Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–7. https://0-doi-org.brum.beds.ac.uk/10.1038/35021228.
Article
CAS
PubMed
Google Scholar
Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development. 2018;145:1–6. https://0-doi-org.brum.beds.ac.uk/10.1242/dev.156018.
Article
CAS
Google Scholar
Barak B, Feldman N, Okun E. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Front Neurosci. 2014;8:1–6. https://0-doi-org.brum.beds.ac.uk/10.3389/fnins.2014.00272.
Article
Google Scholar
Imler J-L, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol. 2001;11:304–11. https://0-doi-org.brum.beds.ac.uk/10.1016/S0962-8924(01)02004-9.
Article
CAS
PubMed
Google Scholar
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. https://0-doi-org.brum.beds.ac.uk/10.1038/ni.1863.
Article
CAS
PubMed
Google Scholar
Medzhitov R. Toll like receptors and innate immunity. Nat Rev. 2001;1:135–45.
CAS
Google Scholar
Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat Rev Genet. 2008;9:165–78. https://0-doi-org.brum.beds.ac.uk/10.1038/nrg2303.
Article
CAS
PubMed
Google Scholar
Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell. 1985;42:779–89. https://0-doi-org.brum.beds.ac.uk/10.1016/0092-8674(85)90274-0.
Article
CAS
PubMed
Google Scholar
Anderson KV, Nüsslein-Volhard C. Information for the dorsal–ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature. 1984;311:223–7. https://0-doi-org.brum.beds.ac.uk/10.1038/311223a0.
Article
CAS
PubMed
Google Scholar
Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA. The dorsoventral regulatory gene cassette Spätzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83. https://0-doi-org.brum.beds.ac.uk/10.1016/S0092-8674(00)80172-5.
Article
CAS
PubMed
Google Scholar
Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7. https://0-doi-org.brum.beds.ac.uk/10.1038/41131.
Article
CAS
PubMed
Google Scholar
Coscia M, Giacomelli S, Oreste U. Toll-like receptors: an overview from invertebrates to vertebrates. Invertebr Surviv J. 2011;8:210–26.
Google Scholar
Brennan JJ, Gilmore TD. Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol. 2018;35:1576–87. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msy050.
Article
CAS
PubMed
Google Scholar
Nie L, Cai S-Y, Shao J-Z, Chen J. Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol. 2018;9:1–19. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2018.01523.
Article
CAS
Google Scholar
Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem. 2007;76:141–65. https://0-doi-org.brum.beds.ac.uk/10.1146/annurev.biochem.76.060305.151318.
Article
CAS
PubMed
Google Scholar
Barton GM. Toll-like receptor signaling pathways. Science. 2003;300:1524–5. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1085536.
Article
CAS
PubMed
Google Scholar
Valanne S, Wang J-H, Rämet M. The Drosophila Toll signaling pathway. J Immunol. 2011;186:649–56. https://0-doi-org.brum.beds.ac.uk/10.4049/jimmunol.1002302.
Article
CAS
PubMed
Google Scholar
Tauszig S, Jouanguy E, Hoffmann JA, Imler J-L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci. 2000;97:10520–5. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.180130797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemaitre B, Reichhart J-M, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci. 1997;94:14614–9. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.94.26.14614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leulier F, Parquet C, Pili-Floury S, Ryu J-H, Caroff M, Lee W-J, et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol. 2003;4:478–84. https://0-doi-org.brum.beds.ac.uk/10.1038/ni922.
Article
CAS
PubMed
Google Scholar
Chowdhury M, Li C-F, He Z, Lu Y, Liu X-S, Wang Y-F, et al. Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila. J Biol Chem. 2019;294:10172–81. https://0-doi-org.brum.beds.ac.uk/10.1074/jbc.RA118.006804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. In: Gupta S, Paul WE, Steinman R, editors. Mechanisms of lymphocyte activation and immune regulation X. Boston: Springer US; 2005. p. 11–8. https://0-doi-org.brum.beds.ac.uk/10.1007/0-387-24180-9_2.
Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, Toll-like receptors and dermal wound healing: a review. Vascul Pharmacol. 2015;71:31–6. https://0-doi-org.brum.beds.ac.uk/10.1016/j.vph.2015.02.007.
Article
CAS
PubMed
Google Scholar
Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426:1246–64. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jmb.2013.11.024.
Article
CAS
PubMed
Google Scholar
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2006.02.015.
Article
CAS
PubMed
Google Scholar
Manicassamy S, Pulendran B. Modulation of adaptive immunity with Toll-like receptors. Semin Immunol. 2009;21:185–93. https://0-doi-org.brum.beds.ac.uk/10.1016/j.smim.2009.05.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci. 2017;114:E10122–31. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1711530114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren Y, Ding D, Pan B, Bu W. The TLR13-MyD88-NF-κB signalling pathway of Cyclina sinensis plays vital roles in innate immune responses. Fish Shellfish Immunol. 2017;70:720–30. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fsi.2017.09.060.
Article
CAS
PubMed
Google Scholar
Wang K, del Castillo C, Corre E, Pales Espinosa E, Allam B. Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics. 2016;17:146. https://0-doi-org.brum.beds.ac.uk/10.1186/s12864-016-2493-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, He X, Yu F, Xiang Z, Li J, Thorpe KL, et al. Characteristic and functional analysis of Toll-like Receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PLoS ONE. 2013;8: e76464. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0076464.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priyathilaka TT, Bathige SDNK, Lee S, Nam B-H, Lee J. Transcriptome-wide identification, functional characterization, and expression analysis of two novel invertebrate-type Toll-like receptors from disk abalone (Haliotis discus discus). Fish Shellfish Immunol. 2019;84:802–15. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fsi.2018.10.062.
Article
CAS
PubMed
Google Scholar
Prochazkova P, Roubalova R, Skanta F, Dvorak J, Pacheco NIN, Kolarik M, et al. Developmental and immune role of a novel multiple cysteine cluster TLR from Eisenia andrei earthworms. Front Immunol. 2019;10:1–18. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2019.01277.
Article
CAS
Google Scholar
Škanta F, Roubalová R, Dvořák J, Procházková P, Bilej M. Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol. 2013;41:694–702. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2013.08.009.
Article
CAS
PubMed
Google Scholar
Li X-C, Zhu L, Li L-G, Ren Q, Huang Y-Q, Lu J-X, et al. A novel myeloid differentiation factor 88 homolog, SpMyD88, exhibiting SpToll-binding activity in the mud crab Scylla paramamosain. Dev Comp Immunol. 2013;39:313–22. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2012.11.011.
Article
CAS
PubMed
Google Scholar
Russo R, Chiaramonte M, Matranga V, Arizza V. A member of the Tlr family is involved in dsRNA innate immune response in Paracentrotus lividus sea urchin. Dev Comp Immunol. 2015;51:271–7. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2015.04.007.
Article
CAS
PubMed
Google Scholar
Eldon E, Kooyer S, D’Evelyn D, Duman M, Lawinger P, Botas J, et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development. 1994;120:885–99.
Article
CAS
PubMed
Google Scholar
Benton MA, Pechmann M, Frey N, Stappert D, Conrads KH, Chen Y-T, et al. Toll genes have an ancestral role in axis elongation. Curr Biol. 2016;26:1609–15. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cub.2016.04.055.
Article
CAS
PubMed
Google Scholar
Halfon MS, Hashimoto C, Keshishian H. The Drosophila Toll gene functions zygotically and its necessary for proper motoneuron and muscle development. Dev Biol. 1995;169:151–67. https://0-doi-org.brum.beds.ac.uk/10.1006/dbio.1995.1134.
