; 2006.
Google Scholar
Ono M, Okada I, Sasaki M. Heat production by balling in the Japanese honeybee, Apis cerana japonica as a defensive behavior against the hornet, Vespa simillima xanthoptera (Hymenoptera: Vespidae). Experientia. 1987;43:1031–4.
Google Scholar
Ono M, Igarashi T, Ohno E, Sasaki M. Unusual thermal defence by a honeybee against mass attack by hornets. Nature. 1995;377:334–6.
CAS
Google Scholar
Panzenböck U, Crailsheim K. Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.). J Insect Physiol. 1997;43:155–65.
PubMed
Google Scholar
Papachristoforou A, Rortais A, Zafeiridou G, Theophilidis G, Garnery L, Thrasyvoulou A, Arnold G. Smothered to death: hornets asphyxiated by honeybees. Curr Biol. 2007;17(18):R795–6.
CAS
PubMed
Google Scholar
Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. 2006;37:637–69.
Google Scholar
Peng YS, Fang Y, Xu S, Ge L. The resistance mechanism of the Asian honey bee, Apis cerana Fabr to an ectoparasitic mite, Varroa jacobsoni Oudemans. J Invertebr Pathol. 1987;49:54–60.
Google Scholar
Plaçais PY, De Tredern É, Scheunemann L, Trannoy S, Goguel V, Han KA, et al. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat Commun. 2017;8.
Ricciotti E, Fitzgerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.
CAS
PubMed
PubMed Central
Google Scholar
Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 2005;19:419–24.
CAS
PubMed
PubMed Central
Google Scholar
Sayeed O, Benzer S. Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci. 1996;93:6079–84.
CAS
PubMed
PubMed Central
Google Scholar
Seeley T. Honeybee ecology. Princeton University Press; 1985.
Google Scholar
Shen WL, Kwon Y, Adegbola AA, Luo J, Chess A, Montell C. Function of rhodopsin in temperature discrimination in Drosophila. Science. 2011;331:1333–6.
CAS
PubMed
Google Scholar
Shen Y, Gong YJ, Gu J, Huang LH, Feng QL. Physiological effect of mild thermal stress and its induction of gene expression in the common cutworm, Spodoptera litura. J Insect Physiol. 2014;61:34–41.
CAS
PubMed
Google Scholar
Sokabe T, Chen HC, Luo J, Montel C. A switch in thermal preference in Drosophila larvae depends on multiple rhodopsins. Cell Rep. 2016;17:336–44.
CAS
PubMed
PubMed Central
Google Scholar
Stabentheiner A, Kovac H, Brodschneider R. Honeybee colony thermoregulation—regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE. 2010;5:e8967.
PubMed
PubMed Central
Google Scholar
Sugahara M, Sakamoto F. Heat and carbon dioxide generated by honeybees jointly act to kill hornets. Naturwissenschaften. 2009;96:1133–6.
CAS
PubMed
Google Scholar
Sugahara M, Nishimura Y, Sakamoto F. Differences in heat sensitivity between Japanese honeybees and hornets under high carbon dioxide and humidity conditions inside bee balls. Zool Sci. 2012;29:30–6.
CAS
Google Scholar
Sun J, Nishiyama T, Shimizu K, Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics. 2013;14:219.
PubMed
PubMed Central
Google Scholar
Sun Y, Zhao J, Sheng Y, Xiao YF, Zhang YJ, Bai LX, et al. Identification of heat shock cognate protein 70 gene (Alhsc70) of Apolygus lucorum and its expression in response to different temperature and pesticide stresses. Insect Sci. 2016;23:37–49.
CAS
PubMed
Google Scholar
Tan K, Yang MX, Wang ZW, Li H, Zhang ZY, Radloff SE, Hepburn R. Cooperative wasp-killing by mixed-species colonies of honeybees Apis cerana and Apis mellifera. Apidologie. 2012;43:195–200.
Google Scholar
Torson AS, Yocum GD, Rinehart JP, Nash SA, Kvidera KM, Bowsher JH. Physiological responses to fluctuating temperatures are characterized by distinct transcriptional profiles in a solitary bee. J Exp Biol. 2017;220:3372–80.
PubMed
Google Scholar
Ugajin A, Kiya T, Kunieda T, Ono M, Yoshida T, Kubo T. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a “Hot defensive bee ball.” PLoS ONE. 2012;7:e32902.
CAS
PubMed
PubMed Central
Google Scholar
Verma LR, Dulta PC. Foraging behavior of Apis cerana indica and Apis mellifera in pollinating apple flowers. J Apic Res. 1986;25:197–201.
Google Scholar
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17:126–39.
CAS
PubMed
Google Scholar
Winston ML. The biology of the honey bee. Harvard University Press; 1987.
Google Scholar
Wyatt GR. The biochemistry of sugars and polysaccharides in insects. Adv Insect Physiol. 1966;4:287–360.
Google Scholar
Xu P, Shi M, Chen XX. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. PLoS ONE. 2009;4:e4239.
PubMed
PubMed Central
Google Scholar
Yamaguchi Y, Ugajin A, Utagawa S, Nishimura M, Hattori M, Ono M. Double-edged heat: honeybee participation in a hot defensive bee ball reduces life expectancy with an increased likelihood of engaging in future defense. Behav Ecol Sociobiol. 2018;72:123.
Google Scholar
Zhou H, Tai HH. Threonine 188 is critical for interaction with NAD + in human NAD + -dependent 15-hydroxyprostaglandin dehydrogenase. Biochem Biophys Res Commun. 1999;257:414–7.
CAS
PubMed
Google Scholar