Bedoya AM, Leaché AD, Olmstead RG. Andean uplift, drainage basin formation, and the evolution of plants living in fast-flowing aquatic ecosystems in northern South America. New Phytol. 2021;232:2175–90. https://0-doi-org.brum.beds.ac.uk/10.1111/nph.17649.
Article
PubMed
Google Scholar
Salgado-Roa FC, Gamez A, Sanchez-Herrera M, Pardo-Díaz C, Salazar C. Divergence promoted by the northern Andes in the giant fishing spider Ancylometes bogotensis (Araneae: Ctenidae). Biol J Linn Soc. 2021;132:495–508. https://0-doi-org.brum.beds.ac.uk/10.1093/biolinnean/blaa220.
Article
Google Scholar
Quintero E, Ribas CC, Cracraft J. The Andean Hapalopsittaca parrots (Psittacidae, Aves): an example of montane-tropical lowland vicariance: biogeography of Hapalopsittaca parrots. Zool Scr. 2013;42:28–43. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1463-6409.2012.00567.x.
Article
Google Scholar
Rosser N, Shirai LT, Dasmahapatra KK, Mallet J, Freitas AVL. The Amazon river is a suture zone for a polyphyletic group of co-mimetic heliconiine butterflies. Ecography. 2021;44:177–87. https://0-doi-org.brum.beds.ac.uk/10.1111/ecog.05282.
Article
Google Scholar
Menezes RST, Lloyd MW, Brady SG. Phylogenomics indicates Amazonia as the major source of Neotropical swarm-founding social wasp diversity. Proc R Soc B Biol Sci. 2020;287:20200480. https://0-doi-org.brum.beds.ac.uk/10.1098/rspb.2020.0480.
Article
CAS
Google Scholar
Oberdorff T, Dias MS, Jézéquel C, Albert JS, Arantes CC, Bigorne R, et al. Unexpected fish diversity gradients in the Amazon basin. Sci Adv. 2019;5:eaav8681. https://0-doi-org.brum.beds.ac.uk/10.1126/sciadv.aav8681.
Article
PubMed
PubMed Central
Google Scholar
Norambuena HV, Van Els P. A general scenario to evaluate evolution of grassland birds in the Neotropics. Ibis. 2021;163:722–7. https://0-doi-org.brum.beds.ac.uk/10.1111/ibi.12905.
Article
Google Scholar
Prado DE, Gibbs PE. Patterns of species distributions in the dry seasonal forests of South America. Ann Mo Bot Gard. 1993;80:902. https://0-doi-org.brum.beds.ac.uk/10.2307/2399937.
Article
Google Scholar
Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, de Oliveira G, Rangel TF, et al. A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol. 2012;21:5845–63. https://0-doi-org.brum.beds.ac.uk/10.1111/mec.12071.
Article
PubMed
Google Scholar
Pennington RT, Lewis GP, Ratter JA, editors. Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. 1st ed. Boca Raton: CRC Press; 2006. https://0-doi-org.brum.beds.ac.uk/10.1201/9781420004496.
Book
Google Scholar
Corbett EC, Bravo GA, Schunck F, Naka LN, Silveira LF, Edwards SV. Evidence for the pleistocene arc hypothesis from genome-wide SNPs in a Neotropical dry forest specialist, the Rufous-fronted Thornbird (Furnariidae: Phacellodomus rufifrons ). Mol Ecol. 2020;29:4457–72. https://0-doi-org.brum.beds.ac.uk/10.1111/mec.15640.
Article
CAS
PubMed
Google Scholar
Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci. 2018;115:7985–90. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1803908115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frankiewicz KE, Banasiak Ł, Oskolski A, Reduron J-P, Reyes-Betancort JA, Alsarraf M, et al. Long-distance dispersal events rather than growth habit and life-history traits affect diversification rate in tribe Apieae (Apiaceae). Bot J Linn Soc. 2021. https://0-doi-org.brum.beds.ac.uk/10.1093/botlinnean/boab032.
