Coyne JA, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004.
Google Scholar
Butlin R, Debelle A, Kerth C, Snook RR, Beukeboom LW, Castillo RC, et al. What do we need to know about speciation? Trends Ecol Evol. 2012;27:27–39.
Article
PubMed
Google Scholar
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–37.
Article
CAS
PubMed
Google Scholar
Mallet J. Hybrid speciation. Nature. 2007;446:279–83.
Article
CAS
PubMed
Google Scholar
Bird CE, Fernandez-Silva I, Skillings DJ, Toonen RJ. Sympatric speciation in the post “Modern Synthesis” era of evolutionary biology. Evol Biol. 2012;39:158–80.
Article
Google Scholar
Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol. 2001;16:381–90.
Article
CAS
PubMed
Google Scholar
Bolnick DI, Fitzpatrick BM. Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst. 2007;38:459–87.
Article
Google Scholar
Orr HA, Turelli M. The evolution of postzygotic isolation: accumulating Dobzhansky–Muller incompatibilities. Evolution. 2001;55:1085–94.
Article
CAS
PubMed
Google Scholar
Nosil P, Flaxman SM. Conditions for mutation-order speciation. Proc R Soc B Biol Sci. 2011;278:399–407.
Article
Google Scholar
Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science. 2015;350:1493–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature. 2020;588:106–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berlocher SH, Feder JL. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol. 2002;47:773–815.
Article
CAS
PubMed
Google Scholar
Forbes AA, Devine SN, Hippee AC, Tvedte ES, Ward AKG, Widmayer HA, et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution. 2017;71:1126–37.
Article
PubMed
Google Scholar
Drès M, Mallet J. Host races in plant–feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci. 2002;357:471–92.
Article
PubMed
PubMed Central
Google Scholar
Higashi M, Takimoto G, Yamamura N. Sympatric speciation by sexual selection. Nature. 1999;402:523–6.
Article
CAS
PubMed
Google Scholar
Gavrilets S, Waxman D. Sympatric speciation by sexual conflict. Proc Natl Acad Sci. 2002;99:10533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie MG. Sexual selection and speciation. Annu Rev Ecol Evol Syst. 2007;38:79–102.
Article
Google Scholar
Weissing FJ, Edelaar P, Van Doorn GS. Adaptive speciation theory: a conceptual review. Behav Ecol Sociobiol. 2011;65:461–80.
Article
PubMed
PubMed Central
Google Scholar
Safran RJ, Scordato ES, Symes LB, Rodríguez RL, Mendelson TC. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol Evol. 2013;28:643–50.
Article
PubMed
Google Scholar
Scordato ESC, Symes LB, Mendelson TC, Safran RJ. The role of ecology in speciation by sexual selection: a systematic empirical review. J Hered. 2014;105:782–94.
Article
PubMed
Google Scholar
Rundle HD, Rowe L. The contribution of sexual selection to ecological and mutation-order speciation. Evolution. 2018;72:2571–5.
Article
PubMed
Google Scholar
Maan ME, Seehausen O. Ecology, sexual selection and speciation. Ecol Lett. 2011;14:591–602.
Article
PubMed
Google Scholar
Austin A, Dowton M. The Hymenoptera: an introduction. In: Hymenoptera: evolution, biodiversity and biological control. Collingwood: CSIRO Publishing; 2000. p. 3–10.
Aguiar AP, Deans AR, Engel MS, Forshage M, Huber JT, Jennings JT, et al. Order Hymenoptera. In: Zhang Z-Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa. 2013;3703:51–62.
Davis RB, Baldauf SL, Mayhew PJ. The origins of species richness in the Hymenoptera: insights from a family-level supertree. BMC Evol Biol. 2010;10:109.
Article
PubMed
PubMed Central
Google Scholar
Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary history of the Hymenoptera. Curr Biol. 2017;27:1013–8.
Article
CAS
PubMed
Google Scholar
Godfray HCJ. Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press; 1994.
Book
Google Scholar
Quicke DLJ. Parasitic wasps. London: Chapman Hall; 1997.
