Mupepele A-C, Keller M, Dormann CF. European agroforestry has no unequivocal effect on biodiversity: a time-cumulative meta-analysis. BMC Ecol Evol. 2021;21(1):193. https://0-doi-org.brum.beds.ac.uk/10.1186/s12862-021-01911-9.
Article
PubMed
PubMed Central
Google Scholar
Burgess PJ, Rosati A. Advances in European agroforestry: results from the AGFORWARD project. Agroforest Syst. 2018;92(4):801–10. https://0-doi-org.brum.beds.ac.uk/10.1007/s10457-018-0261-3.
Article
Google Scholar
Toussaint M, Darrot C (2021) Enquête sociologique auprès des agriculteurs planteurs de bocage: Rapport d’étude—Juin 2021. Institut Agro Agrocampus Ouest—UMR CNRS 6590 ESO, 149 pp. hal-03277645.
Alignier A, Uroy L, Aviron S. The role of hedgerows in supporting biodiversity and other ecosystem services in intensively managed agricultural landscapes. In: Bàrberi P, Moonen A-C, editors. Reconciling agricultural production with biodiversity conservation. Cambridge, UK: Burleigh Dodds Science Publishing; 2020. p. 177–204.
Chapter
Google Scholar
Moreno G, Aviron S, Berg S, Crous-Duran J, Franca A, de Jalón SG, Hartel T, Mirck J, Pantera A, Palma JHN, Paulo JA, Re GA, Sanna F, Thenail C, Varga A, Viaud V, Burgess PJ. Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agrofor Syst. 2018;92(4):877–91. https://0-doi-org.brum.beds.ac.uk/10.1007/s10457-017-0126-1.
Article
Google Scholar
Dover JW, editor. The ecology of hedgerows and field margins. New York, USA: Routledge; 2019.
Google Scholar
Boinot S, Poulmarc’h J, Mézière D, Lauri P-É, Sarthou J-P. Distribution of overwintering invertebrates in temperate agroforestry systems: implications for biodiversity conservation and biological control of crop pests. Agric Ecosyst Environ. 2019;285: 106630. https://0-doi-org.brum.beds.ac.uk/10.1016/j.agee.2019.106630.
Article
Google Scholar
López-Carrasco C, López-Sánchez A, San Miguel A, Roig S. The effect of tree cover on the biomass and diversity of the herbaceous layer in a Mediterranean dehesa. Grass Forage Sci. 2015;70(4):639–50. https://0-doi-org.brum.beds.ac.uk/10.1111/gfs.12161.
Article
Google Scholar
López-Sánchez A, San Miguel A, Dirzo R, Roig S. Scattered trees and livestock grazing as keystones organisms for sustainable use and conservation of Mediterranean dehesas. J Nat Conserv. 2016;33:58–67. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jnc.2016.07.003.
Article
Google Scholar
López-Sánchez A, San Miguel A, López-Carrasco C, Huntsinger L, Roig S. The important role of scattered trees on the herbaceous diversity of a grazed Mediterranean dehesa. Acta Oecol. 2016;76:31–8. https://0-doi-org.brum.beds.ac.uk/10.1016/j.actao.2016.08.003.
Article
Google Scholar
Rossetti I, Bagella S, Cappai C, Caria MC, Lai R, Roggero PP, Martins da Silva P, Sousa JP, Querner P, Seddaiu G. Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric Ecosyst Environ. 2015;202:203–16. https://0-doi-org.brum.beds.ac.uk/10.1016/j.agee.2015.01.008.
Article
Google Scholar
Forman RTT, Baudry J. Hedgerows and hedgerow networks in landscape ecology. Environ Manage. 1984;8(6):495–510. https://0-doi-org.brum.beds.ac.uk/10.1007/BF01871575.
Article
Google Scholar
Gosme M, Dufour L, Inurreta Aguirre HD, Dupraz C (2016) Microclimatic effect of agroforestry on diurnal temperature cycle, In European Agroforestry Conference. Celebrating 20 years of Agroforestry research in Europe. European Agroforestry Conference, Montpellier, France. 23–25 March, pp. 182–185.
Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett. 2014;17(7):866–80. https://0-doi-org.brum.beds.ac.uk/10.1111/ele.12277.
Article
PubMed
Google Scholar
Boinot S, Mézière D, Poulmarc’h J, Saintilan A, Lauri P-E, Sarthou J-P. Promoting generalist predators of crop pests in alley cropping agroforestry fields: farming system matters. Ecol Eng. 2020;158: 106041. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ecoleng.2020.106041.