Article
CAS
PubMed
Google Scholar
Ward A, Hong W, Favaloro V, Luo L. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron. 2015;85:1013–28. https://0-doi-org.brum.beds.ac.uk/10.1016/j.neuron.2015.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byun PK, Zhang C, Yao B, Wardwell-Ozgo J, Terry D, Jin P, et al. The Taiman transcriptional coactivator engages Toll signals to promote apoptosis and intertissue invasion in Drosophila. Curr Biol. 2019;29:2790–800. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cub.2019.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer SN, Amoyel M, Bergantiños C, de la Cova C, Schertel C, Basler K, et al. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science. 2014;346:1258236. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1258236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Tao Y, Reim I, Gajewski K, Frasch M, Schulz RA. Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila melanogaster. Mol Cell Biol. 2005;25:4200–10. https://0-doi-org.brum.beds.ac.uk/10.1128/MCB.25.10.4200-4210.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen R, Lionel L. Embryonic expression of a Long Toll (Loto) gene in the onychophorans Euperipatoides kanangrensis and Cephalofovea clandestina. Dev Genes Evol. 2018;228:171–8. https://0-doi-org.brum.beds.ac.uk/10.1007/s00427-018-0609-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007;9:1081–8. https://0-doi-org.brum.beds.ac.uk/10.1038/ncb1629.
Article
CAS
PubMed
Google Scholar
Shechter R, Ronen A, Rolls A, London A, Bakalash S, Young MJ, et al. Toll-like receptor 4 restricts retinal progenitor cell proliferation. J Cell Biol. 2008;183:393–400. https://0-doi-org.brum.beds.ac.uk/10.1083/jcb.200804010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hung Y-F, Chen C-Y, Shih Y-C, Liu H-Y, Huang C-M, Hsueh Y-P. Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J Cell Biol. 2018;217:2727–42. https://0-doi-org.brum.beds.ac.uk/10.1083/jcb.201712113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaul D, Habbel P, Derkow K, Krüger C, Franzoni E, Wulczyn FG, et al. Expression of Toll-Like Receptors in the developing brain. PLoS ONE. 2012;7: e37767. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0037767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988;52:269–79. https://0-doi-org.brum.beds.ac.uk/10.1016/0092-8674(88)90516-8.
Article
CAS
PubMed
Google Scholar
Schneider DS, Hudson KL, Lin TY, Anderson KV. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev. 1991;5:797–807. https://0-doi-org.brum.beds.ac.uk/10.1101/gad.5.5.797.
Article
CAS
PubMed
Google Scholar
Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 2003;24:528–33. https://0-doi-org.brum.beds.ac.uk/10.1016/S1471-4906(03)00242-4.
Article
CAS
PubMed
Google Scholar
Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32. https://0-doi-org.brum.beds.ac.uk/10.1016/S0959-440X(01)00266-4.
Article
CAS
PubMed
Google Scholar
Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci. 1998;95:588–93. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.95.2.588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolan J, Walshe K, Alsbury S, Hokamp K, O’Keeffe S, Okafuji T, et al. The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics. 2007;8:320. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2164-8-320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw MH, Reimer T, Kim Y-G, Nuñez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol. 2008;20:377–82. https://0-doi-org.brum.beds.ac.uk/10.1016/j.coi.2008.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milán M, Weihe U, Pérez L, Cohen SM. The LRR proteins Capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell. 2001;106:785–94. https://0-doi-org.brum.beds.ac.uk/10.1016/S0092-8674(01)00489-5.
Article
PubMed
Google Scholar
de Wit J, Hong W, Luo L, Ghosh A. Role of Leucine-Rich Repeat proteins in the development and function of neural circuits. Annu Rev Cell Dev Biol. 2011;27:697–729. https://0-doi-org.brum.beds.ac.uk/10.1146/annurev-cellbio-092910-154111.
Article
CAS
PubMed
Google Scholar
Burch-Smith TM, Dinesh-Kumar SP. The functions of plant TIR domains. Science’s STKE Signal Trans Knowl Environ. 2007;2007:1–4. https://0-doi-org.brum.beds.ac.uk/10.1126/stke.4012007pe46.