Article
Google Scholar
Cain ML, Milligan BG, Strand AE. Long-distance seed dispersal in plant populations. Am J Bot. 2000;87:1217–27.
Article
CAS
PubMed
Google Scholar
Bohrer G, Nathan R, Volis S. Effects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scales. J Ecol. 2005;93:1029–40. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-2745.2005.01048.x.
Article
Google Scholar
Werneck FP, Gamble T, Colli GR, Rodrigues MT, Sites JW Jr. Deep diversification and long-term persistence in the south american ‘dry diagonal’: integrating continent-wide phylogeography and distribution modeling of geckos: deep divergence of south american ‘dry diagonal’ biomes. Evolution. 2012;66:3014–34. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1558-5646.2012.01682.x.
Article
PubMed
Google Scholar
Moraes EM, Yotoko KSC, Manfrin MH, Solferini VN, Sene FM. Phylogeography of the cactophilic species Drosophila gouveai: demographic events and divergence timing in dry vegetation enclaves in eastern Brazil. J Biogeogr. 2009;36:2136–47. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-2699.2009.02145.x.
Article
Google Scholar
Bartoleti LFdM, Peres EA, Sobral-Souza T, Fontes FvHM, Silva MJd, Solferini VN. Phylogeography of the dry vegetation endemic species Nephila sexpunctata (Araneae: Araneidae) suggests recent expansion of the neotropical dry diagonal. J Biogeogr. 2017;44:2007–20. https://0-doi-org.brum.beds.ac.uk/10.1111/jbi.12998.
Article
Google Scholar
Ramos ACS, Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB. Phylogeography of the Tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of quaternary climate changes in the Brazilian Cerrado. Ann Bot. 2007;100:1219–28. https://0-doi-org.brum.beds.ac.uk/10.1093/aob/mcm221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, et al. The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Mol Ecol. 2008;17:3147–59. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2008.03817.x.
Article
CAS
PubMed
Google Scholar
Chagas C. Nova tripanozomiase humana. The new human tripanosomiase. Studies about morphology and life cycle of Schizotrypanum cruzi n. gen., n. sp., etiologic agent of the new human morbidity. Mem Inst Oswaldo Cruz. 1909;1:159–2118.
Article
Google Scholar
Hwang WS, Weirauch C. Evolutionary history of Assassin Bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS ONE. 2012;7:e45523. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0045523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dias JCP, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz. 2002;97:603–12. https://0-doi-org.brum.beds.ac.uk/10.1590/S0074-02762002000500002.
Article
CAS
PubMed
Google Scholar
Dujardin J-P, Beard CB, Ryckman R. The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infect Genet Evol. 2007;7:161–7. https://0-doi-org.brum.beds.ac.uk/10.1016/j.meegid.2006.07.005.
Article
PubMed
Google Scholar
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14:e0007831. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pntd.0007831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernández C, AristeudaRosa J, Vallejo GA, Guhl F, Ramírez JD. Taxonomy, evolution, and biogeography of the rhodniini tribe (Hemiptera: Reduviidae). Diversity. 2020;12:97. https://0-doi-org.brum.beds.ac.uk/10.3390/d12030097.
Article
Google Scholar
Justi SA, Galvão C. The evolutionary origin of diversity in chagas disease vectors. Trends Parasitol. 2017;33:42–52. https://0-doi-org.brum.beds.ac.uk/10.1016/j.pt.2016.11.002.
Article
PubMed
Google Scholar
Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the triatominae, vectors of Chagas disease. Adv Parasitol. 2018;99:265–344. https://0-doi-org.brum.beds.ac.uk/10.1016/bs.apar.2017.12.002.
Article
PubMed
Google Scholar
Abad-Franch F, Monteiro FA, Jaramillo ON, Gurgel-Gonçalves R, Dias FBS, Diotaiuti L. Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: a multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Trop. 2009;110:159–77. https://0-doi-org.brum.beds.ac.uk/10.1016/j.actatropica.2008.06.005.
