Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillot G, Mortier F, Estoup A. Geneland: a computer package for landscape genetics. Mol Ecol Notes. 2005;5(3):712–5.
Article
CAS
Google Scholar
Jombart T, Devillard S, Dufour A-B, Pontier D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity. 2008;101(1):92–103.
Article
CAS
PubMed
Google Scholar
Chen C, Durand E, Forbes F, François O. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes. 2007;7(5):747–56.
Article
Google Scholar
Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW. Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet. 2005;1(6):e70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Younger JL, Clucas GV, Kao D, Rogers AD, Gharbi K, Hart T, et al. The challenges of detecting subtle population structure and its importance for the conservation of emperor penguins. Mol Ecol. 2017;26(15):3883–97.
Article
CAS
PubMed
Google Scholar
Wright S. Isolation by distance. Genetics. 1943;28(2):114.
Article
CAS
PubMed
PubMed Central
Google Scholar
McRae BH. Isolation by resistance. Evolution. 2006;60(8):1551–61.
Article
PubMed
Google Scholar
Hendry AP. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol Ecol Res. 2004;6(8):1219–36.
Google Scholar
Wang IJ, Summers K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol Ecol. 2010;19(3):447–58.
Article
PubMed
Google Scholar
Edelaar P, Alonso D, Lagerveld S, Senar J, Björklund M. Population differentiation and restricted gene flow in Spanish crossbills: not isolation-by-distance but isolation-by-ecology. J Evol Biol. 2012;25(3):417–30.
Article
CAS
PubMed
Google Scholar
Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes:“isolation by adaptation” and multiple roles for divergent selection. Evol Int J Org Evol. 2008;62(2):316–36.
Article
Google Scholar
Hantak MM, Page RB, Converse PE, Anthony CD, Hickerson CAM, Kuchta SR. Do genetic structure and landscape heterogeneity impact color morph frequency in a polymorphic salamander? Ecography. 2019;42(8):1383–94.
Article
Google Scholar
Myers EA, Xue AT, Gehara M, Cox CL, Davis Rabosky AR, Lemos-Espinal J, et al. Environmental heterogeneity and not vicariant biogeographic barriers generate community-wide population structure in desert-adapted snakes. Mol Ecol. 2019;28(20):4535–48.
Article
PubMed
Google Scholar
Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18(4):189–97.
Article
Google Scholar
Holderegger R, Wagner HH. A brief guide to Landscape Genetics. Landsc Ecol. 2006;21(6):793–6.
Article
Google Scholar
Storfer A, Murphy M, Evans J, Goldberg C, Robinson S, Spear S, et al. Putting the ‘landscape’ in landscape genetics. Heredity. 2007;98(3):128.
Article
CAS
PubMed
Google Scholar
Kraus RH, Van Hooft P, Megens HJ, Tsvey A, Fokin SY, Ydenberg RC, et al. Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol. 2013;22(1):41–55.
Article
CAS
PubMed
Google Scholar
Troast D, Suhling F, Jinguji H, Sahlén G, Ware J. A global population genetic study of Pantala flavescens. PLoS ONE. 2016;11(3):e0148949.
Article
PubMed
PubMed Central
CAS
Google Scholar
King RC, Mulligan PK, Stansfield WD. A dictionary of genetics. 8th ed. Oxford: Oxford University Press; 2013.
Book
Google Scholar
Geue JC, Thomassen HA. Unraveling the habitat preferences of two closely related bumble bee species in Eastern Europe. Ecol Evol. 2020;10:4773–90.
Article
PubMed
PubMed Central
Google Scholar
Hingston AB, Marsden-Smedley J, Driscoll DA, Corbett S, Fenton J, Anderson R, et al. Extent of invasion of Tasmanian native vegetation by the exotic bumblebee Bombus terrestris (Apoidea: Apidae). Austral Ecol. 2002;27(2):162–72.
Article
Google Scholar
Rasmont P, Coppée A, Michez D, De Meulemeester T, editors. An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Ann Soc Entomol Fr; 2008: Taylor & Francis.
Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts SP, Biesmeijer JC, et al. Climatic risk and distribution atlas of European bumblebees: Pensoft Publishers; 2015.
Chapman R, Wang J, Bourke A. Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. Mol Ecol. 2003;12(10):2801–8.
