Hamilton WD, Zuk M. Heritable true fitness and bright birds: a role for parasites? Science (80−). 1982;218:384–7.
CAS
PubMed
Google Scholar
Zahavi A. Mate selection-A selection for a handicap. J Theor Biol. 1975;53:205–14.
CAS
PubMed
Google Scholar
Fisher RA. The genetical theory of natural selection. Oxford: UK Clarendon Press; 1930.
Google Scholar
Andersson M, Simmons LW. Sexual selection and mate choice. Trends Ecol Evol. 2006;21:296–302.
PubMed
Google Scholar
Weaver RJ, Koch RE, Hill GE. What maintains signal honesty in animal colour displays used in mate choice? Philos Trans R Soc B Biol Sci. 2017;372:20160343.
Google Scholar
Achorn AM, Rosenthal GG. It’s not about him: mismeasuring ‘Good Genes’ in sexual selection. Trends Ecol Evol. 2020;35:206–19.
PubMed
Google Scholar
Prokop ZM, Michalczyk Ł, Drobniak SM, Herdegen M, Radwan J. Meta-analysis suggests choosy females get sexy sons more than “Good genes.” Evolution (N Y). 2012;66:2665–73.
Google Scholar
Endler JA, Houde AE. Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution (N Y). 1995;49:456–68.
PubMed
Google Scholar
Reznick DN, Travis J. Experimental studies of evolution and eco-evo dynamics in Guppies (Poecilia reticulata). Annu Rev Ecol Evol Syst. 2019;50:335–54.
Google Scholar
Houde AE. Mate choice based upon naturally occurring color-pattern variation in a guppy population. Evolution (N Y). 1987;41:1–10.
Google Scholar
Kodric-Brown A. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav Ecol Sociobiol. 1989;25:393–401.
Google Scholar
Houde AE, Torio AJ. Effect of parasitic infection on male color pattern and female choice in guppies. Behav Ecol. 1992;3:346–51.
Google Scholar
Locatello L, Rasotto MB, Evans JP, Pilastro A. Colourful male guppies produce faster and more viable sperm. J Evol Biol. 2006;19:1595–602.
CAS
PubMed
Google Scholar
Evans JP, Kelley JL, Bisazza A, Finazzo E, Pilastro A. Sire attractiveness influences offspring performance in guppies. Proc R Soc B Biol Sci. 2004;271:2035–42.
Google Scholar
Houde AE. Sex-linked heritability of a sexually selected character in a natural population of Poecilia reticulata (Pisces: Poeciliidae) (guppies). Heredity (Edinb). 1992;69:229–35.
Google Scholar
Morris J, Darolti I, Van Der Bijl W, Mank JE. High-resolution characterization of male ornamentation and re-evaluation of sex linkage in guppies: REEVALUATION of SEX LINKAGE in GUPPIES. Proc R Soc B Biol Sci. 2020;287:20201677.
Google Scholar
Sato A, Kawata M. Genetic segregation for male body coloration and female mate preference in the guppy. BMC Res Notes. 2020;13:1–5.
Google Scholar
Kottler VA, Koch I, Flötenmeyer M, Hashimoto H, Weigel D, Dreyer C. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PLoS ONE. 2014;9:30–2.
Google Scholar
Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, et al. Zebrafish pigmentation mutations and the processes of neural crest development. Development. 1996;123:369–89.
CAS
PubMed
Google Scholar
Grether GF, Hudon J, Endler JA. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proc R Soc B Biol Sci. 2001;268:1245–53.
CAS
Google Scholar
Bagnara JT, Matsumoto J, Ferris W, Frost SK, Turner WA, Tchen TT, et al. Common origin of pigment cells. Science (80−). 1979;203:410–5.
CAS
Google Scholar
Lindholm A, Breden F. Sex chromosomes and sexual selection in poeciliid fishes. Am Nat. 2002;160(6 SUPPL.):214–24.
Google Scholar
Tripathi N, Hoffmann M, Willing EM, Lanz C, Weigel D, Dreyer C. Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation. Proc R Soc B Biol Sci. 2009;276:2195–208.