Article
PubMed
Google Scholar
Gurgel-Gonçalves R, Silva RB. Analysis of the geographical distribution of Psammolestes Bergroth (Hemiptera: Heteroptera: Reduviidae: Triatominae) in South America, with new records of Psammolestes tertius Lent & Jurberg. Zootaxa. 2009;2033:41–8. https://0-doi-org.brum.beds.ac.uk/10.11646/zootaxa.2033.1.4.
Article
Google Scholar
Lent H. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. New York: American Museum of Natural History; 1979.
Google Scholar
Gurgel-Gonçalves R, Cuba CAC. Infestation of thornbird nests (Passeriformes: Furnariidae) by Psammolestes tertius (Hemiptera: Reduviidae) across Brazilian Cerrado and Caatinga ecoregions. Zool Curitiba Impresso. 2011;28:411–4. https://0-doi-org.brum.beds.ac.uk/10.1590/S1984-46702011000300017.
Article
Google Scholar
Marti GA, Echeverria MG, Waleckx E, Susevich ML, Balsalobre A, Gorla DE. Triatominae in furnariid nests of the Argentine Gran Chaco. J Vector Ecol. 2014;39:66–71. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1948-7134.2014.12071.x.
Article
CAS
PubMed
Google Scholar
Ceccarelli S, Balsalobre A, Medone P, Cano ME, Gurgel Gonçalves R, Feliciangeli D, et al. DataTri, a database of American triatomine species occurrence. Sci Data. 2018;5:180071. https://0-doi-org.brum.beds.ac.uk/10.1038/sdata.2018.71.
Article
PubMed
PubMed Central
Google Scholar
Oliveira J, Alevi KCC, Ravazi A, Herrera HM, Santos FM, Azeredo-Oliveira MTV, et al. New evidence of the monophyletic relationship of the genus. Am J Trop Med Hyg. 2018;99:1485–8. https://0-doi-org.brum.beds.ac.uk/10.4269/ajtmh.18-0109.
Article
PubMed
PubMed Central
Google Scholar
Oliveira J, Alevi KC, Fonseca EO, Souza OM, Santos CG, Azeredo-Oliveira MT, et al. New record and cytogenetic analysis of Psammolestes tertius Lent & Jurberg, 1965 (Hemiptera, Reduviidae, Triatominae) from Bahia State, Brazil. Genet Mol Res. 2016. https://0-doi-org.brum.beds.ac.uk/10.4238/gmr.15028004.
Article
PubMed
Google Scholar
Panzera Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, Pérez R, et al. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res. 2012;138:56–67. https://0-doi-org.brum.beds.ac.uk/10.1159/000341888.
Article
CAS
PubMed
Google Scholar
Ravazi A, de Oliveira J, Campos FF, Madeira FF, dos Reis YV, de Oliveira ABB, et al. Trends in evolution of the Rhodniini tribe (Hemiptera, Triatominae): experimental crosses between Psammolestes tertius Lent & Jurberg, 1965 and P. coreodes Bergroth, 1911 and analysis of the reproductive isolating mechanisms. Parasit Vectors. 2021;14:350. https://0-doi-org.brum.beds.ac.uk/10.1186/s13071-021-04854-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalheiro J, Barretto M. Estudos sobre reservatórios e vectores silvestres do Trypanosoma cruzi. LX – Tentativas de cruzamento de Rhodnius prolixus Stål, 1859 com Rhodnius neglectus Lent, 1954 (Hemiptera, Reduviidae). Rev Inst Med Trop São Paulo. 1976;18:17–23.
CAS
PubMed
Google Scholar
Monteiro FA, Wesson DM, Dotson EM, Schofield CJ, Beard CB. Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. Am J Trop Med Hyg. 2000;62:460–5.