Article
Google Scholar
Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han G-Z. Out of water: the origin and early diversification of plant R-Genes. Plant Physiol. 2018;177:82–9. https://0-doi-org.brum.beds.ac.uk/10.1104/pp.18.00185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gay N, Keith F. Drosophila Toll and IL-1 receptor. Nature. 1991;351:355–6. https://0-doi-org.brum.beds.ac.uk/10.1038/351355b0.
Article
CAS
PubMed
Google Scholar
Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE. The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett. 1997;402:81–4. https://0-doi-org.brum.beds.ac.uk/10.1016/S0014-5793(96)01506-2.
Article
CAS
PubMed
Google Scholar
Horng T, Medzhitov R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci. 2001;98:12654–8. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.231471798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 Is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–8. https://0-doi-org.brum.beds.ac.uk/10.1016/S1097-2765(00)80136-7.
Article
CAS
PubMed
Google Scholar
Imler J-L, Zheng L. Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol. 2004;75:18–26. https://0-doi-org.brum.beds.ac.uk/10.1189/jlb.0403160.
Article
CAS
PubMed
Google Scholar
Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol. 2006;300:349–65. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ydbio.2006.08.065.
Article
CAS
PubMed
Google Scholar
Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC. Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol. 2008;32:608–12. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2007.11.004.
Article
CAS
PubMed
Google Scholar
Halanych KM, Kocot KM. Repurposed transcriptomic data facilitate discovery of innate immunity Toll-Like Receptor (TLR) genes across Lophotrochozoa. Biol Bull. 2014;227:201–9. https://0-doi-org.brum.beds.ac.uk/10.1086/BBLv227n2p201.
Article
CAS
PubMed
Google Scholar
Liu G, Zhang H, Zhao C, Zhang H. Evolutionary history of the Toll-Like Receptor gene family across vertebrates. Genome Biol Evol. 2020;12:3615–34. https://0-doi-org.brum.beds.ac.uk/10.1093/gbe/evz266.
Article
CAS
PubMed
Google Scholar
Richter DJ, Fozouni P, Eisen MB, King N. Gene family innovation, conservation and loss on the animal stem lineage. elife. 2018;7:1–43. https://0-doi-org.brum.beds.ac.uk/10.7554/eLife.34226.
Article
Google Scholar
Gauthier MEA, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev. 2010;12:519–33. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1525-142X.2010.00436.x.
Article
CAS
PubMed
Google Scholar
Flot J-F, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EGJ, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500:453–7. https://0-doi-org.brum.beds.ac.uk/10.1038/nature12326.
Article
CAS
PubMed
Google Scholar
Peiris TH, Hoyer KK, Oviedo NJ. Innate immune system and tissue regeneration in planarians: an area ripe for exploration. Semin Immunol. 2014;26:295–302. https://0-doi-org.brum.beds.ac.uk/10.1016/j.smim.2014.06.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poole AZ, Weis VM. TIR-domain-containing protein repertoire of nine anthozoan species reveals coral–specific expansions and uncharacterized proteins. Dev Comp Immunol. 2014;46:480–8. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2014.06.002.
Article
CAS
PubMed
Google Scholar
Kamm K, Schierwater B, DeSalle R. Innate immunity in the simplest animals—placozoans. BMC Genomics. 2019;20:1–12. https://0-doi-org.brum.beds.ac.uk/10.1186/s12864-018-5377-3.
Article
Google Scholar
Wiens M, Korzhev M, Perovic-Ottstadt S, Luthringer B, Brandt D, Klein S, et al. Toll-like receptors are part of the innate immune defense system of sponges (Demospongiae: Porifera). Mol Biol Evol. 2006;24:792–804. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msl208.
Article
CAS
PubMed
Google Scholar
Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, et al. Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol. 2009;33:559–69. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2008.10.004.
Article
CAS
PubMed
Google Scholar
Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TCG. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci. 2012;109:19374–9. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1213110109.
Article
PubMed
PubMed Central
Google Scholar
Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol. 2004;40:759–71. https://0-doi-org.brum.beds.ac.uk/10.1016/j.molimm.2003.10.001.
Article
CAS
PubMed
Google Scholar
Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ. Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics. 2005;56:743–53. https://0-doi-org.brum.beds.ac.uk/10.1007/s00251-004-0740-8.