Google Scholar
Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 2018;18:1–11.
Article
Google Scholar
Gokhman V. Dimensions and borderlines of parasitoid Hymenoptera species: a paradigm shift? Biol Bull Rev. 2018;8:227–33.
Article
Google Scholar
Gauld ID, Janzen DH. The systematics and biology of the Costa Rican species of parasitic wasps in the Thyreodon genus-group (Hymenoptera: Ichneumonidae). Zool J Linn Soc. 2004;141:297–351.
Article
Google Scholar
Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci. 2008;105:12359–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stigenberg J. Revision of the Western Palearctic Meteorini (Hymenoptera, Braconidae), with a molecular characterization of hidden Fennoscandian species diversity. Zootaxa. 2011;3084:1–95.
Article
Google Scholar
Butcher BA, Smith MA, Sharkey MJ, Quicke DL. A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadinae) based largely on COI barcoded specimens, with rapid descriptions of 179 new species. Zootaxa. 2012;3457:1–232.
Google Scholar
Chen H, Talamas EJ, Valerio AA, Masner L, Johnson NF. Revision of the world species of the genus Chromoteleia Ashmead (Hymenoptera, Platygastridae, Scelioninae). ZooKeys. 2018;778:1–95.
Article
Google Scholar
van Achterberg K, Schilthuizen M, van der Meer M, Delval R, Dias C, Hoynck M, et al. A new parasitoid wasp, Aphaereta vondelparkensis sp. n. (Braconidae, Alysiinae), from a city park in the centre of Amsterdam. Biodivers Data J. 2020;8:e49017.
Article
PubMed
PubMed Central
Google Scholar
Wiegmann BM, Mitter C, Farrell B. Diversification of carnivorous parasitic insects: extraordinary radiation or specialized dead end? Am Nat. 1993;142:737–54.
Article
Google Scholar
Noyes JS. Universal chalcidoidea database. 2019. http://www.nhm.ac.uk/chalcidoids.
Askew RR. Considerations on speciation in Chalcidoidea (Hymenoptera). Evolution. 1968;22:642–5.
Article
CAS
PubMed
Google Scholar
Unruh T, Messing R. Intraspecific biodiversity in Hymenoptera: implications for conservation and biological control. In: Hymenoptera and biodiversity. Wallingford: CAB International; 1993. p. 27–52.
Conner JK, Hartl DL. A primer of ecological genetics. Sunderland: Sinauer Associates Incorporated; 2004.
Google Scholar
Peer K, Taborsky M. Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution. 2005;59:317–23.
Article
PubMed
Google Scholar
Zayed A, Packer L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci. 2005;102:10742–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asplen M, Whitfield J, De Boer J, Heimpel GE. Ancestral state reconstruction analysis of hymenopteran sex determination mechanisms. J Evol Biol. 2009;22:1762–9.
Article
CAS
PubMed
Google Scholar
Werren JH. The evolution of inbreeding in haplodiploid organisms. In: The natural history of inbreeding and outbreeding. Chicago: The University of Chicago Press; 1993. p. 42–59.
Gordh G, DeBach P. Courtship behavior in the Aphytis lingnanensis group, its potential usefulness in taxonomy, and a review of sexual behavior in the parasitic Hymenoptera (Chalcidoidea: Aphelinidae). Hilgardia. 1978;46:37–75.
Article
Google Scholar
Ridley M. Clutch size and mating frequency in parasitic Hymenoptera. Am Nat. 1993;142:893–910.
Article
Google Scholar
Charnov EL. Sex ratio evolution in a variable environment. Nature. 1981;289:27–33.
Article
CAS
PubMed
Google Scholar
Burton-Chellew MN, Koevoets T, Grillenberger BK, Sykes EM, Underwood SL, Bijlsma K, et al. Facultative sex ratio adjustment in natural populations of wasps: cues of local mate competition and the precision of adaptation. Am Nat. 2008;172:393–404.