Article
CAS
PubMed
Google Scholar
de Paula AS, Diotaiuti L, Schofield CJ. Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Mol Phylogenet Evol. 2005;35:712–8. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2005.03.003.
Article
CAS
PubMed
Google Scholar
Hypsa V, Tietz DF, Zrzavý J, Rego RO, Galvao C, Jurberg J. Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Mol Phylogenet Evol. 2002;23:447–57.
Article
CAS
PubMed
Google Scholar
Justi SA, Galvão C, Schrago CG. Geological changes of the Americas and their influence on the diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl Trop Dis. 2016;10:1–22. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pntd.0004527.
Article
CAS
Google Scholar
Patterson JS, Gaunt MW. Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Mol Phylogenet Evol. 2010;56:608–21. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2010.04.038.
Article
PubMed
Google Scholar
Kieran TJ, Gordon ERL, Zaldívar-Riverón A, Ibarra-Cerdeña CN, Glenn TC, Weirauch C. Ultraconserved elements reconstruct the evolution of Chagas disease-vectoring kissing bugs (Reduviidae: Triatominae). Syst Entomol. 2021;46:725–40. https://0-doi-org.brum.beds.ac.uk/10.1111/syen.12485.
Article
Google Scholar
Garrido R, Bacigalupo A, Peña-Gómez F, Bustamante RO, Cattan PE, Gorla DE, et al. Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi. Parasit Vectors. 2019;12:478. https://0-doi-org.brum.beds.ac.uk/10.1186/s13071-019-3744-9.
Article
PubMed
PubMed Central
Google Scholar
Ceccarelli S, Justi SA, Rabinovich JE, Diniz Filho JAF, Villalobos F. Phylogenetic structure of geographical co-occurrence among New World Triatominae species, vectors of Chagas disease. J Biogeogr. 2020;47:1218–31. https://0-doi-org.brum.beds.ac.uk/10.1111/jbi.13810.
Article
Google Scholar
Ibarra-Cerdeña CN, Zaldívar-Riverón A, Peterson AT, Sánchez-Cordero V, Ramsey JM. Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas’ disease. PLoS Negl Trop Dis. 2014;8:e3266. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pntd.0003266.
Article
PubMed
PubMed Central
Google Scholar
de Paula AS, Barreto C, Telmo MCM, Diotaiuti L, Galvão C. Historical biogeography and the evolution of hematophagy in Rhodniini (Heteroptera: Reduviidae: Triatominae). Front Ecol Evol. 2021;9:660151. https://0-doi-org.brum.beds.ac.uk/10.3389/fevo.2021.660151.
Article
Google Scholar
Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals: BIOGEOGRAPHY OF MITO-NUCLEAR DISCORDANCE. Mol Ecol. 2012;21:3907–30. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2012.05664.x.
Article
CAS
PubMed
Google Scholar
Patten MA, Smith-Patten BD. Biogeographical boundaries and Monmonier’s algorithm: a case study in the northern Neotropics. J Biogeogr. 2008;35:407–16. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-2699.2007.01831.x.
Article
Google Scholar
Méndez-Camacho K, Leon-Alvarado O, Miranda-Esquivel DR. Biogeographic evidence supports the Old Amazon hypothesis for the formation of the Amazon fluvial system. PeerJ. 2021;9:e12533. https://0-doi-org.brum.beds.ac.uk/10.7717/peerj.12533.
Article
PubMed
PubMed Central
Google Scholar
Carneiro L, Bravo GA, Aristizábal N, Cuervo AM, Aleixo A. Molecular systematics and biogeography of lowland antpittas (Aves, Grallariidae): the role of vicariance and dispersal in the diversification of a widespread Neotropical lineage. Mol Phylogenet Evol. 2018;120:375–89. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2017.11.019.
Article
PubMed
Google Scholar
Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. Amazonian amphibian diversity is primarily derived from Late Miocene Andean Lineages. PLoS Biol. 2009;7:e1000056. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pbio.1000056.
