Johns AD, Skorupa JP. Responses of rain-forest primates to habitat disturbance: a review. Int J Primatol. 1987;8(2):157.
Google Scholar
Seltmann A, Czirják GÁ, Courtiol A, Bernard H, Struebig MJ, Voigt CC. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats. Conserv Physiol. 2017;5:1.
Google Scholar
Stabach J, Boone R, Worden J, Florant G. Habitat disturbance effects on the physiological stress response in resident Kenyan white-bearded wildebeest (Connochaetes taurinus). Biol Conserv. 2015;182:177–86.
Google Scholar
Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus SD, Lusseau D, Moretti D, New LF, Schick RS, Schwarz LK. Understanding the population consequences of disturbance. Ecol Evol. 2018;8(19):9934–46.
PubMed
PubMed Central
Google Scholar
Green D, Johnson-Ulrich L, Couraud H, Holekamp K. Anthropogenic disturbance induces opposing population trends in spotted hyenas and African lions. Biodivers Conserv. 2018;27(4):871–89.
Google Scholar
Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A. Impending extinction crisis of the world’s primates: why primates matter. Sci Adv. 2017;3(1):e1600946.
PubMed
PubMed Central
Google Scholar
Rimbach R, Link A, Heistermann M, Gómez-Posada C, Galvis N, Heymann EW. Effects of logging, hunting, and forest fragment size on physiological stress levels of two sympatric ateline primates in Colombia. Conserv Physiol. 2013;1(1):cot031.
PubMed
PubMed Central
Google Scholar
Conde DA, Staerk J, Colchero F, da Silva R, Schöley J, Baden HM, Jouvet L, Fa JE, Syed H, Jongejans E. Data gaps and opportunities for comparative and conservation biology. Proc Natl Acad Sci. 2019;116(19):9658–64.
CAS
PubMed
PubMed Central
Google Scholar
Vamosi JC, Armbruster WS, Renner SS. Evolutionary ecology of specialization: insights from phylogenetic analysis. London: The Royal Society; 2014.
Google Scholar
West AG, Waite DW, Deines P, Bourne DG, Digby A, McKenzie VJ, Taylor MW. The microbiome in threatened species conservation. Biol Conserv. 2019;229:85–98.
Google Scholar
Redford KH, Segre JA, Salafsky N, Martinez del Rio C, McAloose D. Conservation and the microbiome. Conserv Biol. 2012;26(2):195–7.
PubMed
PubMed Central
Google Scholar
Narayan E. Physiological stress levels in wild koala sub-populations facing anthropogenic induced environmental trauma and disease. Sci Rep. 2019;9(1):1–9.
CAS
Google Scholar
Drake KK, Bowen L, Nussear KE, Esque TC, Berger AJ, Custer NA, Waters SC, Johnson JD, Miles AK, Lewison RL. Negative impacts of invasive plants on conservation of sensitive desert wildlife. Ecosphere. 2016;7(10):e01531.
Google Scholar
Brearley G, Rhodes J, Bradley A, Baxter G, Seabrook L, Lunney D, Liu Y, McAlpine C. Wildlife disease prevalence in human-modified landscapes. Biol Rev. 2013;88(2):427–42.
PubMed
Google Scholar
Young H, Griffin RH, Wood CL, Nunn CL. Does habitat disturbance increase infectious disease risk for primates? Ecol Lett. 2013;16(5):656–63.
PubMed
Google Scholar
Amato KR, Yeoman CJ, Kent A, Carbonero F, Righini N, Estrada AE, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, et al. Habitat degradation impacts primate gastrointestinal microbiomes. ISME J. 2013;7:1344–53.
CAS
PubMed
PubMed Central
Google Scholar
Gomez A, Petrzelkova KJ, Yeoman CJ, Vlckova K, Mrazek J, Koppova I, Carbonero F, Ulanov A, Modry D, Todd A, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24(10):2551–65.
CAS
PubMed
Google Scholar
San Juan PA, Hendershot JN, Daily GC, Fukami T. Land-use change has host-specific influences on avian gut microbiomes. ISME J. 2020;14(1):318–21.
PubMed
Google Scholar
Trosvik P, Rueness EK, Muinck EJ, Moges A, Mekonnen A. Ecological plasticity in the gastrointestinal microbiomes of Ethiopian Chlorocebus monkeys. Sci Rep. 2018;8(1):20.