Article
PubMed
Google Scholar
Machado CA, Robbins N, Gilbert MTP, Herre EA. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Natl Acad Sci. 2005;102(suppl 1):6558–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sha Z, Zhu C, Murphy R, Huang D. Diglyphus isaea (Hymenoptera: Eulophidae): a probable complex of cryptic species that forms an important biological control agent of agromyzid leaf miners. J Zool Syst Evol Res. 2007;45:128–35.
Article
Google Scholar
König K, Zundel P, Krimmer E, König C, Pollmann M, Gottlieb Y, et al. Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps. Ecol Evol. 2019. https://0-doi-org.brum.beds.ac.uk/10.1002/ece3.5588.
Article
PubMed
PubMed Central
Google Scholar
Forbes AA, Powell THQ, Stelinski LL, Smith JJ, Feder JL. Sequential sympatric speciation across trophic levels. Science. 2009;323:776–9.
Article
CAS
PubMed
Google Scholar
Feder JL, Forbes AA. Sequential speciation and the diversity of parasitic insects. Ecol Entomol. 2010;35:67–76.
Article
Google Scholar
Hood GR, Forbes AA, Powell THQ, Egan SP, Hamerlinck G, Smith JJ, et al. Sequential divergence and the multiplicative origin of community diversity. Proc Natl Acad Sci. 2015;112:E5980–9.
CAS
PubMed
PubMed Central
Google Scholar
Hamerlinck G, Hulbert D, Hood GR, Smith JJ, Forbes AA. Histories of host shifts and cospeciation among free-living parasitoids of Rhagoletis flies. J Evol Biol. 2016;29:1766–79.
Article
CAS
PubMed
Google Scholar
König K, Krimmer E, Brose S, Gantert C, Buschlüter I, König C, et al. Does early learning drive ecological divergence during speciation processes in parasitoid wasps? Proc R Soc Lond B Biol Sci. 2015;282:20141850.
Google Scholar
König K, Seeger L, Steidle JL. Sexy mouth odour? Male oral gland pheromone in the grain beetle parasitoid Lariophagus distinguendus (Förster) (Hymenoptera: Pteromalidae). BioMed Res Int. 2015. https://0-doi-org.brum.beds.ac.uk/10.1155/2015/216952.
Article
PubMed
PubMed Central
Google Scholar
Breeuwer JAJ, Werrren JH. Hybrid breakdown between two haplodiploid species: the role of nuclear and cytoplasmic genes. Evolution. 1995;49:705–17.
Article
PubMed
Google Scholar
Bordenstein SR, O’Hara FP, Werren JH. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature. 2001;409:707–10.
Article
CAS
PubMed
Google Scholar
Clark ME, O’Hara FP, Chawla A, Werren JH. Behavioral and spermatogenic hybrid male breakdown in Nasonia. Heredity. 2010;104:289–301.
Article
CAS
PubMed
Google Scholar
Koevoets T, Niehuis O, Van De Zande L, Beukeboom LW. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci. Heredity. 2012;108:302–11. https://0-doi-org.brum.beds.ac.uk/10.1038/hdy.2011.75.
Article
CAS
PubMed
Google Scholar
Giesbers MCWG, Gerritsma S, Buellesbach J, Diao W, Pannebakker BA, van de Zande L, et al. Prezygotic isolation in the parasitoid wasp genus Nasonia. In: Speciation: natural processes, genetics and biodiversity. Nova Science Publishers; 2013. p. 165–91. https://0-www-scopus-com.brum.beds.ac.uk/inward/record.uri?eid=2-s2.0-84892127414&partnerID=40&md5=bc825cd613098b46e716e6eb6f9018d0.
Niehuis O, Buellesbach J, Gibson JD, Pothmann D, Hanner C, Mutti NS, et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature. 2013;494:345–8.
Article
CAS
PubMed
Google Scholar
Beukeboom LW, Koevoets T, Morales HE, Ferber S, van de Zande L. Hybrid incompatibilities are affected by dominance and dosage in the haplodiploid wasp Nasonia. Front Genet. 2015. https://0-doi-org.brum.beds.ac.uk/10.3389/fgene.2015.00140.
Article
PubMed
PubMed Central
Google Scholar
Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. 2010;327:343–8. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1178028.
