Goldsmith TH. Evolutionary tinkering with visual photoreception. Vis Neurosci. 2013;30(1–2):21–37.
PubMed
Google Scholar
Terakita A. The opsins. Genome Biol. 2005;6(3):213.
PubMed
PubMed Central
Google Scholar
Choi EH, Anahita D, Susie S, Henri L, Krzysztof P. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. J Lipid Res. 2021. https://0-doi-org.brum.beds.ac.uk/10.1194/jlr.TR120000850.
Article
PubMed
PubMed Central
Google Scholar
Saari JC. Regeneration of 11-cis-Retinal in visual systems with monostable and bistable visual. In: Furukawa T, Hurley JB, Kawamura S, editors. Vertebrate photoreceptors; 2014. pp. 47–71.
Chen P, Hao W, Rife L, Wand XP, Shen D, Chen J, Ogden T, Van Boemel GB, Wu L, Yang M, Fong HK. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet. 2001;28(3):256–60.
CAS
PubMed
Google Scholar
Hao W, Fong HK. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem. 1999;274(10):6085–90.
CAS
PubMed
Google Scholar
Albalat R. Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye? Mol Biol Evol. 2012;29(5):1461–9.
CAS
PubMed
Google Scholar
Kusakabe TG, Takimoto N, Jin M, Tsuda M. Evolution and the origin of the visual retinoid cycle in vertebrates. Philos Trans R Soc Lond B Biol Sci. 2009;364(1531):2897–910.
CAS
PubMed
PubMed Central
Google Scholar
Poliakov E, Gubin AN, Stearn O, Li Y, Campos MM, Gentleman S, Rogozin IB, Redmond TM. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates. PLoS ONE. 2012;7(11): e49975.
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Wang T, Jiao Y, von Lintig J, Montell C. Requirement for an enzymatic visual cycle in Drosophila. Curr Biol. 2010;20(2):93–102.
CAS
PubMed
Google Scholar
Wang X, Wang T, Ni JD, von Lintig J, Montell C. The Drosophila visual cycle and de novo chromophore synthesis depends on rdhB. J Neurosci. 2012;32(10):3485–91.
CAS
PubMed
PubMed Central
Google Scholar
Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A. Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci U S A. 2004;101(17):6687–91.
CAS
PubMed
PubMed Central
Google Scholar
Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM. Melanopsin bistability: a fly’s eye technology in the human retina. PLoS ONE. 2009;4(6): e5991.
PubMed
PubMed Central
Google Scholar
Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta. 2014;1837(5):710–6.
CAS
PubMed
Google Scholar
Tsukamoto H, Terakita A. Diversity and functional properties of bistable pigments. Photochem Photobiol Sci. 2010;9(11):1435–43.
CAS
PubMed
Google Scholar
Hara T, Hara R. Retinal-binding protein: function in a chromophore exchange system in the squid visual cell. Prog Retin Eye Res. 1991;10:179–206.
CAS
Google Scholar
Terakita A, Hara R, Hara T. Retinal-binding protein as a shuttle for retinal in the rhodopsin-retinochrome system of the squid visual cells. Vis Res. 1989;29(6):639–52.
CAS
PubMed
Google Scholar
Hubbard R, St. George RC. The rhodopsin system of the squid. J Gen Physiol. 1958;41(3):501–28.
CAS
PubMed
PubMed Central
Google Scholar
Ozaki K, Hara R, Hara T, Kakitani T. Squid retinochrome. Configurational changes of the retinal chromophore. Biophys J. 1983;44(1):127–37.
CAS
PubMed
PubMed Central
Google Scholar
Ozaki K, Terakita A, Hara R, Hara T. Rhodopsin and retinochrome in the retina of a marine gastropod, Conomulex luhuanus. Vis Res. 1986;26(5):691–705.
CAS
PubMed
Google Scholar
Katagiri N, Terakita A, Shichida Y, Katagiri Y. Demonstration of a rhodopsin-retinochrome system in the stalk eye of a marine gastropod, Onchidium, by immunohistochemistry. J Comp Neurol. 2001;433(3):380–9.
CAS
PubMed
Google Scholar
Ramirez MD, Pairett AN, Pankey MS, Serb JM, Speiser DI, Swafford AJ, Oakley TH. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol Evol. 2016;8(12):3640–52.
CAS
PubMed
PubMed Central
Google Scholar
Kocot KM, Poustka AJ, Stöger I, Halanych KM, Schrödl M. New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Sci Rep. 2020;10(1):101.
CAS
PubMed
PubMed Central
Google Scholar
Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM. Phylogenomics reveals deep molluscan relationships. Nature. 2011;477(7365):452–6.
CAS
PubMed
PubMed Central
Google Scholar
Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SC, Rouse GW, Giribet G, Dunn WD. Resolving the evolutionary relationships of molluscs with phylogenetic tools. Nature. 2011;480(7434):364–7.