Article
CAS
PubMed Central
Google Scholar
Maciel NM, Collevatti RG, Colli GR, Schwartz EF. Late Miocene diversification and phylogenetic relationships of the huge toads in the Rhinella marina (Linnaeus, 1758) species group (Anura: Bufonidae). Mol Phylogenet Evol. 2010;57:787–97. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2010.08.025.
Article
PubMed
Google Scholar
Quiagen. https://www.qiagen.com/us/resources/resourcedetail?id=cabd47a4-cb5a-4327-b10d-d90b8542421e&lang=en.
Nascimento JD, Da Rosa JA, Salgado-Roa FC, Hernández C, Pardo-Diaz C, Alevi KCC, et al. Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae). PLoS ONE. 2019;14:1–17. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0211285.
Article
CAS
Google Scholar
Caicedo-Garzón V, Salgado-Roa FC, Sánchez-Herrera M, Hernández C, Arias-Giraldo LM, García L, et al. Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLoS ONE. 2019;14:1–18. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0223963.
Article
CAS
Google Scholar
Lyman DF, Monteiro FA, Escalante AA, Cordon-Rosales C, Wesson DM, Dujardin JP, et al. Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. Am J Trop Med Hyg. 1999;60:377–86. https://0-doi-org.brum.beds.ac.uk/10.4269/ajtmh.1999.60.377.
Article
CAS
PubMed
Google Scholar
Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.51. 2018. 2019.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msx248.
Article
CAS
PubMed
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msaa015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://0-doi-org.brum.beds.ac.uk/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4. https://0-doi-org.brum.beds.ac.uk/10.1214/aos/1176344136.
Article
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msx281.
Article
CAS
PubMed
Google Scholar
Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol. 2011;60:685–99. https://0-doi-org.brum.beds.ac.uk/10.1093/sysbio/syr041.
Article
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://0-doi-org.brum.beds.ac.uk/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Gadagkar SR, Rosenberg MS, Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool B Mol Dev Evol. 2005;304B:64–74. https://0-doi-org.brum.beds.ac.uk/10.1002/jez.b.21026.
Article
CAS
Google Scholar
Ogilvie HA, Bouckaert RR, Drummond AJ. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol Biol Evol. 2017;34:2101–14. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msx126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heled J, Drummond AJ. Bayesian inference of species trees from multilocus data. Mol Biol Evol. 2010;27:570–80. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msp274.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msy096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018. https://0-doi-org.brum.beds.ac.uk/10.1093/ve/vey016.
Article
PubMed
PubMed Central
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 2018;67:901–4. https://0-doi-org.brum.beds.ac.uk/10.1093/sysbio/syy032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peretolchina T, Pavan MG, Corrêa-Antônio J, Gurgel-Gonçalves R, Lima MM, Monteiro FA. Phylogeography and demographic history of the Chagas disease vector Rhodnius nasutus (Hemiptera: Reduviidae) in the Brazilian Caatinga biome. PLoS Negl Trop Dis. 2018;12:e0006731. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pntd.0006731.
Article
PubMed
PubMed Central
Google Scholar
Pfeiler E, Bitler BG, Ramsey JM, Palacios-Cardiel C, Markow TA. Genetic variation, population structure, and phylogenetic relationships of Triatoma rubida and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran Desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogenet Evol. 2006;41:209–21. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2006.07.001.
Article
CAS
PubMed
Google Scholar
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 25: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15:e1006650. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pcbi.1006650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. The BPP program for species tree estimation and species delimitation. Curr Zool. 2015;61:854–65. https://0-doi-org.brum.beds.ac.uk/10.1093/czoolo/61.5.854.
Article
Google Scholar
Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. 2017;33:1630–8. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btx025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Rannala B. Unguided species delimitation using DNA sequence data from multiple loci. Mol Biol Evol. 2014;31:3125–35. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msu279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol. 2013;22:4369–83. https://0-doi-org.brum.beds.ac.uk/10.1111/mec.12413.
