Davidson LNK, Dulvy NK. Global marine protected areas to prevent extinctions. Nat Ecol Evol. 2017;1(2):40.
Article
PubMed
Google Scholar
Ya BP. The shark and ray trade in Singapore. Traffic International. 2017;713.
Lam VYY, de Mitcheson YS. The sharks of South East Asia—unknown, unmonitored and unmanaged. Fish Fish. 2011;12(1):51–74.
Article
Google Scholar
Myers RA, Worm B. Rapid worldwide depletion of predatory fish communities. Nature. 2003;423(6937):280–3.
Article
CAS
PubMed
Google Scholar
Steinke D, Bernard AM, Horn RL, Hilton P, Hanner R, Shivji MS. DNA analysis of traded shark fins and mobulid gill plates reveals a high proportion of species of conservation concern. Sci Rep. 2017;7(1):9505.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Malley MP, Townsend KA, Hilton P, Heinrichs S, Stewart JD. Characterization of the trade in manta and devil ray gill plates in China and South-east Asia through trader surveys. Aquat Conserv Mar Freshw Ecosyst. 2017;27(2):394–413.
Article
Google Scholar
Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, et al. Extinction risk and conservation of the world’s sharks and rays. Life. 2014;3:e00590.
Article
PubMed
PubMed Central
Google Scholar
Frisk MG, Miller TJ, Fogarty MJ. Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study. Can J Fish Aquat Sci. 2001;58(5):969–81.
Article
Google Scholar
Patterson HM, Tudman MJ. Chondrichthyan guide for fisheries managers: a practical guide for fisheries managers. 2009. 70 p.
Hobday AJ, Smith ADM, Stobutzki IC, Bulman C, Daley R, Dambacher JM, et al. Ecological risk assessment for the effects of fishing. Fish Res. 2011;108(2–3):372–84.
Article
Google Scholar
Nadon MO, Baum JK, Williams ID, McPherson JM, Zgliczynski BJ, Richards BL, et al. Re-creating missing population baselines for Pacific reef sharks. Conserv Biol. 2012;26(3):493–503.
Article
PubMed
PubMed Central
Google Scholar
MacNeil MA, Chapman DD, Heupel M, Simpfendorfer CA, Heithaus M, Meekan M, et al. Global status and conservation potential of reef sharks. Nature. 2020;583(7818):801–6.
Article
CAS
PubMed
Google Scholar
Pärtel M, Szava-Kovats R, Zobel M. Dark diversity: shedding light on absent species. Trends Ecol Evol. 2011;26(3):124–8.
Article
PubMed
Google Scholar
Beck JJ, Larget B, Waller DM. Phantom species: adjusting estimates of colonization and extinction for pseudo-turnover. Oikos. 2018;127(11):1605–18.
Article
Google Scholar
Stevenson C, Katz LS, Micheli F, Block B, Heiman KW, Perle C, et al. High apex predator biomass on remote Pacific islands. Coral Reefs. 2007;26(1):47–51.
Article
Google Scholar
Mourier J, Brown C, Planes S. Learning and robustness to catch-and-release fishing in a shark social network. Biol Lett. 2017;13(3):20160824.
Article
PubMed
PubMed Central
Google Scholar
Sandin SA, Smith JE, Demartini EE, Dinsdale EA, Donner SD, Friedlander AM, et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS ONE. 2008;3(2):e1548.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller J, Maragos J, Brainard R, Asher J, Vargas-Ángel B, Kenyon, J, et al. The state of coral reef ecosystems of the Pacific Remote Island Areas. In: The state of coral reef ecosystems of the United States and Pacific Freely Associated States. 2008; 3542386.
Bascompte J, Melián CJ, Sala E. Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci USA. 2005;102(15):5443–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mumby PJ. Fishing, trophic cascades, and the process of grazing on coral reefs. Science. 2006;311(5757):98–101.
Article
CAS
PubMed
Google Scholar
Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science. 2010;328(5985):1523–8.