Article
CAS
PubMed
Google Scholar
Ishii A, Kawasaki M, Matsumoto M, Tochinai S, Seya T. Phylogenetic and expression analysis of amphibian Xenopus Toll-like receptors. Immunogenetics. 2007;59:281–93. https://0-doi-org.brum.beds.ac.uk/10.1007/s00251-007-0193-y.
Article
CAS
PubMed
Google Scholar
Inamori K, Ariki S, Kawabata S. A Toll-like receptor in horseshoe crabs. Immunol Rev. 2004;198:106–15. https://0-doi-org.brum.beds.ac.uk/10.1111/j.0105-2896.2004.0131.x.
Article
CAS
PubMed
Google Scholar
Palmer WJ, Jiggins FM. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol Biol Evol. 2015;32:2111–29. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msv093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan M-W, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol. 2001;11:809–21. https://0-doi-org.brum.beds.ac.uk/10.1016/S0960-9822(01)00241-X.
Article
CAS
PubMed
Google Scholar
Williams LM, Fuess LE, Brennan JJ, Mansfield KM, Salas-Rodriguez E, Welsh J, et al. A conserved Toll-like receptor-to-NF-κB signaling pathway in the endangered coral Orbicella faveolata. Dev Comp Immunol. 2018;79:128–36. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2017.10.016.
Article
CAS
PubMed
Google Scholar
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, et al. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol. 2019;3:801–10. https://0-doi-org.brum.beds.ac.uk/10.1038/s41559-019-0833-2.
Article
PubMed
Google Scholar
Traylor-Knowles N, Vandepas LE, Browne WE. Still enigmatic: innate immunity in the ctenophore Mnemiopsis leidyi. Integr Comp Biol. 2019;59:811–8. https://0-doi-org.brum.beds.ac.uk/10.1093/icb/icz116.
Article
CAS
PubMed
Google Scholar
Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510:109–14. https://0-doi-org.brum.beds.ac.uk/10.1038/nature13400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:15451. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms15451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren Y, Pan H, Pan B, Bu W. Identification and functional characterization of three TLR signaling pathway genes in Cyclina sinensis. Fish Shellfish Immunol. 2016;50:150–9. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fsi.2016.01.025.
Article
CAS
PubMed
Google Scholar
Luo Y-J, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, et al. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol. 2018;2:141–51. https://0-doi-org.brum.beds.ac.uk/10.1038/s41559-017-0389-y.
Article
PubMed
Google Scholar
Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A. Characterization and immune function of two intracellular sensors, HmTLR1 and HmNLR, in the injured CNS of an invertebrate. Dev Comp Immunol. 2011;35:214–26. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2010.09.011.
Article
CAS
PubMed
Google Scholar
Peng J, Li Q, Xu L, Wei P, He P, Zhang X, et al. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour. 2020;20:980–94. https://0-doi-org.brum.beds.ac.uk/10.1111/1755-0998.13157.
Article
CAS
PubMed
Google Scholar
Zheng L, Zhang L, Lin H, McIntosh MT, Malacrida AR. Toll-like receptors in invertebrate innate immunity. Invertebr Surviv J. 2005;2:105–13.
Google Scholar
Mapalo MA, Arakawa K, Baker CM, Persson DK, Mirano-Bascos D, Giribet G. The unique antimicrobial recognition and signaling pathways in tardigrades with a comparison across Ecdysozoa. G3 Genes|Genomes|Genetics. 2020;10:1137–48. https://doi.org/10.1534/g3.119.400734.
Ji J, Ramos-Vicente D, Navas-Pérez E, Herrera-Úbeda C, Lizcano JM, Garcia-Fernàndez J, et al. Characterization of the TLR family in Branchiostoma lanceolatum and discovery of a novel TLR22-like involved in dsRNA recognition in amphioxus. Front Immunol. 2018;9:1–15. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2018.02525.