Article
CAS
PubMed
Google Scholar
Loehlin DW, Oliveira DCSG, Edwards R, Giebel JD, Clark ME, Cattani MV, et al. Non-coding changes cause sex-specific wing size differences between closely related species of Nasonia. PLoS Genet. 2010;6:e1000821.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bertossa RC, Van De Zande L, Beukeboom LW, Beersma DGM. Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis. Chronobiol Int. 2014;31:749–60.
Article
PubMed
PubMed Central
Google Scholar
Pegoraro M, Bafna A, Davies NJ, Shuker DM, Tauber E. DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res. 2016;26:203–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mair MM, Kmezic V, Huber S, Pannebakker BA, Ruther J. The chemical basis of mate recognition in two parasitoid wasp species of the genus Nasonia. Entomol Exp Appl. 2017;164:1–15.
Article
CAS
Google Scholar
Geuverink E, Rensink AH, Rondeel I, Beukeboom LW, van de Zande L, Verhulst EC. Maternal provision of transformer-2 is required for female development and embryo viability in the wasp Nasonia vitripennis. Insect Biochem Mol Biol. 2017;90 Supplement C:23–33.
Article
CAS
Google Scholar
Martinson EO, Mrinalini, Kelkar YD, Chang C-H, Werren JH. The evolution of venom by co-option of single-copy genes. Curr Biol. 2017;27:2007-2013.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schurmann D, Sommer C, Schinko AP, Greschista M, Smid H, Steidle JL. Demonstration of long-term memory in the parasitic wasp Nasonia vitripennis. Entomol Exp Appl. 2012;143:199–206.
Article
Google Scholar
Schurmann D, Kugel D, Steidle JL. Early memory in the parasitoid wasp Nasonia vitripennis. J Comp Physiol A. 2015;201:375–83.
Article
Google Scholar
Breeuwer JAJ, Werren JH. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nat Lond. 1990;346:558–60.
Article
CAS
Google Scholar
Bordenstein SR, Werren JH. Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity. 2007;99:278–87.
Article
CAS
PubMed
Google Scholar
Koevoets T, Beukeboom LW. Genetics of postzygotic isolation and Haldane’s rule in haplodiploids. Heredity. 2009;102:16–23.
Article
CAS
PubMed
Google Scholar
Raychoudhury R, Desjardins CA, Buellesbach J, Loehlin DW, Grillenberger BK, Beukeboom L, et al. Behavioral and genetic characteristics of a new species of Nasonia. Heredity. 2010;104:278–88.
Article
CAS
PubMed
Google Scholar
Ellison CK, Niehuis O, Gadau J. Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol. 2008;21:1844–51.
Article
CAS
PubMed
Google Scholar
Dittmer J, van Opstal EJ, Shropshire JD, Bordenstein SR, Hurst GD, Brucker RM. Disentangling a holobiont–recent advances and perspectives in Nasonia wasps. Front Microbiol. 2016;7:1478.
Article
PubMed
PubMed Central
Google Scholar
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741–51.
Article
CAS
PubMed
Google Scholar
Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609.
Article
CAS
PubMed
Google Scholar
Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B Biol Sci. 2003;270:2185–90.
Article
Google Scholar
Takano S, Tuda M, Takasu K, Furuya N, Imamura Y, Kim S, et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc Natl Acad Sci. 2017;114:6110–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenwald LC, Sitvarin MI, White JA. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc R Soc B. 2020;287:20201107.
Article
PubMed
PubMed Central
Google Scholar
Vavre F, Fleury F, Varaldi J, Fouillet P, Bouletreau M. Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity. 2002;88:361–5.
Article
CAS
PubMed
Google Scholar
Breeuwer JA, Werren JH. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics. 1993;135:565–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schröder H. Crossing experiments and molecularbiological researches at two ecotypes of Nasonia vitripennis (Hymenoptera, Pteromalidae). Mitteilungen Dtsch Ges Für Allg Angew Entomol. 2000;12:165–8.
