Gandon S, Buckling A, Decaestecker E, Day T. Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol. 2008;21:1861–6. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1420-9101.2008.01598.x.
Article
CAS
PubMed
Google Scholar
Blasco-Costa I, Poulin R. Host traits explain the genetic structure of parasites: a meta-analysis. Parasitology. 2013;140:1316–22.
Article
PubMed
Google Scholar
Barrett LG, Thrall PH, Burdon JJ, Linde CC. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol Evol. 2008;23:678–85. https://0-doi-org.brum.beds.ac.uk/10.1016/j.tree.2008.06.017.
Article
PubMed
PubMed Central
Google Scholar
Criscione CD, Blouin MS. Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution (N Y). 2004;58:198–202.
Google Scholar
Mazé-Guilmo E, Blanchet S, Mccoy KD, Loot G. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecol Lett. 2016;19:336–47.
Article
PubMed
Google Scholar
Johnson K, Williams B, Drowm D, Adams R, Clayton D. The population genetics of host specificity: genetic differentiation in dove lice (Insecta: Phthiraptera). Mol Ecol. 2002;11:25–38.
Article
CAS
PubMed
Google Scholar
Lagrue C, Joannes A, Poulin R, Blasco-costa I. Genetic structure and host–parasite co-divergence: evidence for trait-specific local adaptation. Biol J Linn Soc. 2016;118:344–58.
Article
Google Scholar
Criscione CD. Parasite co-structure: broad and local scale approaches. Parasite. 2008;15:439–43.
Article
CAS
PubMed
Google Scholar
van Schaik J, Kerth G, Bruyndonckx N, Christe P. The effect of host social system on parasite population genetic structure: comparative population genetics of two ectoparasitic mites and their bat hosts. BMC Evol Biol. 2014;14:18. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2148-14-18.
Article
PubMed
PubMed Central
Google Scholar
Whiteman NK, Kimball RT, Parker PG. Co-phylogeography and comparative population genetics of the threatened Galápagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol Ecol. 2007;16:4759–73.
Article
CAS
PubMed
Google Scholar
Prugnolle F, Théron A, Pointier JP, Jabbour-Zahab R, Jarne P, Durand P, et al. Dispersal in a parasitic worm and its two hosts: consequence for local adaptation. Evolution (N Y). 2005;59:296–303.
Google Scholar
Blasco-Costa I, Waters JM, Poulin R. Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites. Mol Ecol. 2012;21:207–17.
Article
CAS
PubMed
Google Scholar
Dybdahl F, Lively CM. The geography of coevolution: comparative population structures for a snail and its trematode parasite. Evo. 1996;50:2264–75.
Article
Google Scholar
Pfenning-Butterworth AC, Davies TJ, Cressler CE. Identifying co-phylogenetic hotspots for zoonotic disease. Philos Trans R Soc B. 2021. https://0-doi-org.brum.beds.ac.uk/10.1098/rstb.2020.0363.
Article
Google Scholar
Page R. Tangled trees. Phylogeny, cospeciation and coevolution. Chicago: The University of Chicago Press; 2003.
Google Scholar
Hoberg EP, Brooks DR, Siegel-Causey D. Host-parasite co-speciation: history, principles and prospects. In: Clayton DH, Moore J, editors. Host–parasite evolution: general principles and avian models. Oxford: Oxford University Press; 1997. p. 212–35.
Google Scholar
Gandon S, Nuismer SL. Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am Nat. 2009;173:212–24. https://0-doi-org.brum.beds.ac.uk/10.1086/593706.
Article
PubMed
Google Scholar
Thompson JN, Nuismer SL, Gomulkiewicz R. Coevolution and maladaptation. Integr Comp Biol. 2002;42:381–7.
Article
PubMed
Google Scholar
Greischar MA, Koskella B. A synthesis of experimental work on parasite local adaptation. Ecol Lett. 2007;10:418–34.
Article
PubMed
Google Scholar
Gandon S, Michalakis Y. Local adaptation, evolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol. 2002;15:451–62.
Article
Google Scholar
Faust C, Dobson AP. Primate malarias: diversity, distribution and insights for zoonotic Plasmodium. One Health. 2015;1:66–75. https://0-doi-org.brum.beds.ac.uk/10.1016/j.onehlt.2015.10.001.