CAS
Google Scholar
Kottler VA, Fadeev A, Weige D, Dreyer C. Pigment pattern formation in the guppy, Poecilia reticulata, involves the kita and csf1ra receptor tyrosine kinases. Genetics. 2013;194:631–46.
CAS
PubMed
PubMed Central
Google Scholar
Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, et al. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. Elife. 2019;8:1–29.
Google Scholar
Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, et al. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet. 2018;14:e1007260.
PubMed
PubMed Central
Google Scholar
Lopes SS, Yang X, Müller J, Carney TJ, McAdow AR, Rauch GJ, et al. Leukocyte tyrosine kinase functions in pigment cell development. PLoS Genet. 2008;4:e1000026.
PubMed
PubMed Central
Google Scholar
Ng A, Uribe RA, Yieh L, Nuckels R, Gross JM. Zebrafish mutations in gart and paics identify crucial roles for de novo purine synthesis in vertebrate pigmentation and ocular development. Development. 2009;136:2601–11.
CAS
PubMed
PubMed Central
Google Scholar
Petratou K, Spencer SA, Kelsh RN, Lister JA. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor. PLoS ONE. 2021;16:e0244794.
CAS
PubMed
PubMed Central
Google Scholar
Dooley CM, Schwarz H, Mueller KP, Mongera A, Konantz M, Neuhauss SCF, et al. Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell Melanoma Res. 2013;26:205–17.
CAS
PubMed
Google Scholar
Singh AP, Nüsslein-Volhard C. Zebrafish stripes as a model for vertebrate colour pattern formation. Curr Biol. 2015;25:R81-92.
CAS
PubMed
Google Scholar
Parichy DM, Mellgren EM, Rawls JF, Lopes SS, Kelsh RN, Johnson SL. Mutational analysis of endothelin receptor b1 (rose) during neural crest and pigment pattern development in the zebrafish Danio rerio. Dev Biol. 2000;227:294–306.
CAS
PubMed
Google Scholar
Minchin JEN, Hughes SM. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest. Dev Biol. 2008;317:508–22.
CAS
PubMed
PubMed Central
Google Scholar
Nord H, Dennhag N, Muck J, Von Hofsten J. Pax7 is required for establishment of the xanthophore lineage in zebrafish embryos. Mol Biol Cell. 2016;27:1853–62.
CAS
PubMed
PubMed Central
Google Scholar
Braasch I, Brunet F, Volff J-N, Schartl M. Pigmentation pathway evolution after whole-genome duplication in fish. Genome Biol Evol. 2009;1:479–93.
PubMed
PubMed Central
Google Scholar
Lorin T, Brunet FG, Laudet V, Volff JN. Teleost fish-specific preferential retention of pigmentation gene-containing families after whole genome duplications in vertebrates. G3 Genes Genomes Genet. 2018;8:1795–806.
CAS
Google Scholar
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet. 2018;14:e1007402.
PubMed
PubMed Central
Google Scholar
Knight RD, Javidan Y, Nelson S, Zhang T, Schilling TF. Skeletal and pigment cell defects in the lockjaw mutant reveal multiple roles for Zebrafish tfap2a in neural crest development. Dev Dyn. 2004;229:87–98.
CAS
PubMed
Google Scholar
McMenamin SK, Bain EJ, McCann AE, Patterson LB, Eom DS, Waller ZP, et al. Thyroid hormone-dependent adult pigment cell lineage and pattern inzebrafish. Science (80−). 2014;345:1358–61.
CAS
PubMed
PubMed Central
Google Scholar
Patterson LB, Bain EJ, Parichy DM. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution. Nat Commun. 2014;5:1–9.
Google Scholar
Lister JA. Larval but not adult xanthophore pigmentation in zebrafish requires GTP cyclohydrolase 2 (gch2) function. Pigment Cell Melanoma Res. 2019;32:724–7.