Article
CAS
Google Scholar
Tassia MG, Whelan NV, Halanych KM. Toll-like receptor pathway evolution in deuterostomes. Proc Natl Acad Sci. 2017;114:7055–60. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1617722114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C, Brinkmann H, et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science. 2010;330:1381–5. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1194167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki N, Ogasawara M, Sekiguchi T, Kusumoto S, Satake H. Toll-like Receptors of the ascidian Ciona intestinalis. J Biol Chem. 2009;284:27336–43. https://0-doi-org.brum.beds.ac.uk/10.1074/jbc.M109.032433.
Article
PubMed
PubMed Central
Google Scholar
Dunn CW, Giribet G, Edgecombe GD, Hejnol A. Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst. 2014;45:371–95. https://0-doi-org.brum.beds.ac.uk/10.1146/annurev-ecolsys-120213-091627.
Article
Google Scholar
Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci. 2005;102:9577–82. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.0502272102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa. Nature. 2016;530:89–93. https://0-doi-org.brum.beds.ac.uk/10.1038/nature16520.
Article
CAS
PubMed
Google Scholar
Wong YH, Ryu T, Seridi L, Ghosheh Y, Bougouffa S, Qian P-Y, et al. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep. 2015;4:6534. https://0-doi-org.brum.beds.ac.uk/10.1038/srep06534.
Article
CAS
Google Scholar
Neves RC, Guimaraes JC, Strempel S, Reichert H. Transcriptome profiling of Symbion pandora (phylum Cycliophora): insights from a differential gene expression analysis. Org Divers Evol. 2017;17:111–9. https://0-doi-org.brum.beds.ac.uk/10.1007/s13127-016-0315-1.
Article
Google Scholar
Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493:526–31. https://0-doi-org.brum.beds.ac.uk/10.1038/nature11696.
Article
CAS
PubMed
Google Scholar
Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54. https://0-doi-org.brum.beds.ac.uk/10.1038/nature11413.
Article
CAS
PubMed
Google Scholar
Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524:220–4. https://0-doi-org.brum.beds.ac.uk/10.1038/nature14668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Y-J, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat Commun. 2015;6:1–10. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms9301.
Article
CAS
Google Scholar
Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the ‘microturbellarian’ roots of platyhelminth evolutionary innovation. Elife. 2015;4:1–31. https://0-doi-org.brum.beds.ac.uk/10.7554/eLife.05503.
Article
CAS
Google Scholar
Struck TH, Wey-Fabrizius AR, Golombek A, Hering L, Weigert A, Bleidorn C, et al. Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of Spiralia. Mol Biol Evol. 2014;31:1833–49. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msu143.
Article
CAS
PubMed
Google Scholar
Wasik K, Gurtowski J, Zhou X, Ramos OM, Delás MJ, Battistoni G, et al. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc Natl Acad Sci. 2015;112:12462–7. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1516718112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:57–63. https://0-doi-org.brum.beds.ac.uk/10.1038/nature12031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, et al. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol. 2015;13:1–17. https://0-doi-org.brum.beds.ac.uk/10.1186/s12915-015-0202-9.
Article
CAS
Google Scholar
Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol. 2017;15: e2002266. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pbio.2002266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun. 2016;7:1–14. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms12808.
Article
CAS
Google Scholar
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, et al. Phylogenomic interrogation of arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. 2014;31:2963–84. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msu235.
Article
CAS
PubMed
Google Scholar
Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, et al. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat Genet. 2013;45:495–500. https://0-doi-org.brum.beds.ac.uk/10.1038/ng.2585.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotton JA, Bennuru S, Grote A, Harsha B, Tracey A, Beech R, et al. The genome of Onchocerca volvulus, agent of river blindness. Nat Microbiol. 2017;2:16216. https://0-doi-org.brum.beds.ac.uk/10.1038/nmicrobiol.2016.216.
Article
CAS
Google Scholar
Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011;331:555–61. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1197761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:1–13. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms10507.
Article
CAS
Google Scholar
Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T. Phylogenetic and expression analysis of lamprey Toll-like receptors. Dev Comp Immunol. 2010;34:855–65. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2010.03.004.