Article
CAS
PubMed
Google Scholar
Estoup A, Solignac M, Cornuet J, Goudet J, Scholl A. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol Ecol. 1996;5(1):19–31.
Article
CAS
PubMed
Google Scholar
Silva SE, Seabra SG, Carvalheiro LG, Nunes VL, Marabuto E, Mendes R, et al. Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biol J Linn Soc. 2020;129(2):259–72.
Article
Google Scholar
Moreira AS, Horgan FG, Murray TE, Kakouli-Duarte T. Population genetic structure of Bombus terrestris in Europe: isolation and genetic differentiation of Irish and British populations. Mol Ecol. 2015;24(13):3257–68.
Article
PubMed
Google Scholar
Widmer A, Schmid-Hempel P, Estoup A, Scholl A. Population genetic structure and colonization history of Bombus terrestris sl (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity. 1998;81(5):563.
Article
Google Scholar
Lecocq T, Vereecken NJ, Michez D, Dellicour S, Lhomme P, Valterova I, et al. Patterns of genetic and reproductive traits differentiation in mainland vs. Corsican populations of bumblebees. PLoS ONE. 2013;8(6):e65642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chittka L, Ings TC, Raine NE. Chance and adaptation in the evolution of island bumblebee behaviour. Popul Ecol. 2004;46(3):243–51.
Article
Google Scholar
Schmid-Hempel P, Schmid-Hempel R, Brunner P, Seeman O, Allen G. Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity. 2007;99(4):414–22.
Article
CAS
PubMed
Google Scholar
Schmid-Hempel R, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S, et al. The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol. 2014;83(4):823–37.
Article
PubMed
Google Scholar
Lepais O, Darvill B, O’Connor S, Osborne JL, Sanderson RA, Cussans J, et al. Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol. 2010;19(4):819–31.
Article
CAS
PubMed
Google Scholar
Kraus F, Wolf S, Moritz R. Male flight distance and population substructure in the bumblebee Bombus terrestris. J Anim Ecol. 2009;78(1):247–52.
Article
CAS
PubMed
Google Scholar
Kelly AE, Goulden ML. Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci. 2008;105(33):11823–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C-J, Wan J-Z, Zhang G-M, Zhang Z-X, Zhang J. Protected areas may not effectively support conservation of endangered forest plants under climate change. Environmental Earth Sciences. 2016;75(6):466.
Article
Google Scholar
Yun J-H, Nakao K, Tsuyama I, Matsui T, Park C-H, Lee B-Y, et al. Vulnerability of subalpine fir species to climate change: using species distribution modeling to assess the future efficiency of current protected areas in the Korean Peninsula. Ecol Res. 2018;33(2):341–50.
Article
Google Scholar
Geue JC, Vágási CI, Schweizer M, Pap PL, Thomassen HA. Environmental selection is a main driver of divergence in house sparrows (Passer domesticus) in Romania and Bulgaria. Ecol Evol. 2016;6(22):7954–64.
Article
PubMed
PubMed Central
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):1–15.
Article
Google Scholar
Ferrier S, Manion G, Elith J, Richardson K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib. 2007;13(3):252–64.
Article
Google Scholar
Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–95.
Article
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28(19):2537–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones OR, Wang J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour. 2010;10(3):551–5.
Article
PubMed
Google Scholar
Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4(3):535–8.
Article
CAS
Google Scholar
Rousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103–6.
Article
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57(1):289–300.
Google Scholar
Clark LV, Jasieniuk M. POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour. 2011;11(3):562–6.
Article
PubMed
Google Scholar
Wright S. The genetical structure of populations. Ann Eugen. 1951;15(1):323–54.
Article
CAS
PubMed
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
CAS
PubMed
Google Scholar
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164(4):1567–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JM, Cullingham CI, Peery RM. The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity. 2020;125(5):269–80.
Article
PubMed
PubMed Central
Google Scholar
Lecocq T, Rasmont P, Harpke A, Schweiger O. Improving international trade regulation by considering intraspecific variation for invasion risk assessment of commercially traded species: the Bombus terrestris case. Conserv Lett. 2016;9(4):281–9.
Article
Google Scholar
Kelso NV, Patterson T. Introducing natural earth data—naturalearthdata.com. Geographia Technica. 2010;5(8289):25.