Article
Google Scholar
Gibbs S, Koblents H, Coleman B, Gordon A, Thevathasan N, Wiliams P. Avian diversity in a temperate tree-based intercropping system from inception to now. Agroforest Syst. 2016;90(5):905–16. https://0-doi-org.brum.beds.ac.uk/10.1007/s10457-016-9901-7.
Article
Google Scholar
Klaa K, Mill PJ, Incoll LD. Distribution of small mammals in a silvoarable agroforestry system in Northern England. Agrofor Syst. 2005;63:101–10.
Article
Google Scholar
Bentrup G, Hopwood J, Adamson NL, Vaughan M. Temperate agroforestry systems and insect pollinators: a review. Forests. 2019;10(11):981. https://0-doi-org.brum.beds.ac.uk/10.3390/f10110981.
Article
Google Scholar
Fontaine C, Dajoz I, Meriguet J, Loreau M. Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 2006;4(1): e1. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pbio.0040001.
Article
CAS
PubMed
Google Scholar
Hulme PE. Post-dispersal seed predation: consequences for plant demography and evolution. Perspect Plant Ecol Evol Syst. 1998;1(1):32–46. https://0-doi-org.brum.beds.ac.uk/10.1078/1433-8319-00050.
Article
Google Scholar
Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM. Dispersal failure contributes to plant losses in NW Europe. Ecol Lett. 2009;12(1):66–74. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1461-0248.2008.01261.x.
Article
PubMed
Google Scholar
Bullock JM, Mallada González L, Tamme R, Götzenberger L, White SM, Pärtel M, Hooftman DAP. A synthesis of empirical plant dispersal kernels. J Ecol. 2017;105(1):6–19. https://0-doi-org.brum.beds.ac.uk/10.1111/1365-2745.12666.
Article
Google Scholar
Vittoz P, Engler R. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helv. 2007;117(2):109–24. https://0-doi-org.brum.beds.ac.uk/10.1007/s00035-007-0797-8.
Article
Google Scholar
Pardon P, Reheul D, Mertens J, Reubens B, De Frenne P, De Smedt P, Proesmans W, van Vooren L, Verheyen K. Gradients in abundance and diversity of ground dwelling arthropods as a function of distance to tree rows in temperate arable agroforestry systems. Agric Ecosyst Environ. 2019;270–271:114–28. https://0-doi-org.brum.beds.ac.uk/10.1016/j.agee.2018.10.017.
Article
Google Scholar
Peng RK, Incoll LD, Sutton SL, Wright C, Chadwick A. Diversity of airborne arthropods in a silvoarable agroforestry system. J Appl Ecol. 1993;30:551–62.
Article
Google Scholar
Akbulut S, Keten A, Stamps WT. Effect of alley cropping on crops and arthropod diversity in Duzce, Turkey. J Agron Crop Sci. 2003;189(4):261–9. https://0-doi-org.brum.beds.ac.uk/10.1046/j.1439-037X.2003.00042.x.
Article
Google Scholar
Rodríguez-Gasol N, Alins G, Veronesi ER, Wratten S. The ecology of predatory hoverflies as ecosystem-service providers in agricultural systems. Biol Control. 2020;151: 104405. https://0-doi-org.brum.beds.ac.uk/10.1016/j.biocontrol.2020.104405.
Article
CAS
Google Scholar
Thiele H-U. Carabid beetles in their environment: a study on habitat selection by adaptations in phisiology and behaviour. Zoophysiol Ecol. 1977;10:1–369. https://0-doi-org.brum.beds.ac.uk/10.1007/978-3-642-81154-8.
Article
Google Scholar
Altieri MA, Nicholls CI. The simplification of traditional vineyard based agroforests in northwestern Portugal: some ecological implications. Agroforest Syst. 2002;56:185–91.
Article
Google Scholar
Stoate C, Araújo M, Borralho R. Conservation of european farmland birds: abundance and species diversity. Ornis Hungarica. 2003;12:33–40.
Google Scholar
Varah A (2015) Can agroforestry reconcile conflicting demands for productivity, biodiversity conservation and delivery of ecosystem services? Ph.D. thesis, 312 pp.
Pelosi C, Bertrand C, Daniele G, Coeurdassier M, Benoit P, Nélieu S, Lafay F, Bretagnolle V, Gaba S, Vulliet E, Fritsch C. Residues of currently used pesticides in soils and earthworms: a silent threat? Agric Ecosyst Environ. 2021;305: 107167. https://0-doi-org.brum.beds.ac.uk/10.1016/j.agee.2020.107167.