Article
CAS
PubMed
Google Scholar
Ishii A, Matsuo A, Sawa H, Tsujita T, Shida K, Matsumoto M, et al. Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors. J Immunol. 2007;178:397–406. https://0-doi-org.brum.beds.ac.uk/10.4049/jimmunol.178.1.397.
Article
CAS
PubMed
Google Scholar
Hogvall M, Vellutini BC, Martín-Durán JM, Hejnol A, Budd GE, Janssen R. Embryonic expression of priapulid Wnt genes. Dev Genes Evol. 2019;229:125–35. https://0-doi-org.brum.beds.ac.uk/10.1007/s00427-019-00636-6.
Article
PubMed
PubMed Central
Google Scholar
Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, et al. The mid-developmental transition and the evolution of animal body plans. Nature. 2016;531:637–41. https://0-doi-org.brum.beds.ac.uk/10.1038/nature16994.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiemann SM, Martín-Durán JM, Børve A, Vellutini BC, Passamaneck YJ, Hejnol A. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proc Natl Acad Sci. 2017;114:E1913–22. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1614501114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. https://0-doi-org.brum.beds.ac.uk/10.1038/nbt.3519.
Article
CAS
PubMed
Google Scholar
Stricker SA, Reed CG. The ontogeny of shell secretion in Terebratalia transversa (brachiopoda, articulata) I. Development of the mantle. J Morphol. 1985;183:233–50. https://0-doi-org.brum.beds.ac.uk/10.1002/jmor.1051830302.
Article
CAS
PubMed
Google Scholar
Sinigaglia C, Thiel D, Hejnol A, Houliston E, Leclère L. A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species. Dev Biol. 2018;434:15–23. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ydbio.2017.11.015.
Article
CAS
PubMed
Google Scholar
Grande C, Martín-Durán JM, Kenny NJ, Truchado-García M, Hejnol A. Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria. Int J Dev Biol. 2014;58:521–32. https://0-doi-org.brum.beds.ac.uk/10.1387/ijdb.140133cg.
Article
PubMed
Google Scholar
Luo C, Zheng L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics. 2000;51:92–8. https://0-doi-org.brum.beds.ac.uk/10.1007/s002510050017.
Article
CAS
PubMed
Google Scholar
Luna C, Wang X, Huang Y, Zhang J, Zheng L. Characterization of four Toll related genes during development and immune responses in Anopheles gambiae. Insect Biochem Mol Biol. 2002;32:1171–9. https://0-doi-org.brum.beds.ac.uk/10.1016/S0965-1748(02)00053-X.
Article
CAS
PubMed
Google Scholar
Marlétaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar DS. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr Biol. 2019;29:312-318.e3. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cub.2018.11.042.
Article
CAS
PubMed
Google Scholar
Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G. Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep. 2015;5:8693. https://0-doi-org.brum.beds.ac.uk/10.1038/srep08693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, He Y, Zhang L, Lelong C, Jouaux A. Immune and stress responses in oysters with insights on adaptation. Fish Shellfish Immunol. 2015;46:107–19. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fsi.2015.05.018.
Article
CAS
PubMed
Google Scholar
Slota LA, Miranda EM, McClay DR. Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus. EvoDevo. 2019;10:2. https://0-doi-org.brum.beds.ac.uk/10.1186/s13227-019-0115-8.
Article
PubMed
PubMed Central
Google Scholar
Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, et al. Large-scale temporal gene expression mapping of central nervous system development. Proc Natl Acad Sci. 1998;95:334–9. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.95.1.334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sako K, Pradhan SJ, Barone V, Inglés-Prieto Á, Müller P, Ruprecht V, et al. Optogenetic control of Nodal signaling reveals a temporal pattern of Nodal signaling regulating cell fate specification during gastrulation. Cell Rep. 2016;16:866–77. https://0-doi-org.brum.beds.ac.uk/10.1016/j.celrep.2016.06.036.