Article
PubMed
PubMed Central
Google Scholar
Reed DL, Toups MA, Light JE, Allen JM, Flannigan S. Lice and other parasites as markers or primate evolutionari history. In: Huffman MA, Colin CA, editors. Primate parasite ecology. The dynamics and study of host–parasite relationships. Cambridge: Cambridge University Press; 2009. p. 231–50.
Google Scholar
Cooper N, Griffin R, Franz M, Omotayo M, Nunn CL. Phylogenetic host specificity and understanding parasite sharing in primates. Ecol Lett. 2012;15:1370–7.
Article
PubMed
Google Scholar
Demanche C, Berthelemy M, Petit T, Polack B, Wakefield AE, Dei-cas E, et al. Phylogeny of Pneumocystis carinii from 18 primate species confirms host specificity and suggests coevolution. J Clin Microbiol. 2001;39:2126–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Switzer WM, Salemi M, Shanmugam V, Gao F, Cong M, Kuiken C, et al. Ancient co-speciation of simian foamy viruses and primates. Nature. 2005;434:376–80.
Article
CAS
PubMed
Google Scholar
Adamson ML. Evolutionary biology of the Oxyuridae (Nematoda): biofacies of a haplodiploid taxon. Adv Parasitol. 1989;28:175–228.
Article
CAS
PubMed
Google Scholar
Brooks DR, Glen DR. Pinworms and primates: a case study in coevolution. Proc Helminth Soc Wash. 1982;49:76–85.
Google Scholar
Hugot JP. Primates and their pinworm parasites: the Cameron Hypothesis revisited. Syst Biol. 1999;48:523–46.
Article
CAS
PubMed
Google Scholar
Sorci G, Skarstein F, Morand S, Hugot JP. Correlated evolution between host immunity and parasite life histories in primates and oxyurid parasites. Proc R Soc B Biol Sci. 2003;270:2481–4.
Article
Google Scholar
Sorci G, Morand S, Hugot J. Host–parasite coevolution: comparative evidence for covariation of life history traits in primates and oxyurid parasites. Proc R Soc B. 1997;264:285–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandujano S, Escobedo-Morales LA, Palacios-Silva R. Movements of Alouatta palliata among forest fragments in Los Tuxtlas, Mexico. Neotrop Primates. 2004;12:126–31. https://0-doi-org.brum.beds.ac.uk/10.1896/1413-4705.12.3.126.
Article
Google Scholar
Rylands AB, Groves CP, Mittermeier RA, Cortes-Ortiz L, Hines J. Taxonomy and distributions of Mesoamerican primates. In: Estrada A, Garber PA, Pavelka M, Luecke L, editors. New perspectives in the study of Mesoamerican primates: distribution, ecology, behavior and conservation. New York: Springer; 2006. p. 29–79.
Chapter
Google Scholar
Cuarón AD, Shedden A, Rodríguez-Luna E, de Grammont PC, Link A. Alouatta palliata ssp. mexicana. The IUCN Red List of Threatened Species 2020. 2020.
Solórzano-García B, Pérez-Ponce de León G. Parasites of neotropical primates: a review. Int J Primatol. 2018;39:155–82.
Article
Google Scholar
Solórzano-García B, Nadler SA, Pérez-Ponce de León G. Pinworm diversity in free-ranging howler monkeys (Alouatta spp.) in Mexico: morphological and molecular evidence for two new Trypanoxyuris species (Nematoda: Oxyuridae). Parasitol Int. 2016;65:401–11. https://0-doi-org.brum.beds.ac.uk/10.1016/j.parint.2016.05.016.
Article
PubMed
Google Scholar
Solórzano-García B, Pérez-Ponce de León G. Helminth parasites of howler and spider monkeys in Mexico: insights into molecular diagnostic methods and their importance for zoonotic diseases and host conservation. Int J Parasitol Parasites Wildl. 2017;6:76–84.
Article
PubMed
PubMed Central
Google Scholar
Solórzano-García B, Melin AD, Aureli F, Pérez-Ponce de León G. Unveiling patterns of genetic variation in parasite–host associations: an example with pinworms and Neotropical primates. Parasitology. 2019;146:356–62.
Article
PubMed
Google Scholar
Solórzano-García B, Gasca-Pineda J, Poulin R, Pérez-Ponce de León G. Lack of genetic structure in pinworm populations from New World primates in forest fragments. Int J Parasitol. 2017;47:941–50.
Article
PubMed
Google Scholar
Criscione CD, Poulin R, Blouin MS. Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol. 2005;14:2247–57.