Article
Google Scholar
Fleishman E, Noss R, Noon B. Utility and limitations of species richness metrics for conservation planning. Ecol Indic. 2006;6(3):543–53. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ecolind.2005.07.005.
Article
Google Scholar
Blowes SA, Supp SR, Antão LH, Bates AE, Bruelheide H, Chase JM, Moyes F, Magurran AE, McGill BJ, Myers-Smith IH, Winter M, Bjorkman AD, Bowler DE, Byrnes JE, Gonzalez A, Hines J, Isbell F, Jones HP, Navarro LM, Thompson PL, Vellend M, Waldock CA, Dornelas M. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–45.
Article
CAS
Google Scholar
Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol. 2011;48:1079–87. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-2664.2011.02048.x.
Article
Google Scholar
Clavel J, Julliard R, Devictor V. Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ. 2011;9(4):222–8. https://0-doi-org.brum.beds.ac.uk/10.1890/080216.
Article
Google Scholar
Gamez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK, Klein A-M, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C. Landscape simplification filters species traits and drives biotic homogenization. Nat Commun. 2015;6:8568. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms9568.
Article
CAS
PubMed
Google Scholar
Boinot S, Fried G, Storkey J, Metcalfe H, Barkaoui K, Lauri P-É, Mézière D. Alley cropping agroforestry systems: reservoirs for weeds or refugia for plant diversity? Agric Ecosyst Environ. 2019a;284: 106584. https://0-doi-org.brum.beds.ac.uk/10.1016/j.agee.2019.106584.
Article
Google Scholar
Cardinael R, Hoeffner K, Chenu C, Chevallier T, Béral C, Dewisme A, Cluzeau D. Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol Fertil Soils. 2019;55(2):171–83. https://0-doi-org.brum.beds.ac.uk/10.1007/s00374-018-1332-3.
Article
CAS
Google Scholar
Rösch V, Hoffmann M, Diehl U, Entling MH. The value of newly created wood pastures for bird and grasshopper conservation. Biol Conserv. 2019;237:493–503. https://0-doi-org.brum.beds.ac.uk/10.1016/j.biocon.2019.07.036.
Article
Google Scholar
Wood H, Lindborg R, Jakobsson S. European Union tree density limits do not reflect bat diversity in wood-pastures. Biol Conserv. 2017;210:60–71. https://0-doi-org.brum.beds.ac.uk/10.1016/j.biocon.2017.04.001.
Article
Google Scholar
Bagella S, Filigheddu R, Caria MC, Girlanda M, Roggero PP. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms. CR Biol. 2014;337(12):717–24. https://0-doi-org.brum.beds.ac.uk/10.1016/j.crvi.2014.09.005.
Article
Google Scholar
Gallé R, Urák I, Nikolett G-S, Hartel T. Sparse trees and shrubs confers a high biodiversity to pastures: case study on spiders from Transylvania. PLoS ONE. 2017;12(9): e0183465. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0183465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giordani P, Incerti G, Rizzi G, Ginaldi F, Viglione S, Rellini I, Brunialti G, Malaspina P, Modeneso P. Land use intensity drives the local variation of lichen diversity in Mediterranean ecosystems sensitive to desertification. Bibliotheca Lichenol. 2010;105:139–48.
Google Scholar
Hartel T, Hanspach J, Abson DJ, Máthé O, Moga CI, Fischer J. Bird communities in traditional wood-pastures with changing management in Eastern Europe. Basic Appl Ecol. 2014;15(5):385–95. https://0-doi-org.brum.beds.ac.uk/10.1016/j.baae.2014.06.007.
Article
Google Scholar
Pereira P, Godinho C, Gomes M, Rabaça JE. The importance of the surroundings: are bird communities of riparian galleries influenced by agroforestry matrices in SW Iberian Peninsula? Ann For Sci. 2014;71(1):33–41. https://0-doi-org.brum.beds.ac.uk/10.1007/s13595-012-0228-x.
Article
Google Scholar
Tölgyesi C, Bátori Z, Gallé R, Urák I, Hartel T. Shrub encroachment under the trees diversifies the herb layer in a Romanian silvopastoral system. Rangel Ecol Manage. 2018;71(5):571–7. https://0-doi-org.brum.beds.ac.uk/10.1016/j.rama.2017.09.004.