Article
CAS
PubMed
Google Scholar
Hamdoun A, Epel D. Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA. 2007;104:1745–50. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.0610108104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benkendorff K, Davis AR, Bremner JB. Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol. 2001;78:109–18. https://0-doi-org.brum.beds.ac.uk/10.1006/jipa.2001.5047.
Article
CAS
PubMed
Google Scholar
Balbi T, Auguste M, Cortese K, Montagna M, Borello A, Pruzzo C, et al. Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus. Fish Shellfish Immunol. 2019;84:352–60. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fsi.2018.10.011.
Article
CAS
PubMed
Google Scholar
Deris ZM, Iehata S, Ikhwanuddin M, Sahimi MBMK, Dinh Do T, Sorgeloos P, et al. Immune and bacterial toxin genes expression in different giant tiger prawn, Penaeus monodon post-larvae stages following AHPND-causing strain of Vibrio parahaemolyticus challenge. Aquacult Rep. 2020;16: 100248. https://0-doi-org.brum.beds.ac.uk/10.1016/j.aqrep.2019.100248.
Article
Google Scholar
Tirapé A, Bacque C, Brizard R, Vandenbulcke F, Boulo V. Expression of immune-related genes in the oyster Crassostrea gigas during ontogenesis. Dev Comp Immunol. 2007;31:859–73. https://0-doi-org.brum.beds.ac.uk/10.1016/j.dci.2007.01.005.
Article
CAS
PubMed
Google Scholar
Yuan S, Huang S, Zhang W, Wu T, Dong M, Yu Y, et al. An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-κB pathway via MyD88. Mol Immunol. 2009;46:2348–56. https://0-doi-org.brum.beds.ac.uk/10.1016/j.molimm.2009.03.022.
Article
CAS
PubMed
Google Scholar
Balseiro P, Moreira R, Chamorro R, Figueras A, Novoa B. Immune responses during the larval stages of Mytilus galloprovincialis: metamorphosis alters immunocompetence, body shape and behavior. Fish Shellfish Immunol. 2013;35:438–47. https://doi.org/10.1016/j.fsi.2013.04.044.
Article
CAS
PubMed
Google Scholar
Shah M, Brown KM, Smith LC. The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol. 2003;27:529–38. https://0-doi-org.brum.beds.ac.uk/10.1016/S0145-305X(03)00030-2.
Article
CAS
PubMed
Google Scholar
Yang A, Zhou Z, Dong Y, Jiang B, Wang X, Chen Z, et al. Expression of immune-related genes in embryos and larvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2010;29:839–45. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fsi.2010.07.023.
Article
CAS
PubMed
Google Scholar
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–4. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/gky448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci. 1998;95:5857–64. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.95.11.5857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–60. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/gku949.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btp348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE; 2010. p. 1–8. https://0-doi-org.brum.beds.ac.uk/10.1109/GCE.2010.5676129
Stone M. Comments on model selection criteria of akaike and schwarz author. J Roy Stat Soc. 1979;41:276–8.
Google Scholar
Offord V, Werling D. LRRfinder2.0: a webserver for the prediction of leucine-rich repeats. Innate Immun. 2013;19:398–402. https://0-doi-org.brum.beds.ac.uk/10.1177/1753425912465661.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://0-doi-org.brum.beds.ac.uk/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:1–9. https://0-doi-org.brum.beds.ac.uk/10.1186/gb-2010-11-3-r25.
Article
CAS
Google Scholar
Vellutini BC, Hejnol A. Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians. Sci Rep. 2016;6:32387. https://0-doi-org.brum.beds.ac.uk/10.1038/srep32387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson SA. MacVector: An integrated sequence analysis program for the macintosh. In: computer analysis of sequence data. Totowa, NJ: Humana Press; 1994. p. 195–201. https://0-doi-org.brum.beds.ac.uk/10.1385/0-89603-276-0:195.
Gasiorowski L, Hejnol A. Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EvoDevo. 2019;10:1–19. https://0-doi-org.brum.beds.ac.uk/10.1186/s13227-018-0114-1.
Article
PubMed
PubMed Central
Google Scholar