Article
CAS
PubMed
Google Scholar
Todd PA, Ong X, Chou LM. Impacts of pollution on marine life in Southeast Asia. Biodivers Conserv. 2010;19(4):1063–82.
Article
Google Scholar
Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, et al. Urban coral reefs: degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull. 2018;135:654–81.
Article
CAS
PubMed
Google Scholar
Travis JMJ. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc Biol Sci. 2003;270(1514):467–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poquita-Du RC, Quek ZBR, Jain SS, Schmidt-Roach S, Tun K, Heery EC, et al. Last species standing: loss of Pocilloporidae corals associated with coastal urbanization in a tropical city state. Mar Biodivers. 2019;49(4):1727–41.
Article
Google Scholar
Webb TJ, Mindel BL. Global patterns of extinction risk in marine and non-marine systems. Curr Biol. 2015;25(4):506–11.
Article
CAS
PubMed
Google Scholar
Keith D, Resit Akçakaya H, Butchart SHM, Collen B, Dulvy NK, Holmes EE, et al. Temporal correlations in population trends: conservation implications from time-series analysis of diverse animal taxa. Biol Conserv. 2015;192:247–57.
Article
Google Scholar
Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel J-B, et al. Environmental DNA illuminates the dark diversity of sharks. Sci Adv. 2018;4(5):eaap9661.
Article
PubMed
PubMed Central
Google Scholar
Baird DJ, Hajibabaei M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol Ecol. 2012;21(8):2039–44.
Article
PubMed
Google Scholar
Shokralla S, Spall JL, Gibson JF, Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol Ecol. 2012;21(8):1794–805.
Article
CAS
PubMed
Google Scholar
Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water samples. Biol Let. 2008;4(4):423–5.
Article
Google Scholar
Thomsen PF, Willerslev E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv. 2015;183:4–18.
Article
Google Scholar
Jerde CL, Mahon AR, Lindsay Chadderton W, Lodge DM. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett. 2011;4(2):150–7.
Article
Google Scholar
Barrenechea Angeles I, Lejzerowicz F, Cordier T, Scheplitz J, Kucera M, Ariztegui D, et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments. Sci Rep. 2020;10(1):20351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, et al. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R Soc Open Sci. 2016;3(11):160635.
Article
PubMed
PubMed Central
Google Scholar
Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA, et al. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE. 2012;7(8):e41781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE. 2016;11(11):e0165252.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bakker J, Wangensteen OS, Chapman DD, Boussarie G, Buddo D, Guttridge TL, et al. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci Rep. 2017;7(1):16886.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gargan LM, Morato T, Pham CK, Finarelli JA, Carlsson JEL, Carlsson J. Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: a case study of devil ray at seamounts. Mar Biol. 2017;164(5):112.
Article
CAS
Google Scholar
Schweiss KE, Lehman RN, Marcus Drymon J, Phillips NM. Development of highly sensitive environmental DNA methods for the detection of Bull Sharks, Carcharhinus leucas (Müller and Henle, 1839), using Droplet DigitalTM PCR. Environ DNA. 2020;2(1):3–12.
Article
Google Scholar
West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD, Richards ZT, et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol Ecol. 2020;29(6):1069–86.
Article
CAS
PubMed
Google Scholar
DiBattista JD, Coker DJ, Sinclair-Taylor TH, Stat M, Berumen ML, Bunce M. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs. 2017;36(4):1245–52.
Article
Google Scholar
Sigsgaard EE, Torquato F, Frøslev TG, Moore ABM, Sørensen JM, Range P, et al. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv Biol. 2020;34(3):697–710.
Article
PubMed
Google Scholar
Tun KPP, Lim KKP. Brown-banded bamboo shark off Pulau Satumu. Singapore Biodiversity Records. 2015;79.
Chim CK, Lee YL, Tong S, Tay T, Ong R. Blacktip reef sharks caught in trammel nets at Lazarus Island. Singapore Biodiv Records. 2015;158–9.
Bramante JF, Raju DK, Sin TM. Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int J Remote Sens. 2013;34(6):2070–88.