Article
CAS
PubMed
Google Scholar
Jasso-del Toro C, Márquez-Valdelamar L, Mondragón-Ceballos R. Diversidad genética en grupos de monos aulladores de manto (Alouatta palliata mexicana) en la Reserva de la Biosfera Los Tuxtlas (Veracruz, México). Rev Mex Biodivers. 2016;87:1069–79. https://0-doi-org.brum.beds.ac.uk/10.1016/j.rmb.2016.07.003.
Article
Google Scholar
Melo-Carrillo A, Dunn JC, Cortés-Ortiz L. Low genetic diversity and limited genetic structure across the range of the critically endangered Mexican howler monkey (Alouatta palliata mexicana). Am J Primatol. 2020;82:e23160.
Article
PubMed
Google Scholar
Solórzano-García B, Zubillaga D, Piñero D, Vázquez-Domínguez E. Conservation implications of living in forest remnants: inbreeding and genetic structure of the northernmost mantled howler monkeys. Biotropica. 2021. https://0-doi-org.brum.beds.ac.uk/10.1111/btp.12958.
Article
Google Scholar
Amato JFR, Amato SB, Calegaro-Marques C, Bicca-Marques JC. Trypanoxyuris (Trypanoxyuris) minutus associated with the death of a wild southern brown howler monkey, Alouatta guariba clamitans, in Rio Grande Do Sul. Brazil Arq Inst Biol. 2002;69:99–102.
Google Scholar
Boulinier T, Kada S, Ponchon A, Dupraz M, Dietrich M, Gamble A, et al. Migration, prospecting, dispersal? What host movement matters for infectious agent circulation? Integr Comp Biol. 2016;56:330–42.
Article
PubMed
Google Scholar
White LA, Forester JD, Craft ME. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol Rev. 2017;92:389–409.
Article
PubMed
Google Scholar
Fofana AM, Hurford A. Mechanistic movement models to understand epidemic spread. Philos Trans R Soc B. 2017;372:20160086.
Article
Google Scholar
Davis S, Abbasi B, Shah S, Telfer S, Begon M. Spatial analyses of wildlife contact networks. J R Soc Interface. 2015;12:20141004.
Article
PubMed
PubMed Central
Google Scholar
Poulin R. The decay of similarity with geographical distance in parasite communities of vertebrate hosts. J Biogeopgraphy. 2003;30:1609–15.
Article
Google Scholar
Rimbach R, Bisanzio D, Galvis N, Link A, Di FA, Gillespie TR. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Philos Trans R Soc B. 2015;370:20140110.
Article
Google Scholar
Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, et al. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst. 2003;34:517–47.
Article
Google Scholar
Rushmore J, Bisanzio D, Gillespie TR. Making new connections: insights from primate—parasite networks. Trends Parasitol. 2017;33:547–60. https://0-doi-org.brum.beds.ac.uk/10.1016/j.pt.2017.01.013.
Article
PubMed
Google Scholar
González-Hernández M, Rangel-Negrín A, Schoof VAM, Chapman CA, Canales-Espinosa D, Dias PAD. Transmission patterns of pinworms in two sympatric congeneric primate species. Int J Primatol. 2014;35:445–62. https://0-doi-org.brum.beds.ac.uk/10.1007/s10764-014-9751-y.
Article
Google Scholar
Hafner MS, Sudman PD, Villablanca FX, Spradling TA, Demastes JW, Nadler SA. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science (80−). 1994;265:1087–90.
Article
CAS
Google Scholar
Burkhart CN, Burkhart CG. Assessment of frequency, transmission, and genitourinary complications of enterobiasis (pinworms). Int J Dermatol. 2005;44:837–40.
Article
PubMed
Google Scholar
Felt SA, White CE. Evaluation of a timed and repeated perianal tape test for the detection of pinworms (Trypanoxyuris microon) in owl monkeys (Aotus nancymae). J Med Primatol. 2005;34:209–14.
Article
CAS
PubMed
Google Scholar
Poulin R, Krasnov BR, Mouillot D. Host specificity in phylogenetic and geographic space. Trends Parasitol. 2011;27:355–61.
Article
PubMed
Google Scholar
Cortés-Ortiz L, Bermingham E, Rico C, Rodriguez-Luna E, Sampaio I, Ruiz-Garcia M. Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol Phylogenet Evol. 2003;26:64–81.
Article
PubMed
Google Scholar
Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc B Biol Sci. 1996;263:1003–9.