CAS
PubMed
Google Scholar
Wanninger A, Wollesen T. The evolution of molluscs. Biol Rev Camb Philos Soc. 2018;94(1):102–15.
PubMed Central
Google Scholar
Heath H. The larval eye of chitons. Proc Acad Nat Sci Phila. 1904;56:257–9.
Google Scholar
Christiansen ME. The life history of Lepidopleurus asellus (Spengler) (Polyplacophora). Nor J Zool. 1954;2:52–72.
Google Scholar
Rosen MD, Stasek CR, Hermans CO. The ultrastructure and evolutionary significance of the ocelli in the larva of Katharina tunicata (Mollusca: Polyplacophora). Veliger. 1979;22(2):173–8.
Google Scholar
Vöcking O, Kourtesis I, Tumu SC, Hausen H. Co-expression of xenopsin and rhabdomeric opsin in photoreceptors bearing microvilli and cilia. Elife. 2017;6: e23435.
PubMed
PubMed Central
Google Scholar
Vöcking O, Kourtesis I, Hausen H. Posterior eyespots in larval chitons have a molecular identity similar to anterior cerebral eyes in other bilaterians. EvoDevo. 2015;6:40.
PubMed
PubMed Central
Google Scholar
Sturrock MG, Baxter JM. The ultrastructure of the aesthetes of Leptochiton asellus (Polyplacophora: Lepidopleurina). J Zool. 1993;230:49–61.
Google Scholar
Speiser DI, DeMartini DG, Oakley TH. The shell-eyes of the chiton Acanthopleura granulata (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. J Nat Hist. 2014;48(45–48):2899–911.
Google Scholar
Li L, Connors MJ, Kolle M, England GT, Speiser DI, Xiao X, Aizenberg J, Ortiz C. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science. 2015;350(6263):952–6.
CAS
PubMed
Google Scholar
Voronezhskaya EE, Tyurin SA, Nezlin LP. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol. 2002;444(1):25–38.
PubMed
Google Scholar
Sigwart JD, Sumner-Rooney LH, Schwabe E, Heß M, Brennan GP, Schrödl M. A new sensory organ in “primitive” molluscs (Polyplacophora: Lepidopleurida), and its context in the nervous system of chitons. Front Zool. 2014;11(1):7.
PubMed
PubMed Central
Google Scholar
Sumner-Rooney LH, Sigwart JD. Is the Schwabe Organ a retained larval eye? Anatomical and behavioural studies of a novel sense organ in adult Leptochiton asellus (Mollusca, Polyplacophora) indicate links to larval photoreceptors. PLoS ONE. 2015;10(9): e0137119.
PubMed
PubMed Central
Google Scholar
Bartolomaeus T. Ultrastructure of the photoreceptor in the larvae of Lepidochiton cinereus (Mollusca, Polyplacophora) and Lacuna divaricate (Mollusca, Gastropoda). Microfauna Mar. 1992;7:215–36.
Google Scholar
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR. Shedding new light on opsin evolution. Proc Biol Sci. 2012;279(1726):3–14.
PubMed
Google Scholar
Shichida Y, Matsuyama T. Evolution of opsins and phototransduction. Philos Trans R Soc Lond B Biol Sci. 2009;364(1531):2881–95.
CAS
PubMed
PubMed Central
Google Scholar
Zheng L, Farrell DM, Fulton RM, Bagg EE, Salcedo E, Manino M, Britt SG. Analysis of conserved glutamate and aspartate residues in Drosophila Rhodopsin 1 and their influence on spectral tuning. J Biol Chem. 2015;290(36):21951–61.
CAS
PubMed
PubMed Central
Google Scholar
Hara R, Hara T, Tokunaga F, Yoshizawa T. Photochemistry of retinochrome. Photochem Photobiol. 1981;33(6):883–91.
CAS
PubMed
Google Scholar
Hara T, Hara R. Distribution of rhodopsin and retinochrome in the squid retina. J Gen Physiol. 1976;67(6):791–805.
CAS
PubMed
Google Scholar
Filipek S, Teller DC, Palczewski K, Stenkamp R. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu Rev Biophys Biomol Struct. 2003;32:375–97.
CAS
PubMed
PubMed Central
Google Scholar
Okada T, Ernst OP, Palczewski K, Hofmann KP. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci. 2001;26(5):318–24.
CAS
PubMed
Google Scholar
Ridge KD, Palczewski K. Visual rhodopsin sees the light: structure and mechanism of G protein signaling. J Biol Chem. 2007;282(13):9297–301.
CAS
PubMed
Google Scholar
Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459(7245):356–63.
CAS
PubMed
PubMed Central
Google Scholar
Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD, Schertler GF. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature. 2011;471(7340):656–60.