Article
Google Scholar
Ip YCA, Tay YC, Chang JJM, Ang HP, Tun KPP, Chou LM, et al. Seeking life in sedimented waters: environmental DNA from diverse habitat types reveals ecologically significant species in a tropical marine environment. Environ DNA. 2021;3(3):654–68.
Article
Google Scholar
Ng HH, Tan HH, Lim KKP, Ludt WB, Chakrabarty P. Fishes of the Eastern Johor Strait. Raffles Bull Zool. 2015;31:303–37.
Google Scholar
Lim LJW, Loh JBY, Lim AJS, Tan BYX, Ip YCA, Neo ML, et al. Diversity and distribution of intertidal marine species in Singapore. Raffles Bull Zool. 2020;68:396–403.
Google Scholar
Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 2011;39(21):e145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beng KC, Corlett RT. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv. 2020;29(7):2089–121.
Article
Google Scholar
Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol. 2014;29(6):358–67.
Article
PubMed
Google Scholar
Dosay-Akbulut M. The phylogenetic relationship within the genus Carcharhinus. C R Biol. 2008;331(7):500–9.
Article
CAS
PubMed
Google Scholar
Naylor GJP. The phylogenetic relationships among requiem and hammerhead sharks: inferring phylogeny when thousands of equally most parsimonious trees results. Cladistics. 1992;8:295–318.
Article
PubMed
Google Scholar
Chou LM, Huang D, Tan KS, Toh TC, Goh BPL, Tun K. Chapter 24—Singapore. In: Sheppard C, editor. World seas: an environmental evaluation. London: Academic Press; 2019. p. 539–58.
Chapter
Google Scholar
Chang JJM, Ip YCA, Bauman AG, Huang D. MinION-in-ARMS: nanopore sequencing to expedite barcoding of specimen-rich macrofaunal samples from autonomous reef monitoring structures. Front Mar Sci. 2020;7:448.
Article
Google Scholar
Chang JJM, Ip YCA, Ng CSL, Huang D. Takeaways from mobile DNA barcoding with BentoLab and MinION. Genes. 2020;11(10):1121.
Article
CAS
PubMed Central
Google Scholar
Ip YCA, Tay YC, Gan SX, Ang HP, Tun K, Chou LM, et al. From marine park to future genomic observatory? Enhancing marine biodiversity assessments using a biocode approach. Biodivers Data J. 2019;7:e46833.
Article
PubMed
PubMed Central
Google Scholar
Bleeker P. Bijdrage tot de kennis der ichthyologische fauna van Singapore. Nat Tijdschr Neder Indie. 1852;3:51–86.
Google Scholar
Cantor T. Catalogue of Malayan fishes. In: Baptist Mission Press. 1849.
Last P, White W, Séret B, Naylor G, de Carvalho M, Stehmann M. Rays of the world. Clayton: CSIRO Publishing; 2016. p. 800.
Book
Google Scholar
Manjaji-Matsumoto BM, Last PR, White WT. Brevitrygon imbricata. The IUCN Red List of Threatened Species. 2016.
Darling JA, Pochon X, Abbott CL, Inglis GJ, Zaiko A. The risks of using molecular biodiversity data for incidental detection of species of concern. Divers Distrib. 2020;26(9):1116–21.
Article
PubMed
PubMed Central
Google Scholar
DiBattista JD, Reimer JD, Stat M, Masucci GD, Biondi P, De Brauwer M, et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci Rep. 2020;10(1):8365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman SJ, et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci Rep. 2017;7(1):12240.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang S, Zhao J, Yao M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol Evol. 2020;11(12):1609–25.
Article
Google Scholar
Andújar C, Arribas P, Yu DW, Vogler AP, Emerson BC. Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol Ecol. 2018;27(20):3968–75.