Article
Google Scholar
Beule L, Karlovsky P. Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS ONE. 2021;16(2): e0246919. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0246919.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Hervilly C, Bertrand I, Capowiez Y, Béral C, Delapré-Cosset L, Marsden C. Seasonal variations in macrofauna distribution according to the distance from a herbaceous strip in a Mediterranean alley cropping plot. Appl Soil Ecol. 2022;170: 104309. https://0-doi-org.brum.beds.ac.uk/10.1016/j.apsoil.2021.104309.
Article
Google Scholar
Graham JB, Nassauer JI. Wild bee abundance in temperate agroforestry landscapes: assessing effects of alley crop composition, landscape configuration, and agroforestry area. Agroforest Syst. 2019;93(3):837–50. https://0-doi-org.brum.beds.ac.uk/10.1007/s10457-017-0179-1.
Article
Google Scholar
Staton T, Walters RJ, Smith J, Breeze TD, Girling RD. Evaluating a trait-based approach to compare natural enemy and pest communities in agroforestry vs arable systems. Ecol Appl. 2021;31: e02294. https://0-doi-org.brum.beds.ac.uk/10.1002/eap.2294.
Article
PubMed
Google Scholar
Jackson ST, Sax DF. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol. 2010;25(3):153–60. https://0-doi-org.brum.beds.ac.uk/10.1016/j.tree.2009.10.001.
Article
PubMed
Google Scholar
Christie AP, Amano T, Martin PA, Shackelford GE, Simmons BI, Sutherland WJ. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J Appl Ecol. 2019;56(12):2742–54. https://0-doi-org.brum.beds.ac.uk/10.1111/1365-2664.13499.
Article
Google Scholar
Lecq S, Loisel A, Bonnet X. Non-lethal rapid biodiversity assessment. Ecol Indic. 2015;58:216–24. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ecolind.2015.06.004.
Article
Google Scholar
Rotem G, Giladi I, Bouskila A, Ziv Y. Scale-dependent correlates of reptile communities in natural patches within a fragmented agroecosystem. Landsc Ecol. 2020;35:2339–55. https://0-doi-org.brum.beds.ac.uk/10.1007/s10980-020-01091-9.
Article
Google Scholar
Tanadini M, Schmidt BR, Meier P, Pellet J, Perrin N. Maintenance of biodiversity in vineyard-dominated landscapes: a case study on larval salamanders. Anim Conserv. 2012;15(2):136–41. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1469-1795.2011.00492.x.
Article
Google Scholar
Stamps WT, Linit MJ. Plant diversity and arthropod communities: Implications for temperate agroforestry. Agrofor Syst. 1998;39:73–89.
Article
Google Scholar
Peng RK, Sutton SL. The activity and diversity of ground arthropods in an agroforestry system. Proc N Zeal Plant Protect Soc. 1996;49:309–13.
Google Scholar
Graham L, Gaulton R, Gerard F, Staley JT. The influence of hedgerow structural condition on wildlife habitat provision in farmed landscapes. Biol Conserv. 2018;220:122–31.
Article
Google Scholar
Ampoorter E, Barbaro L, Jactel H, Baeten L, Boberg J, Carnol M, Castagneyrol B, Charbonnier Y, Dawud SM, Deconchat M, De Smedt P, de Wandeler H, Guyot V, Hättenschwiler S, Joly F-X, Koricheva J, Milligan H, Muys B, Nguyen D, Ratcliffe S, Raulund-Rasmussen K, Scherer-Lorenzen M, van der Plas F, van Keer J, Verheyen K, Vesterdal L, Allan E. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos. 2020;129(2):133–46. https://0-doi-org.brum.beds.ac.uk/10.1111/oik.06290.
Article
Google Scholar
Santos PZF, Crouzeilles R, Sansevero JBB. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. Forest Ecol Manag. 2019;433:140–5. https://0-doi-org.brum.beds.ac.uk/10.1016/j.foreco.2018.10.064.
Article
Google Scholar
Boinot S, Alignier A. On the restoration of hedgerow ground vegetation: Local and landscape drivers of plant diversity and weed colonization. J Environ Manag. 2022;307:114530. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jenvman.2022.114530.
Article
Google Scholar
Miller DC, Ordoñez PJ, Brown SE, Forrest S, Nava NJ, Hughes K, Baylis K. The impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in low-and middle-income countries: an evidence and gap map. Campbell Syst Rev. 2020;16(1): e1066. https://0-doi-org.brum.beds.ac.uk/10.1002/cl2.1066.
Article
Google Scholar