CAS
PubMed
PubMed Central
Google Scholar
Tsuda M, Kusakabe T, Iwamoto H, Horie T, Nakashima Y, Nakagawa M, Okunou K. Origin of the vertebrate visual cycle: II. Visual cycle proteins are localized in whole brain including photoreceptor cells of a primitive chordate. Vis Res. 2003;43(28):3045–53.
CAS
PubMed
Google Scholar
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51(3):492–508.
PubMed
Google Scholar
Golovleva I, Bhattacharya S, Wu Z, Shaw N, Yang Y, Andrabi K, West KA, Burstedt MS, Forsman K, Holmgren G, Sandgren O, Noy N, Qin J, Crabb JW. Disease-causing mutations in the cellular retinaldehyde binding protein tighten and abolish ligand interactions. J Biol Chem. 2003;278(14):12397–402.
CAS
PubMed
Google Scholar
Wu Z, Bhattacharya SK, Jin Z, Bonilha VL, Liu T, Nawrot M, Teller DC, Saari JC, Crabb JW. CRALBP ligand and protein interactions. Adv Exp Med Biol. 2006;572:477–83.
CAS
PubMed
Google Scholar
Liu T, Jenwitheesuk E, Teller DC, Samudrala R. Structural insights into the cellular retinaldehyde-binding protein (CRALBP). Proteins. 2005;61(2):412–22.
CAS
PubMed
Google Scholar
Masuda T, Wahlin K, Wan J, Hu J, Maruotti J, Yang X, Iacovelli J, Wolkow N, Kist R, Dunaief JL, Qian J, Zack DJ, Esumi N. Transcription factor SOX9 plays a key role in the regulation of visual cycle gene expression in the retinal pigment epithelium. J Biol Chem. 2014;289(18):12908–21.
CAS
PubMed
PubMed Central
Google Scholar
Feuda R, Hamilton SC, McInerney JO, Pisani D. Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci U S A. 2012;109(46):18868–72.
CAS
PubMed
PubMed Central
Google Scholar
Hering L, Mayer G. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda. Genome Biol Evol. 2014;6(9):2380–91.
CAS
PubMed
PubMed Central
Google Scholar
Maeda T, Van Hooser JP, Driessen CA, Filipek S, Janssen JJ, Palczewski K. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo. J Neurochem. 2003;85(4):944–56.
CAS
PubMed
PubMed Central
Google Scholar
Lucas RJ. Chromophore regeneration: melanopsin does its own thing. Proc Natl Acad Sci U S A. 2006;103(27):10153–4.
CAS
PubMed
PubMed Central
Google Scholar
Battelle BA, Kempler KE, Saraf SR, Marten CE, Dugger DR, Speiser DI, Oakley TH. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. J Exp Biol. 2014;218(3):466–79.
PubMed
Google Scholar
Nagata T, Koyanagi M, Tsukamoto H, Terakita A. Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(1):51–9.
CAS
PubMed
Google Scholar
Nagata T, Koyanagi M, Lucas R, Terakita A. An all-trans-retinal-binding opsin peropsin as a potential dark-active and light-inactivated G protein-coupled receptor. Sci Rep. 2018;8(1):3535.
PubMed
PubMed Central
Google Scholar
Saari JC. Vitamin A metabolism in rod and cone visual cycles. Annu Rev Nutr. 2012;32:125–45.
CAS
PubMed
Google Scholar
Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K. Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem. 2012;287(7):5059–69.
CAS
PubMed
Google Scholar
Voolstra O, Oberhauser V, Sumser E, Meyer NE, Maguire ME, Huber A, von Lintig J. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J Biol Chem. 2010;285(3):2130–9.
CAS
PubMed
Google Scholar
Yoshida MA, Ogura A, Ikeo K, Shigeno S, Moritaki T, Winters GC, Kohn AB, Moroz LL. Molecular evidence for convergence and parallelism in evolution of complex brains of cephalopod molluscs: insights from visual systems. Integr Comp Biol. 2015;55(6):1070–83.
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
CAS
PubMed
Google Scholar
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(Web Server issue):W5–9.
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7(10):e1002195.
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.
CAS
PubMed
PubMed Central
Google Scholar
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21(9):2104–5.
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
CAS
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) IEEE. 2010; pp.1–8.
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21(6):1095–109.
CAS
PubMed
Google Scholar
Lartillot N, Philippe H. Computing Bayes factors using thermodynamic integration. Syst Biol. 2006;55(2):195–207.
PubMed
Google Scholar
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using
a site-heterogeneous model. BMC Evol Biol. 2007;7 Suppl 1(Suppl 1):S4.
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.
CAS
PubMed
PubMed Central
Google Scholar
Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001;17(12):1246–7.
CAS
PubMed
Google Scholar
Schmidt HA, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002;18(3):502–4.
CAS
PubMed
Google Scholar