Google Scholar
Theodorou P, Radzevičiūtė R, Kahnt B, Soro A, Grosse I, Paxton RJ. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc R Soc B Biol Sci. 1877;2018(285):20172806.
Google Scholar
Maebe K, Karise R, Meeus I, Mänd M, Smagghe G. Pattern of population structuring between Belgian and Estonian bumblebees. Sci Rep. 2019;9(1):1–8.
Article
CAS
Google Scholar
Shao Z, Mao H, Fu W, Ono M, Wang D, Bonizzoni M, et al. Genetic Structure of Asian Populations of Bombus ignitus (Hymenoptera: Apidae). J Hered. 2004;95(1):46–52.
Article
CAS
PubMed
Google Scholar
Widmer A, Schmid-Hempel P. The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol Ecol. 1999;8(3):387–98.
Article
CAS
PubMed
Google Scholar
Lozier JD, Strange JP, Stewart IJ, Cameron SA. Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol. 2011;20(23):4870–88.
Article
PubMed
Google Scholar
Dreier S, Redhead JW, Warren IA, Bourke AF, Heard MS, Jordan WC, et al. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape. Mol Ecol. 2014;23(14):3384–95.
Article
PubMed
PubMed Central
Google Scholar
Koch JB, Looney C, Sheppard WS, Strange JP. Patterns of population genetic structure and diversity across bumble bee communities in the Pacific Northwest. Conserv Genet. 2017;18(3):507–20.
Article
CAS
Google Scholar
Jha S. Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol. 2015;24(5):993–1006.
Article
CAS
PubMed
Google Scholar
Goulson D, Kaden J, Lepais O, Lye G, Darvill B. Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet. 2011;12(4):867–79.
Article
Google Scholar
Darvill B, Ellis JS, Lye GC, Goulson D. Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol. 2006;15(3):601–11.
Article
CAS
PubMed
Google Scholar
Amin MR, Than KK, Kwon YJ. Copulation duration of bumblebee Bombus terrestris (Hymenoptera: Apidae): Impacts on polyandry and colony parameters. J Asia-Pac Entomol. 2009;12(3):141–4.
Article
Google Scholar
Zhang H, Zhou Z, Huang J, Yuan X, Ding G, An J. Queen traits and colony size of four bumblebee species of China. Insectes Soc. 2018;65(4):537–47.
Article
Google Scholar
Duchateau M, Velthuis H. Development and reproductive strategies in Bombus terrestris colonies. Behaviour. 1988;107:186–207.
Article
Google Scholar
Connop S, Hill T, Steer J, Shaw P. The role of dietary breadth in national bumblebee (Bombus) declines: Simple correlation? Biol Conserv. 2010;143(11):2739–46.
Article
Google Scholar
Wood TJ, Gibbs J, Graham KK, Isaacs R. Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology. 2019;100(6):e02697.
Article
CAS
PubMed
Google Scholar
Meeus I, Parmentier L, Pisman M, de Graaf DC, Smagghe G. Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes. Sci Rep. 2021;11(1):1–9.
Article
CAS
Google Scholar
Fontaine C, Collin CL, Dajoz I. Generalist foraging of pollinators: diet expansion at high density. J Ecol. 2008;96(5):1002–10.
Article
Google Scholar
Avarguès-Weber A, Lachlan R, Chittka L. Bumblebee social learning can lead to suboptimal foraging choices. Anim Behav. 2018;135:209–14.
Article
Google Scholar
Müller CB, Schmid-Hempel P. Correlates of reproductive success among field colonies of Bombus lucorum: the importance of growth and parasites. Ecol Entomol. 1992;17(4):343–53.
Article
Google Scholar
Goulson D. Bumblebees: behaviour, ecology, and conservation. 2nd ed. Oxford: Oxford University Press; 2009.
Google Scholar
Knight ME, Martin AP, Bishop S, Osborne JL, Hale RJ, Sanderson RA, et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol Ecol. 2005;14(6):1811–20.
Article
CAS
PubMed
Google Scholar
Darvill B, Knight ME, Goulson D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos. 2004;107(3):471–8.