Google Scholar
Abraham R, Peters RS. Nistkästen als Lebensraum für Insekten, besonders Fliegen und ihre Schlupfwespen, Nestboxes as habitat for insects, especially for flies and their parasitoids. Vogelwarte. 2008;46:195–205.
Google Scholar
Schurmann D, Collatz J, Hagenbucher S, Ruther J, Steidle JLM. Olfactory host finding, intermediate memory and its potential ecological adaptation in Nasonia vitripennis. Naturwissenschaften. 2009;96:383–91.
Article
CAS
PubMed
Google Scholar
Peters RS, Abraham R. The food web of parasitoid wasps and their non-phytophagous fly hosts in birds’ nests (Hymenoptera: Chalcidoidea, and Diptera: Cyclorrhapha). J Nat Hist. 2010;44:625–38.
Article
Google Scholar
Garrido-Bautista J, Moreno-Rueda G, Baz A, Canal D, Camacho C, Cifrián B, et al. Variation in parasitoidism of Protocalliphora azurea (Diptera: Calliphoridae) by Nasonia vitripennis (Hymenoptera: Pteromalidae) in Spain. Parasitol Res. 2020;119:559–66.
Article
PubMed
Google Scholar
Grassberger M, Frank C. Initial study of arthropod succession on pig carrion in a Central European urban habitat. J Med Entomol. 2004;41:511–23.
Article
CAS
PubMed
Google Scholar
Ruther J, McCaw J, Böcher L, Pothmann D, Putz I. Pheromone diversification and age-dependent behavioural plasticity decrease interspecific mating costs in Nasonia. PLoS ONE. 2014;9:e89214–e89214.
Article
PubMed
PubMed Central
CAS
Google Scholar
Whiting AR. The biology of the parasitic wasp Mormoniella vitripennis [= Nasonia brevicornis](Walker). Q Rev Biol. 1967;42:333–406.
Article
Google Scholar
Grillenberger BK, Gadau J, Bijlsma R, Van De Zande L, Beukeboom LW. Female dispersal and isolation-by-distance of Nasonia vitripennis populations in a local mate competition context. Entomol Exp Appl. 2009;132:147–54.
Article
Google Scholar
Grillenberger B, Koevoets T, Burton-Chellew M, Sykes E, Shuker D, Van de Zande L, et al. Genetic structure of natural Nasonia vitripennis populations: validating assumptions of sex-ratio theory. Mol Ecol. 2008;17:2854–64.
Article
CAS
PubMed
Google Scholar
Van der Merwe J. Investigations on the biology and ecology of Mormoniella vitripennis Walk. (Pteromalidae, Hym.). J Entomol Soc S Afr. 1943;6:48–64.
Google Scholar
Smith G, Pimentel D. The effect of two host species on the longevity and fertility of Nasonia vitripennis. Ann Entomol Soc Am. 1969;62:305–8.
Article
Google Scholar
Fitzpatrick BM, Fordyce JA, Gavrilets S. What, if anything, is sympatric speciation? J Evol Biol. 2008;21:1452–9.
Article
CAS
PubMed
Google Scholar
Vinson SB. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous Species. Biol Control. 1998;11:79–96.
Article
Google Scholar
Steidle JL, van Loon JJ. Chemoecology of parasitoid and predator oviposition behaviour. In: Chemoecology of insect eggs and egg deposition. Berlin: Blackwell; 2002. p. 291–317.
Turissini D, Liu G, David J, Matute D. The evolution of reproductive isolation in the Drosophila yakuba complex of species. J Evol Biol. 2015;28:557–75.
Article
CAS
PubMed
Google Scholar
Tadeo E, Feder JL, Egan SP, Schuler H, Aluja M, Rull J. Divergence and evolution of reproductive barriers among three allopatric populations of Rhagoletis cingulata across eastern North America and Mexico. Entomol Exp Appl. 2015;156:301–11.
Article
Google Scholar
Kozak GM, Rudolph AB, Colon BL, Fuller RC. Postzygotic isolation evolves before prezygotic isolation between fresh and saltwater populations of the Rainwater Killifish, Lucania parva. Int J Evol Biol. 2012. https://0-doi-org.brum.beds.ac.uk/10.1155/2012/523967.