Article
PubMed
Google Scholar
Hudson RR, Boos DD, Kaplan NL. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992;9:138–51. https://0-doi-org.brum.beds.ac.uk/10.1093/oxfordjournals.molbev.a040703.
Article
CAS
PubMed
Google Scholar
Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol Biol Evol. 2002;19:2092–100. https://0-doi-org.brum.beds.ac.uk/10.1093/oxfordjournals.molbev.a004034.
Article
CAS
PubMed
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clement M, Snell Q, Walker P, Posada D, Crandall K. TCS: estimating gene genealogies. 7.
Leigh JW, Bryant D. popart: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6. https://0-doi-org.brum.beds.ac.uk/10.1111/2041-210X.12410.
Article
Google Scholar
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1654-1103.2003.tb02228.x.
Article
Google Scholar
Hijmans RJ, Williams E, Vennes C, Hijmans MRJ. Package ‘geosphere.’ Spherical Trigonometry. 2017;1:7.
Google Scholar
Manni F, Rard EG, Heyer E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. 18.
Jombart T, Ahmed I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btr521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14:2611–20. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2005.02553.x.
Article
CAS
PubMed
Google Scholar
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61. https://0-doi-org.brum.beds.ac.uk/10.1007/s12686-011-9548-7.
Article
Google Scholar
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–6. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btm233.
Article
CAS
PubMed
Google Scholar
Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4:137–8. https://0-doi-org.brum.beds.ac.uk/10.1046/j.1471-8286.2003.00566.x.
Article
Google Scholar
Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD: a platform for ensemble forecasting of species distributions. Ecography. 2009;32:369–73.
Article
Google Scholar
Ripley BD, Naylor P. Pattern recognition and neural networks. Nature. 1996;381:206–206.
Google Scholar
McCullagh P, Nelder JA. Generalized linear models. London: Chapman; 1989.
Book
Google Scholar
Friedman JH. Recent advances in predictive (machine) learning. J Classif. 2006;23:175–97.
Article
Google Scholar
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–59. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ecolmodel.2005.03.026.
Article
Google Scholar
Chefaoui RM, Lobo JM. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model. 2008;210:478–86. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ecolmodel.2007.08.010.
Article
Google Scholar
Wisz MS, Guisan A. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol. 2009;9:8. https://0-doi-org.brum.beds.ac.uk/10.1186/1472-6785-9-8.
Article
PubMed
PubMed Central
Google Scholar
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol. 2012;3:327–38. https://0-doi-org.brum.beds.ac.uk/10.1111/j.2041-210X.2011.00172.x.
Article
Google Scholar
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017;4:170122. https://0-doi-org.brum.beds.ac.uk/10.1038/sdata.2017.122.
Article
PubMed
PubMed Central
Google Scholar
Reuter HI, Nelson A, Jarvis A. An evaluation of void-filling interpolation methods for SRTM data. Int J Geogr Inf Sci. 2007;21:983–1008. https://0-doi-org.brum.beds.ac.uk/10.1080/13658810601169899.
Article
Google Scholar
Thuiller W, Araújo MB, Lavorel S. Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci. 2003;14:669–80. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1654-1103.2003.tb02199.x.
Article
Google Scholar
Brown JL, Carnaval AC. A tale of two niches: methods, concepts, and evolution. Front Biogeogr. 2019;1:1.
Google Scholar
Rödder D, Engler JO. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob Ecol Biogeogr. 2011;20:915–27. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1466-8238.2011.00659.x.
Article
Google Scholar
Brown JL, Carnaval AC. A tale of two niches: methods, concepts, and evolution. Front Biogeogr. 2019. https://0-doi-org.brum.beds.ac.uk/10.21425/F5FBG44158.
Article
Google Scholar