Article
Google Scholar
Johnson P, Calhoun DM, Moss WE, McDevitt-Galles T, Riepe TB, Hallas JM, et al. The cost of travel: how dispersal ability limits local adaptation in host–parasite interactions. J Evol Biol. 2021;34:512–24.
Article
PubMed
Google Scholar
Dybdahl MF, Storfer A. Parasite local adaptation: red Queen versus Suicide King. Trends Ecol Evol. 2003;18:523–30.
Article
Google Scholar
May RM, Anderson RM. Parasite–host coevolution. Parasitology. 1990;100:S89-101.
Article
PubMed
Google Scholar
Ebert D, Fields PD. Host–parasite co-evolution and its genomic signature. Nat Rev Genet. 2020;21:754–68. https://0-doi-org.brum.beds.ac.uk/10.1038/s41576-020-0269-1.
Article
CAS
PubMed
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
Madeira F, Park Y, Lee J, Buso N, Tamer G, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:w636–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddison W, Maddison D. Mesquite: a modular system for evolutionary analysis. 2011.
Pritchard JK, Donelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
PubMed
Google Scholar
Francis RM. pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour. 2016. https://0-doi-org.brum.beds.ac.uk/10.1111/1755-0998.12509.
Article
PubMed
Google Scholar
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma. 2005;1:47–50.
Article
CAS
Google Scholar
Jost L. GST and its relatives do not measure differentiation. Mol Ecol. 2008;17:4015–26.
Article
PubMed
Google Scholar
Hedrick PW. A standardized genetic differentiation measure. Evolution (N Y). 2005;59:1633–8.
CAS
Google Scholar
Edwards AWF. Distance between populations on the basis of gene frequencies. Biometrics. 1971;27:873–81.
Article
CAS
PubMed
Google Scholar
Winter DJ. MMOD: an R library for the calculation of population differentiation statistics. Mol Ecol Resour. 2012;12:1158–60.
Article
CAS
PubMed
Google Scholar
Hijmans RJ. raster: geographic data analysis and modeling. R package version 3.3–13. 2020. https://cran.r-project.org/package=raster%0A.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5–6. 2019.
Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.
Book
Google Scholar
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–7.
Article
CAS
PubMed
Google Scholar
Ceballos G, Blanco S, González C, Martínes E. Alouatta palliata (Mono aullador, saraguato) delimitada, con base al Atlas Mastozoológico de México. Distribución potencial. Catálogo de metadatos geográficos. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. 2010.
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22:1185–92.
Article
CAS
PubMed
Google Scholar
Denver DR, Morris K, Lynch M, Vassilieva LL, Thomas WK. High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science (80−). 2000;289:2342–4.
Article
CAS
Google Scholar
Seung-Yull C, Shin-Yong K, Suk-Il K, Chul-Yong S. Effect of anthelmintics on the early stage of Enterobius vermiocularis. Korean J Parasitol. 1985;23:7–17.
Article
Google Scholar
Milton K, Lozier JD, Lacey EA. Genetic structure of an isolated population of mantled howler monkeys (Alouatta palliata) on Barro Colorado Island, Panama. Conserv Genet. 2009;10:347–58. https://0-doi-org.brum.beds.ac.uk/10.1007/s10592-008-9584-3.
Article
Google Scholar
Ting N, Astaras C, Hearn G, Honarvar S, Corush J, Burrell AS, et al. Genetic signatures of a demographic collapse in a large-bodied forest dwelling primate (Mandrillus leucophaeus). Ecol Evol. 2012;2:550–61.
Article
PubMed
PubMed Central
Google Scholar
Rambaut A, Suchard M, Drummond A. Tracer. 2013.
Bandelt HJ, Foster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48.
Article
CAS
PubMed
Google Scholar
Polzin T, Dabeschmand SV. On steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett. 2003;31:12–20.
Article
Google Scholar
Legendre P, Desdevises Y, Bazin E. A statistical test for host–parasite coevolution. Syst Biol. 2002;51:217–34.
Article
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
PubMed
Google Scholar
Miller M., Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop. New Orleans; 2010. p. 1–8.
Jombart T, Balloux F, Dray S. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics. 2010;26:1907–9.
Article
CAS
PubMed
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
Article
CAS
PubMed
Google Scholar
Kassambara A. “ggplot2” based publication ready plots. 2020. https://cran.r-project.org/package=ggpubr.
Sikes RS, Gannon WL. The animal care and use committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:663–88.
Article
PubMed
PubMed Central
Google Scholar