Article
Google Scholar
Ghisbain G, Lozier JD, Rahman SR, Ezray BD, Tian L, Ulmer JM, et al. Substantial genetic divergence and lack of recent gene flow support cryptic speciation in a colour polymorphic bumble bee (Bombus bifarius) species complex. Syst Entomol. 2020;45(3):635–52.
Article
Google Scholar
Alford D. A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in Southern England. J Anim Ecol. 1969;38:149–70.
Article
Google Scholar
Pomeroy N, Plowright R. The relation between worker numbers and the production of males and queens in the bumble bee Bombus perplexus. Can J Zool. 1982;60(5):954–7.
Article
Google Scholar
Müller C, Schmid-Hempel P. Variation in life-history pattern in relation to worker mortality in the bumble-bee, Bombus lucorum. Funct Ecol. 1992;6:48–56.
Article
Google Scholar
Rundlöf M, Persson AS, Smith HG, Bommarco R. Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol Conserv. 2014;172:138–45.
Article
Google Scholar
Bowers MA. Resource availability and timing of reproduction in bumble bee colonies (Hymenoptera: Apidae). Environ Entomol. 1986;15(3):750–5.
Article
Google Scholar
Schmid-Hempel P, Durrer S. Parasites, floral resources and reproduction in natural populations of bumblebees. Oikos. 1991;62:342–50.
Article
Google Scholar
Baer B, Morgan ED, Schmid-Hempel P. A nonspecific fatty acid within the bumblebee mating plug prevents females from remating. Proc Natl Acad Sci. 2001;98(7):3926–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvoisin N, Baer B, Schmid-Hempel P. Sperm transfer and male competition in a bumblebee. Anim Behav. 1999;58(4):743–9.
Article
CAS
PubMed
Google Scholar
Heinrich B. Bumblebee economics. Cambridge: Harvard University Press; 1979.
Google Scholar
Vogt FD. Thermoregulation in bumblebee colonies. I. Thermoregulatory versus brood-maintenance behaviors during acute changes in ambient temperature. Physiol Zool. 1986;59(1):55–9.
Article
Google Scholar
Owen EL, Bale JS, Hayward SA. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding. PLoS ONE. 2013;8(11):e80061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stelzer RJ, Chittka L, Carlton M, Ings TC. Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain. PLoS ONE. 2010;5(3):e9559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martinet B, Rasmont P, Cederberg B, Evrard D, Ødegaard F, Paukkunen J, et al., editors. Forward to the north: two Euro-Mediterranean bumblebee species now cross the Arctic Circle. Annales de la Société entomologique de France (NS). Routledge: Taylor & Francis. 2015.
Gherghescu D-Ş, Dabija A-M, editors. The Challenges of the Bioclimatic Architecture in Romania. IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing. 2020
Malcheva K, Pophristov V, Marinova T, Trifonova L, editors. Complex approach for classification of winter severity in Bulgaria. AIP Conference Proceedings. Melville: AIP Publishing LLC. 2019.
Kreyer D, Oed A, Walther-Hellwig K, Frankl R. Are forests potential landscape barriers for foraging bumblebees? Landscape scale experiments with Bombus terrestris agg. and Bombus pascuorum (Hymenoptera, Apidae). Biol Conserv. 2004;116(1):111–8.
Article
Google Scholar
Mola JM, Miller MR, O’Rourke SM, Williams NM. Forests do not limit bumble bee foraging movements in a montane meadow complex. Ecol Entomol. 2020;45(5):955–65.
Article
Google Scholar
Svensson B, Lagerlöf J, Svensson BG. Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agr Ecosyst Environ. 2000;77(3):247–55.
Article
Google Scholar
Jha S, Kremen C. Urban land use limits regional bumble bee gene flow. Mol Ecol. 2013;22(9):2483–95.
Article
PubMed
Google Scholar
Kadoya T, Washitani I. Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris) using a stochastic spatio-temporal model. Biol Conserv. 2010;143(5):1228–35.
Article
Google Scholar
Liczner AR, Colla SR. A systematic review of the nesting and overwintering habitat of bumble bees globally. J Insect Conserv. 2019;23(5):787–801.
Article
Google Scholar
Plath O. Notes on the hibernation of several North American bumblebees. Ann Entomol Soc Am. 1927;20(2):181–92.