PubMed
PubMed Central
Google Scholar
Goldberg TL, Gillespie TR, Rwego IB, Wheeler E, Estoff EL, Chapman CA. Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biol Conserv. 2007;135(4):511–7.
Google Scholar
Salyer SJ, Gillespie TR, Rwego IB, Chapman CA, Goldberg TL. Epidemiology and molecular relationships of Cryptosporidium spp. in people, primates, and livestock from Western Uganda. PLoS Negl Trop Dis. 2012;6(4):e1597.
PubMed
PubMed Central
Google Scholar
Medley S, Ponder M, Alexander KA. Anthropogenic landscapes increase Campylobacter jejuni infections in urbanizing banded mongoose (Mungos mungo): a one health approach. PLoS Negl Trop Dis. 2020;14(3):e0007888.
PubMed
PubMed Central
Google Scholar
Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Greieneisen LE, Altmann J, Alberts S, Blekhman R, Archie EA. Social networks predict gut microbiome composition in wild baboons. Elife. 2015;4:e05224.
PubMed Central
Google Scholar
Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc R Soc B. 1868;2017(284):20172274.
Google Scholar
Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 2020;13:183–9.
CAS
PubMed
Google Scholar
Pronovost GN, Hsiao EY. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity. 2019;50(1):18–36.
CAS
PubMed
PubMed Central
Google Scholar
Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC, Mohney RP, Li W, de Rinaldis E, Bell JT, Venter JC. Interplay between the human gut microbiome and host metabolism. Nat Commun. 2019;10(1):1–10.
CAS
Google Scholar
Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett. 2014;17(10):1238–46.
PubMed
Google Scholar
Amato KR, Sanders J, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir A, McKenzie V, Humphrey G, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:576–87.
CAS
PubMed
Google Scholar
Donohue ME, Asangba AE, Ralainirina J, Weisrock DW, Stumpf RM, Wright PC. Extensive variability in the gut microbiome of a highly-specialized and critically endangered lemur species across sites. Am J Primatol. 2019;81(10–11):e23046.
PubMed
Google Scholar
Barelli C, Albanese D, Donati C, Pindo M, Dallago C, Rovero F, Cavalieri D, Tuohy K, Hauffe HC, De Filippo C. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci Rep. 2015;5:14862.
CAS
PubMed
PubMed Central
Google Scholar
Song SJ, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, Suchodolski JS, Knight R. Engineering the microbiome for animal health and conservation. Exp Biol Med. 2019;244(6):494–504.
Google Scholar
Yao R, Xu L, Hu T, Chen H, Qi D, Gu X, Yang X, Yang Z, Zhu L. The “wildness” of the giant panda gut microbiome and its relevance to effective translocation. Glob Ecol Conserv. 2019;18:e00644.
Google Scholar
Greene LK, McKenney EA, O’Connell TM, Drea CM. The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas. Sci Rep. 2018;8(1):14482.
PubMed
PubMed Central
Google Scholar
Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, Knight R, Leigh S, Stumpf R, Wolf T. The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol. 2018;80(6):e22867.
PubMed
Google Scholar
Amato KR, Martinez-Mota R, Righini N, Raguet-Schofield ML, Corcione FP, Marini E, Dominguez-Bello MG, Stumpf RM, White BA, Nelson KE, et al. Phylogenetic and ecological factors impact the gut microbiota of neotropical primate species. Oecologia. 2016;180(3):717–33.
PubMed
Google Scholar
Bennett G, Malone M, Sauther ML, Cuozzo FP, White BA, Nelson KE, Stumpf RM, Knight R, Leigh SR, Amato KR. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J Primatol. 2016;78(8):883–92.
CAS
PubMed
Google Scholar
Baden AL, Brenneman RA, Louis EE Jr. Morphometrics of wild black-and-white ruffed lemurs [Varecia variegata; Kerr, 1792]. Am J Primatol. 2008;70(10):913–26.
PubMed
Google Scholar
Louis EE, Sefczek TM, Raharivololona B, King T, Morelli TL, Baden A: Varecia variegata. The IUCN Red List of Threatened Species 2020. e.T22918A115574178. In: The IUCN Red List of Threatened Species 2020. 2020: e.T22918A115574178.