Article
PubMed
PubMed Central
Google Scholar
Chin TA, Cáceres CE, Cristescu ME. The evolution of reproductive isolation in Daphnia. BMC Evol Biol. 2019;19:216.
Article
PubMed
PubMed Central
Google Scholar
Schröder H. Okologie und intraspezifische Variation bei Nasonia vitripennis Walker (Hymenoptera, Pteromalidae). Mitteilungen Dtsch Ges Fuer Allg Angew Entomol. 1995;10:521–4.
Google Scholar
Schröder H, Abraham R. Ecotypes or two species within Nasonia vitripennis (Chalcidoidea, Pteromalidae)? Mitteilungen Dtsch Ges Fuer Allg Angew Entomol. 1997;11:789–92.
Google Scholar
Møller A, Flensted-Jensen E, Klarborg K, Mardal W, Nielsen J. Climate change affects the duration of the reproductive season in birds. J Anim Ecol. 2010;79:777–84.
PubMed
Google Scholar
Lewis Z, Lizé A. Insect behaviour and the microbiome. Curr Opin Insect Sci. 2015;9:86–90.
Article
PubMed
Google Scholar
Holdaway FG. Field populations and natural control of Lucilia sericata. Nature. 1930;126:648–9.
Article
Google Scholar
Bush GL. Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche (Stuttg). 1992;99:335–57.
Article
Google Scholar
Jaenike J. Criteria for ascertaining the existence of host races. Am Nat. 1981;117:830–4.
Article
Google Scholar
Ruther J, Hammerl T. An oral male courtship pheromone terminates the response of Nasonia vitripennis females to the male-produced sex attractant. J Chem Ecol. 2014;40:56–62.
Article
CAS
PubMed
Google Scholar
Jennings JH, Snook RR, Hoikkala A. Reproductive isolation among allopatric Drosophila montana populations. Evolution. 2014;68:3095–108.
Article
PubMed
Google Scholar
Turissini DA, McGirr JA, Patel SS, David JR, Matute DR. The Rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol Biol Evol. 2017;35:312–34.
Article
PubMed Central
CAS
Google Scholar
Garlovsky MD, Snook RR. Persistent postmating, prezygotic reproductive isolation between populations. Ecol Evol. 2018;8:9062–73.
Article
PubMed
PubMed Central
Google Scholar
Keller LF, Waller DM. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.
Article
Google Scholar
Antolin MF. A genetic perspective on mating systems and sex ratios of parasitoid wasps. Popul Ecol. 1999;41:29–37.
Article
Google Scholar
Waser NM, Williams CF. Inbreeding and outbreeding. In: Evolutionary ecology: concepts and case studies. 2001; p. 84–96.
Edmands S. Does parental divergence predict reproductive compatibility? Trends Ecol Evol. 2002;17:520–7.
Article
Google Scholar
Escobar JS, Nicot A, David P. The different sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation of Physa acuta. Genetics. 2008;180:1593–608.
Article
PubMed
PubMed Central
Google Scholar
Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, Braendle C. Outbreeding depression with low genetic variation in selfing Caenorhabditis nematodes. Evolution. 2013;67:3087–101.
Article
PubMed
Google Scholar
Atalay D, Schausberger P. Balancing in-and out-breeding by the predatory mite Phytoseiulus persimilis. Exp Appl Acarol. 2018;74:159–69.
Article
PubMed
PubMed Central
Google Scholar
Molbo D, Parker E. Mating structure and sex ratio variation in a natural population of Nasonia vitripennis. Proc R Soc Lond B Biol Sci. 1996;263:1703–9.
Article
Google Scholar
Werren JH, Loehlin DW. The parasitoid wasp Nasonia: an emerging model system with haploid male genetics. Cold Spring Harb Protoc. 2009;2009:pdb.emo134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johannesson K, Panova M, Kemppainen P, André C, Rolan-Alvarez E, Butlin RK. Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philos Trans R Soc B Biol Sci. 2010;365:1735–47.