Article
Google Scholar
Makinson JC, Woodgate JL, Reynolds A, Capaldi EA, Perry CJ, Chittka L. Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Sci Rep. 2019;9(1):4651.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kämper W, Werner PK, Hilpert A, Westphal C, Blüthgen N, Eltz T, et al. How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris. Landsc Ecol. 2016;31(10):2245–58.
Article
Google Scholar
Redhead JW, Dreier S, Bourke AF, Heard MS, Jordan WC, Sumner S, et al. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species. Ecol Appl. 2016;26(3):726–39.
Article
PubMed
Google Scholar
Straub L, Williams GR, Vidondo B, Khongphinitbunjong K, Retschnig G, Schneeberger A, et al. Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Sci Rep. 2019;9(1):1–10.
Article
CAS
Google Scholar
Botías C, Jones JC, Pamminger T, Bartomeus I, Hughes WO, Goulson D. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J Anim Ecol. 2021;90(2):415–31.
Article
PubMed
Google Scholar
Dafni A, Kevan P, Gross CL, Goka K. Bombus terrestris, pollinator, invasive and pest: an assessment of problems associated with its widespread introductions for commercial purposes. Appl Entomol Zool. 2010;45(1):101–13.
Article
Google Scholar
Velthuis HH, Van Doorn A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie. 2006;37(4):421–51.
Article
Google Scholar
Semmens T, Turner E, Buttermore R. Bombus terrestris (L.) (Hymenoptera: Apidae) now established in Tasmania. J Aust Entomol Soc. 1993;32(4):346.
Article
Google Scholar
Matsumura C, Yokoyama J, Washitani I. Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in Southern Hokkaido Japan. Glob Environ Res. 2004;8(1):51–66.
Google Scholar
Macfarlane R, Gurr L. Distribution of bumble bees in New Zealand. N Z Entomol. 1995;18(1):29–36.
Article
Google Scholar
Romanian Statistical Yearbook. National Institute of Statistics. Bucharest; 2018.
Library of Congress.Country profile: Bulgaria. https://www.loc.gov/rr/frd/cs/profiles/Bulgaria.pdf. Accessed 20 May 2019.
Milewski P, Szmyd J. Biothermal contrasts while travelling in or between Poland and Bulgaria. EUROPA XXI. 2015;29:73–84.
Article
Google Scholar
Goulson D, Stout JC. Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie. 2001;32(1):105–11.
Article
Google Scholar
Wolf S, Moritz RF. Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie. 2008;39(4):419–27.
Article
Google Scholar
Smithers CN. The handbook of insect collecting: Their collection, preparation, preservation, and storage. Melbourne: Angus & Robertson; 1988.
Google Scholar
Garvin M, Saitoh K, Gharrett A. Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour. 2010;10(6):915–34.
Article
CAS
PubMed
Google Scholar
Narum S, Banks M, Beacham T, Bellinger M, Campbell M, Dekoning J, et al. Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Mol Ecol. 2008;17(15):3464–77.
CAS
PubMed
Google Scholar
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol. 2014;4(22):4399–428.
Article
PubMed
PubMed Central
Google Scholar
Karl SA, Toonen R, Grant W, Bowen B. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol Ecol. 2012;21(17):4171–89.
Article
CAS
PubMed
Google Scholar
Goldstein D, Pollock D. Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered. 1997;88(5):335–42.
Article
CAS
PubMed
Google Scholar
Lowe WH, Allendorf FW. What can genetics tell us about population connectivity? Mol Ecol. 2010;19(15):3038–51.
Article
PubMed
Google Scholar
Jakobsson M, Edge MD, Rosenberg NA. The relationship between FST and the frequency of the most frequent allele. Genetics. 2013;193(2):515–28.
Article
PubMed
PubMed Central
Google Scholar
Estoup A, Jarne P, Cornuet JM. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol. 2002;11(9):1591–604.
Article
CAS
PubMed
Google Scholar
Campos PF, Gilbert TM. DNA extraction from keratin and chitin. Ancient DNA: Springer; 2012. p. 43–9.
Google Scholar
Williams PH. Phylogenetic relationships among bumble bees (Bombus Latr.): a reappraisal of morphological evidence. Syst Entomol. 1994;19(4):327–44.
Article
Google Scholar
Wolf S, Rohde M, Moritz RF. The reliability of morphological traits in the differentiation of Bombus terrestris and B. lucorum (Hymenoptera: Apidae). Apidologie. 2010;41(1):45–53.