Article
PubMed
Google Scholar
Leray M, Knowlton N, Ho S-L, Nguyen BN, Machida RJ. GenBank is a reliable resource for 21st century biodiversity research. Proc Natl Acad Sci USA. 2019;116(45):22651–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwong S, Srivathsan A, Vaidya G, Meier R. Is the COI barcoding gene involved in speciation through intergenomic conflict? Mol Phylogenet Evol. 2012;62(3):1009–12.
Article
CAS
PubMed
Google Scholar
Roe AD, Sperling FAH. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Mol Phylogenet Evol. 2007;44(1):325–45.
Article
CAS
PubMed
Google Scholar
Pentinsaari M, Salmela H, Mutanen M, Roslin T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci Rep. 2016;6:35275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wainwright BJ, Ip YCA, Neo ML, Chang JJM, Gan CZ, Clark-Shen N, et al. DNA barcoding of traded shark fins, meat and mobulid gill plates in Singapore uncovers numerous threatened species. Conserv Genet. 2018;19(6):1393–9.
Article
Google Scholar
But GW-C, Wu H-Y, Shao K-T, Shaw P-C. Rapid detection of CITES-listed shark fin species by loop-mediated isothermal amplification assay with potential for field use. Sci Rep. 2020;10(1):4455.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Loos LM, Nijland R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol Ecol. 2021;30(13):3270–88.
Article
PubMed
CAS
Google Scholar
Collins RA, Bakker J, Wangensteen OS, Soto AZ, Corrigan L, Sims DW, et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol Evol. 2019;10(11):1985–2001.
Article
Google Scholar
Valsecchi E, Bylemans J, Goodman SJ, Lombardi R, Carr I, Castellano L, et al. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environ DNA. 2020;2(4):460–76.
Article
Google Scholar
Yeo D, Srivathsan A, Meier R. Longer is not always better: optimizing barcode length for large-scale species discovery and identification. Syst Biol. 2020;69(5):999–1015.
Article
PubMed
Google Scholar
Sevilla RG, Diez A, Norén M, Mouchel O, Jérôme M, Verrez-Bagnis V, et al. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol Ecol Notes. 2007;7(5):730–4.
Article
CAS
Google Scholar
Chagas ATdA, Ludwig S, Pimentel JdSM, de Abreu NL, Nunez-Rodriguez DL, Leal HG, et al. Use of complete mitochondrial genome sequences to identify barcoding markers for groups with low genetic distance. Mitochondrial DNA A. 2020;31(4):139–46.
Article
CAS
Google Scholar
Last PR, Naylor GJP, Manjaji-Matsumoto BM. A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights. Zootaxa. 2016;4139(3):345–68.
Article
PubMed
Google Scholar
Truelove NK, Andruszkiewicz EA, Block BA. A rapid environmental DNA method for detecting white sharks in the open ocean. Methods Ecol Evol. 2019;10(8):1128–35.
Article
Google Scholar
Larsen FW, Bladt J, Rahbek C. Improving the performance of indicator groups for the identification of important areas for species conservation. Conserv Biol. 2007;21(3):731–40.
Article
PubMed
Google Scholar
Handley LL, Read DS, Winfield IJ, Kimbell H, Johnson H, Li J, et al. Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake. Environ DNA. 2019;1(1):26–39.
Article
Google Scholar
Kelly RP. Making environmental DNA count. Mol Ecol Resour. 2016;16(1):10–2.
Article
CAS
PubMed
Google Scholar
Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, et al. Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys. Environ DNA. 2021.
Li W, Hou X, Xu C, Qin M, Wang S, Wei L, et al. Validating eDNA measurements of the richness and abundance of anurans at a large scale. J Anim Ecol. 2021;90(6):1466–79.
Article
PubMed
Google Scholar
Muri CD, Di Muri C, Handley LL, Bean CW, Li J, Peirson G, et al. Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding Metagenomics. 2020;4:e56959.
Article
Google Scholar
Laporte M, Reny-Nolin E, Chouinard V, Hernandez C, Normandeau E, Bougas B, et al. Proper environmental DNA metabarcoding data transformation reveals temporal stability of fish communities in a dendritic river system. Environm DNA. 2021.