CAS
PubMed
Google Scholar
Ben J, Lim TM, Phang VPE, Chan WK. Cloning and tissue expression of 6-pyruvoyl tetrahydropterin synthase and xanthine dehydrogenase from Poecilia reticulata. Mar Biotechnol. 2003;5:568–78.
CAS
Google Scholar
Parichy DM, Ransom DG, Paw B, Zon LI, Johnson SL. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development. 2000;127:3031–44.
CAS
PubMed
Google Scholar
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Goessler W, Sefc KM. Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. Biol Lett. 2020;16:20200629.
CAS
PubMed
PubMed Central
Google Scholar
Granneman JG, Kimler VA, Zhang H, Ye X, Luo X, Postlethwait JH, et al. Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. Elife. 2017;6:1–22.
Google Scholar
Patterson LB, Parichy DM. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLoS Genet. 2013;9:1–14.
Google Scholar
Santos ME, Braasch I, Boileau N, Meyer BS, Sauteur L, Böhne A, et al. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat Commun. 2014;5:5149.
CAS
PubMed
Google Scholar
Salzburger W, Braasch I, Meyer A. Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biol. 2007;5:1–13.
Google Scholar
Ansai S, Mochida K, Fujimoto S, Mokodongan DF, Sumarto BKA, Masengi KWA, et al. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat Commun. 2021;12:1350.
CAS
PubMed
PubMed Central
Google Scholar
Frohnhöfer HG, Krauss J, Maischein HM, Nüsslein-Volhard C. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development. 2013;140:2997–3007.
PubMed
PubMed Central
Google Scholar
Kuil LE, Oosterhof N, Ferrero G, Mikulášová T, Hason M, Dekker J, et al. Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. Elife. 2020;9:1–27.
Google Scholar
Huynh D, Dai XM, Nandi S, Lightowler S, Trivett M, Chan CK, et al. Colony stimulating factor-1 dependence of paneth cell development in the mouse small intestine. Gastroenterology. 2009;137:136-144.e3.
CAS
PubMed
Google Scholar
Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, van Ijcken WFJ, et al. Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep. 2018;24:1203-1217.e6.
CAS
PubMed
Google Scholar
Lonardi S, Scutera S, Licini S, Lorenzi L, Cesinaro AM, Benerini LG, et al. CSF1R is required for differentiation and migration of langerhans cells and langerhans cell histiocytosis. Cancer Immunol Res. 2020;8:829–41.
CAS
PubMed
Google Scholar
Caetano-Lopes J, Henke K, Urso K, Duryea J, Charles JF, Warman ML, et al. Unique and non-redundant function of csf1r paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development. 2020;147:1–11.
Google Scholar
Hill GE, Johnson JD. The vitamin A-Redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat. 2012;180:E127–50.
PubMed
Google Scholar
Fraser BA, Whiting JR, Paris JR, Weadick CJ, Parsons PJ, Charlesworth D, et al. Improved reference genome uncovers novel sex-linked regions in the guppy (Poecilia reticulata). Genome Biol Evol. 2020;12:1789–805.
CAS
PubMed
PubMed Central
Google Scholar
Shoji A, Yokoyama J, Kawata M. Molecular phylogeny and genetic divergence of the introduced populations of Japanese guppies, Poecilia reticulata. Conserv Genet. 2007;8:261–71.
Google Scholar
Cantu VA, Sadural J, Edwards R. PRINSEQ++, a multi-threaded tool for fast and efficient quality control and preprocessing of sequencing datasets. PeerJ Prepr. 2019;7:e27553v1.
Google Scholar
Bo L, Colin ND. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
Google Scholar
Dobin A, Gingeras TR, Spring C, Flores R, Sampson J, Knight R, et al. Mapping RNA-seq with STAR. Curr Protoc Bioinform. 2016;51:586–97.
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.
PubMed
PubMed Central
Google Scholar
Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Vesztrocy AW, Naldi A, et al. GOATOOLS: a python library for gene ontology analyses. Sci Rep. 2018;8:1–17.
CAS
Google Scholar