Vasey N, Baden A, Ratsimbazafy J: Varecia, ruffed or variegated lemurs, varikandana varijatsy. In: Goodman SJ, Jungers W (eds) The natural history of Madagascar. 2nd Edition
Britt A. Diet and feeding behaviour of the black-and-white ruffed lemur (Varecia variegata variegata) in the Betampona Reserve, eastern Madagascar. Folia Primatol. 2000;71(3):133–41.
CAS
Google Scholar
Balko EA, Underwood HB. Effects of forest structure and composition on food availability for Varecia variegata at Ranomafana National Park, Madagascar. Am J Primatol. 2005;66(1):45–70.
PubMed
Google Scholar
Holmes SM, Gordon AD, Louis EE, Johnson SE. Fission-fusion dynamics in black-and-white ruffed lemurs may facilitate both feeding strategies and communal care of infants in a spatially and temporally variable environment. Behav Ecol Sociobiol. 2016;70(11):1949–60.
Google Scholar
Beeby N, Baden AL. Seasonal variability in the diet and feeding ecology of black-and-white ruffed lemurs (Varecia variegata) in Ranomafana National Park, southeastern Madagascar. Am J Phys Anthr. 2021;174:763–75.
Google Scholar
White FJ, Overdorff DJ, Balko EA, Wright PC. Distribution of ruffed lemurs (Varecia variegata) in Ranomafana National Park, Madagascar. Folia Primatol. 1995;64(3):124–31.
Google Scholar
Brown KA, Gurevitch J. Long-term impacts of logging on forest diversity in Madagascar. Proc Natl Acad Sci. 2004;101(16):6045–9.
CAS
PubMed
PubMed Central
Google Scholar
Ratsimbazafy JH. On the brink of extinction and the process of recovery: responses of black-and-white ruffed lemurs (Varecia variegata variegata) to disturbance in Manombo Forest, Madagascar. Stony Brook: State University of New York; 2002.
Google Scholar
Ratsimbazafy JH. Diet composition, foraging, and feeding behavior in relation to habitat disturbance: implications for the adaptability of ruffed lemurs (Varecia variegata editorium) in Manombo Forest, Madagascar. In: Gould L, Sauther ML, editors. Lemurs: ecology and adaptation. New York: Springer/Kluwer; 2006. p. 403–22.
Google Scholar
Martinez BT. Forest restoration in Masoala National Park, Madagascar: the contribution of the red-ruffed lemur (Varecia rubra) and the livelihoods of subsistence farmers at Ambatoladama. St Paul: University of Minnesota; 2010.
Google Scholar
Martinez BT, Razafindratsima OH. Frugivory and seed dispersal patterns of the red-ruffed lemur, Varecia rubra, at a forest restoration site in Masoala national park, Madagascar. Folia Primatol. 2014;85(4):228–43.
Google Scholar
Vasey N. Niche separation in Varecia variegata rubra and Eulemur fulvus albifrons: I. Interspecific patterns. Am J Phys Anthropol. 2000;112(3):411–31.
CAS
PubMed
Google Scholar
Lehman SM, Ratsimbazafy J, Rajaonson A, Day S. Decline of Propithecus diadema edwardsi and Varecia variegata variegata (Primates: Lemuridae) in south-east Madagascar. Oryx. 2006;40(1):108–11.
Google Scholar
Holmes SM: Sharing space: Habitat use and spatial relationships of frugivorous lemurs in fragmented forests. 2017.
Baden AL, Oliveras J, Gerber BD. Sex-segregated range use by black-and-white ruffed lemurs (Varecia variegata) in Ranomafana National Park, Madagascar. Folia Primatol. 2021;92(1):12–34.
Google Scholar
Blanc P, Hladik A, Rabenandrianina N, Robert J-S, Hladik CM. The variants of Ravenala in natural and anthropogenic habitats. Chicago: The University of Chicago Press; 2003.
Google Scholar
Schmidt DA, Iambana RB, Britt A, Junge RE, Welch CR, Porton IJ, Kerley MS. Nutrient composition of plants consumed by black and white ruffed lemurs, Varecia variegata, in the Betampona Natura Reserve, Madagascar. Zoo Biol. 2009;29:375–96.