Article
CAS
Google Scholar
Stolle E, Rohde M, Vautrin D, Solignac M, Schmid-Hempel P, Schmid-Hempel R, et al. Novel microsatellite DNA loci for Bombus terrestris (Linnaeus, 1758). Mol Ecol Resour. 2009;9(5):1345–52.
Article
CAS
PubMed
Google Scholar
Bogo G, De Manincor N, Fisogni A, Galloni M, Zavatta L, Bortolotti L. No evidence for an inbreeding avoidance system in the bumble bee Bombus terrestris. Apidologie. 2018;49(4):473–83.
Article
Google Scholar
Kalinowski S. Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity. 2005;94(1):33–6.
Article
CAS
PubMed
Google Scholar
Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 2006;9(5):615–29.
Article
PubMed
Google Scholar
Chakraborty R, Andrade MD, Daiger S, Budowle B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genetics. 1992;56(1):45–57.
Article
CAS
Google Scholar
Hardy O, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2:618–20.
Article
CAS
Google Scholar
Hurlbert SH. The nonconcept of species diversity: a critique and alternative parameters. Ecology. 1971;52(4):577–86.
Article
PubMed
Google Scholar
Kalinowski ST. hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes. 2005;5(1):187–9.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing (Version 3.6.). R Foundation for Statistical Computing". R Foundation for Statistical Computing. 2019.
Puechmaille SJ. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour. 2016;16(3):608–27.
Article
PubMed
Google Scholar
Pritchard JK, Wen W, Falush D. Documentation for STRUCTURE software: Version 2. 2003.
Francis RM. pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour. 2017;17(1):27–32.
Article
CAS
PubMed
Google Scholar
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–5.
Article
CAS
PubMed
Google Scholar
Adriaensen F, Chardon J, De Blust G, Swinnen E, Villalba S, Gulinck H, et al. The application of ‘least-cost’modelling as a functional landscape model. Landsc Urban Plan. 2003;64(4):233–47.
Article
Google Scholar
Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22(24):5983–99.
Article
PubMed
Google Scholar
Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25(1):104–20.
Article
CAS
PubMed
Google Scholar
Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution. 2014;68(1):1–15.
Article
CAS
PubMed
Google Scholar
WorldClim v.2 (cited Jan 2018). http://www.worldclim.com/version2.
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.
Article
Google Scholar
Shuttle Radar Topography Mission (cited Mar 2015). https://www2.jpl.nasa.gov/srtm/.
The Global Land Cover Facility (GLCF) [cited Nov 2014 (LAI/percent tree cover); Nov 2017 (canopy height)]. Service discontinued.
Simard M, Pinto N, Fisher JB, Baccini A. Mapping forest canopy height globally with spaceborne lidar. J Geophys Res Biogeosci. 2011;116(G4).
BYU Center for Remote Sensing (cited Aug 2015). https://www.scp.byu.edu/data/Quikscat/SIRv2/qush/Eur.html.
Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling? Ecography. 2014;37(2):191–203.
Article
Google Scholar
McRae BH, Beier P. Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci. 2007;104(50):19885–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pe’er G, Henle K, Dislich C, Frank K. Breaking functional connectivity into components: a novel approach using an individual-based model, and first outcomes. PLoS ONE. 2011;6(8):e22355.
Article
CAS
PubMed
PubMed Central
Google Scholar
LaPoint S, Balkenhol N, Hale J, Sadler J, van der Ree R. Ecological connectivity research in urban areas. Funct Ecol. 2015;29(7):868–78.
Article
Google Scholar
Manion G, Lisk M, Ferrier S, Lugilde KM, Fitzpatrick MC. Package ‘gdm’. A toolkit with functions to fit, plot, and summarize Generalized Dissimilarity Models: CRAN Repository, R. 2017.
Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB. Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Mol Ecol. 2010;19(17):3532–48.
Article
PubMed
Google Scholar
Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18(1):1–16.
Article
PubMed
Google Scholar
Fitzpatrick MC, Sanders NJ, Normand S, Svenning J-C, Ferrier S, Gove AD, et al. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Society B Biol Sci. 2013;280(1768):20131201.
Article
Google Scholar
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project.Version 3.16. 2020.