Ushio M, Murakami H, Masuda R, Sado T, Miya M, Sakurai S, et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding Metagenomics. 2018;2:e23297.
Google Scholar
Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17:1–17.
Article
CAS
Google Scholar
Bani A, De Brauwer M, Creer S, Dumbrell AJ, Limmon G, Jompa J, et al. Informing marine spatial planning decisions with environmental DNA. In: Dumbrell AJ, Turner EC, Fayle TM, editors., et al., Advances in ecological research. London: Academic Press; 2020. p. 375–407.
Blasiak R, Wynberg R, Grorud-Colvert K, Thambisetty S, Bandarra NM, Canário AVM, et al. The ocean genome and future prospects for conservation and equity. Nat Sustain. 2020;3(8):588–96.
Article
Google Scholar
Gauthier M, Konecny-Dupré L, Nguyen A, Elbrecht V, Datry T, Douady C, et al. Enhancing DNA metabarcoding performance and applicability with bait capture enrichment and DNA from conservative ethanol. Mol Ecol Resour. 2020;20(1):79–96.
Article
CAS
PubMed
Google Scholar
Baerwald MR, Goodbla AM, Nagarajan RP, Gootenberg JS, Abudayyeh OO, Zhang F, et al. Rapid and accurate species identification for ecological studies and monitoring using CRISPR-based SHERLOCK. Mol Ecol Resour. 2020;20(4):961–70.
Article
PubMed
PubMed Central
Google Scholar
Williams M-A, O’Grady J, Ball B, Carlsson J, de Eyto E, McGinnity P, et al. The application of CRISPR-Cas for single species identification from environmental DNA. Mol Ecol Resour. 2019;19(5):1106–14.
Article
CAS
PubMed
Google Scholar
Turon X, Antich A, Palacín C, Praebel K, Wangensteen OS. From metabarcoding to metaphylogeography: separating the wheat from the chaff. Ecol Appl. 2020;30(2):e02036.
Article
PubMed
Google Scholar
Tsuji S, Maruyama A, Miya M, Ushio M, Sato H, Minamoto T, et al. Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Mol Ecol Resour. 2020;20(5):1248–58.
Article
CAS
PubMed
Google Scholar
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia’s fish species. Philos Trans R Soc B Biol Sci. 2005;360(1462):1847–57.
Article
CAS
Google Scholar
Fields AT, Abercrombie DL, Eng R, Feldheim K, Chapman DD. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species. PLoS ONE. 2015;10(2):e0114844.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meier R, Wong W, Srivathsan A, Foo M. $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics. 2016;31(1):100–10.
Article
Google Scholar
Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE. 2014;9(2):e90234.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–20.
Article
CAS
PubMed
Google Scholar
Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. obitools: a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour. 2016;16(1):176–82.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.j. 2011;17(1):10.
Article
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST: architecture and applications. BMC Bioinform. 2009;10(1):421.
Article
CAS
Google Scholar
Srivathsan A, Sha JCM, Vogler AP, Meier R. Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (Pygathrix nemaeus). Mol Ecol Resour. 2015;15(2):250–61.
Article
CAS
PubMed
Google Scholar
Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B. 2003;270(1512):313–21.
Article
CAS
Google Scholar
Škaloud P, Moya P, Molins A, Peksa O, Santos-Guerra A, Barreno E. Untangling the hidden intrathalline microalgal diversity in Parmotrema pseudotinctorum: Trebouxia crespoana sp. nov. Lichenologist. 2018;50(3):357–69.
Article
Google Scholar
Kindt R, Kindt MR. Package ‘BiodiversityR’. Package for community ecology and suitability analysis. 2019;2–11.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version. 2013;2(9):1–295.
Ip YCA, Chang JJM, Lim KKP, Jaafar Z, Wainwright BJ, Huang D. Seeing through sedimented waters: environmental DNA reduces the phantom diversity of sharks and rays in turbid marine habitats. NCBI SRA. https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/bioproject/PRJNA673533. Accessed 9 Aug 2021.