Google Scholar
Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–40.
Google Scholar
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306.
PubMed
PubMed Central
Google Scholar
Thomas AM, Segata N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019;17:1–4.
Google Scholar
Amato KR, Mallott EK, McDonald D, Dominy NJ, Goldberg N, Lambert JE, Swedell L, Metcalf JL, Gomez A, Britton GAO et al: Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol 2019, 20:e27879v27871.
Gomez A, Sharma AK, Mallott EK, Petrzelkova KJ, Robinson CJ, Yeoman CJ, Carbonero F, Pafčo B, Rothman JM, Ulanov A et al: Plasticity in the human gut microbiome defies evolutionary constraints. mSphere
Tao S, Tian P, Luo Y, Tian J, Hua C, Geng Y, Cong R, Ni Y, Zhao R. Microbiome-metabolome responses to a high-grain diet associated with the hind-gut health of goats. Front Microbiol. 2017;8:1764.
PubMed
PubMed Central
Google Scholar
McCann JC, Luan S, Cardoso FC, Derakhshani H, Khafipour E, Loor JJ. Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front Microbiol. 2016;7:701.
PubMed
PubMed Central
Google Scholar
Tavenner MK, McDonnell SM, Biddle AS. Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals. Anim Microbiome. 2020;2(1):1–17.
Google Scholar
Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front Microbiol. 2016;7:1706.
PubMed
PubMed Central
Google Scholar
De Filippis F, Pellegrini N, Laghi L, Gobbetti M, Ercolini D. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome. 2016;4(1):1–6.
Google Scholar
Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016;4(1):15.
PubMed
PubMed Central
Google Scholar
McCord AI, Chapman CA, Weny G, Tumukunde A, Hyeroba D, Klotz K, Koblings AS, Mbora DNM, Cregger M, White BA, et al. Fecal microbiomes of non-human primates in western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am J Primatol. 2013;76:347.
PubMed
PubMed Central
Google Scholar
Baden AL. Communal infant care in black-and-white ruffed lemurs (Varecia variegata). Stony Brook: Stony Brook University; 2011.
Google Scholar
Wright PC, Erhart EM, Tecot S, Baden AL, Arrigo-Nelson SJ, Herrera J, Morelli TL, Blanco MB, Deppe A, Atsalis S. Long-term lemur research at Centre ValBio, Ranomafana National Park, Madagascar. In: Kappeler PM, Watts DP, editors. Long-term field studies of primates. Springer: New York; 2012. p. 67–100.
Google Scholar
Ramiadantsoa T, Ovaskainen O, Rybicki J, Hanski I. Large-scale habitat corridors for biodiversity conservation: a forest corridor in Madagascar. PLoS ONE. 2015;10(7):e0132126.
PubMed
PubMed Central
Google Scholar
Holmes SM, Baden AL, Brenneman RA, Engberg SE, Louis EE, Johnson SE. Patch size and isolation influence genetic patterns in black-and-white ruffed lemur (Varecia variegata) populations. Conserv Genet. 2013;14(3):615–24.
Google Scholar
Kress WJ, Schatz GE, Andrianifahanana M, Morland HS. Pollination of Ravenala madagascariensis (Strelitziaceae) by lemurs in Madagascar: evidence for an archaic coevolutionary system? Am J Bot. 1994;81(5):542–51.
Google Scholar
Walters WA, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2015;1(1):e00009.
PubMed
PubMed Central
Google Scholar
Mallott EK, Amato KR. The microbial reproductive ecology of white-faced capuchins (Cebus capucinus). Am J Primatol. 2018;80(8):e22896.
PubMed
Google Scholar
Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148(1):257–66.
CAS
PubMed
Google Scholar
Amato KR, Kuthyar S, Ekanayake-Weber M, Salmi R, Snyder-Mackler N, Wijayathunga L, Vandercone R, Lu A. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica. 2020;52:981.
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–43.
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F: QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints; 2018.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al: vegan: Community Ecology Package. In. Edited by package R, version 2.5–3 edn; 2018.
Martinez Arbizu P: pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. 2020.
Schwager E, Weingart G, Bielski C, Huttenhower C: CCREPE: compositionality corrected by permutation and renormalization. Bioconductor; 2014.