Article
Google Scholar
Rundle HD, Nosil P. Ecological speciation. Ecol Lett. 2005;8:336–52.
Article
Google Scholar
Bolnick DI, Barrett RD, Oke KB, Rennison DJ, Stuart YE. (Non) parallel evolution. Annu Rev Ecol Evol Syst. 2018;49:303–30.
Article
Google Scholar
Nosil P. Ecological speciation. Oxford: Oxford University Press; 2012.
Book
Google Scholar
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, et al. Genomics and the origin of species. Nat Rev Genet. 2014;15:176–92.
Article
CAS
PubMed
Google Scholar
Buschinger A. Evolution, speciation, and inbreeding in the parasitic ant genus Epimyrma (Hymenoptera, Formicidae). J Evol Biol. 1989;2:265–83.
Article
Google Scholar
Stegniy V. Hard inbreeding under extreme environmental conditions is the most important factor of microevolution and speciation. Russ J Genet. 2017;53:757–65.
Article
CAS
Google Scholar
Olsen KC, Ryan WH, Winn AA, Kosman ET, Moscoso JA, Krueger-Hadfield SA, et al. Inbreeding shapes the evolution of marine invertebrates. Evolution. 2020;74:871–82.
Article
PubMed
PubMed Central
Google Scholar
Bouček Z, Rasplus JY. Illustrated key to west-Palearctic genera of Pteromalidae (Hymenoptera: Chalcidoidea). Paris: INRA Editions; 1991.
Google Scholar
Pannebakker BA, Cook N, Van Den Heuvel J, Van De Zande L, Shuker DM. Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis. BMC Genomics. 2020;21:1–14.
Article
CAS
Google Scholar
Steidle JLM, Schoeller M. Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J Insect Behav. 1997;10:331–42.
Article
Google Scholar
Steinberg S, Dicke M, Vet LEM, Wanningen R. Response of the braconid parasitoid Cotesia (=Apanteles) glomerata to volatile infochemicals: effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomol Exp Appl. 1992;63:163–75.
Article
CAS
Google Scholar
Sobel JM, Chen GF. Unification of methods for estimating the strength of reproductive isolation. Evolution. 2014;68:1511–22.
Article
PubMed
Google Scholar
Ramsey J, Bradshaw HD, Schemske DW. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phyrmaceae). Evolution. 2003;57:1520–34.
Article
PubMed
Google Scholar
van de Zande L, Ferber S, de Haan A, Beukeboom LW, van Heerwaarden J, Pannebakker BA. Development of a Nasonia vitripennis outbred laboratory population for genetic analysis. Mol Ecol Resour. 2014;14:578–87.
Article
PubMed
Google Scholar
Flores-Rentería L, Krohn A. Scoring microsatellite loci. In: Microsatellites. Springer; 2013. p. 319–36.
Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8.
Article
CAS
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15:1179–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falush D, Stephens M, Pritchard J. Inference of population genetic structure: extensions to linked loci and correlated alíele frequencies. Genetics. 2003;164:1567–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:1322–32.
Article
PubMed
PubMed Central
Google Scholar
Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.
Article
Google Scholar
Smouse PE, Peakall R. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hartl DL, Clark AG, Clark AG. Principles of population genetics. Sunderland: Sinauer Associates; 1997.
Google Scholar
Frankham R, Briscoe DA, Ballou JD. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2002.
Book
Google Scholar
Frankham R, Ballou JD, Briscoe DA. A primer of conservation genetics. Cambridge: Cambridge University Press; 2004.
Book
Google Scholar
Hedrick PW. A standardized genetic differentiation measure. Evolution. 2005;59:1633–8.
Article
CAS
PubMed
Google Scholar
Meirmans PG, Hedrick PW. Assessing population structure: FST and related measures. Mol Ecol Resour. 2011;11:5–18.
Article
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. https://www.r-project.org/.
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.
Article
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2014;67:1–48.
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.
Article
PubMed
Google Scholar
Pritchard JK, Wena X, Falushb D. Documentation for structure software: Version 2.3. 2009. http://pritch.bsd.uchicago.edu/structure.html.