Duboule D, Dollé P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 1989;8(5):1497–505. https://0-doi-org.brum.beds.ac.uk/10.1002/j.1460-2075.1989.tb03534.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 1994;10(10):358–64.
Article
CAS
PubMed
Google Scholar
Akam M, Averof M, Castelli-Gair J, Dawes R, Falciani F, Ferrier D. The evolving role of Hox genes in arthropods. Development. 1994;1994(Supplement):209LP–15. http://dev.biologists.org/content/1994/Supplement/209.abstract.
Wang BB, Müller-Immergluck MM, Austin J, Robinson NT, Chisholm A, Kenyon C. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell. 1993;74(1):29–42.
Article
CAS
PubMed
Google Scholar
Garcia-Fernàndez J, Holland PWH. Archetypal organization of the amphioxus Hox gene cluster. Nature. 1994;370(6490):563–6. https://0-doi-org.brum.beds.ac.uk/10.1038/370563a0.
Article
PubMed
Google Scholar
McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68(2):283–302.
Article
CAS
PubMed
Google Scholar
Duncan EJ, Dearden PK. Evolution of a genomic regulatory domain: the role of gene co-option and gene duplication in the Enhancer of split complex. Genome Res. 2010;20(7):917–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dearden PK. Origin and evolution of the enhancer of split complex. BMC Genomics. 2015;16(1):712. https://0-doi-org.brum.beds.ac.uk/10.1186/s12864-015-1926-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan EJ, Wilson MJ, Smith JM, Dearden PK. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods. BMC Genomics. 2008;9(1):558. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2164-9-558.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlatter R, Maier D. The Enhancer of split and Achaete-Scute complexes of Drosophilids derived from simple ur-complexes preserved in mosquito and honeybee. BMC Evol Biol. 2005;5(1):67. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2148-5-67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z-W, Li X, Yu Q-Y, Xiang Z-H, Kishino H, Zhang Z. The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evol Biol. 2009;9(1):215. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2148-9-215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrow G, Tanguay RM. Drosophila small heat shock proteins: an update on their features and functions. In: The big book on small heat shock proteins heat shock proteins, vol 8. Cham: Springer; 2015. p. 579–606. https://app.dimensions.ai/details/publication/pub.1019080962.
Raut S, Mallik B, Parichha A, Amrutha V, Sahi C, Kumar V. RNAi-mediated reverse genetic screen identified drosophila chaperones regulating eye and neuromuscular junction morphology. G3 Genes|Genomes|Genetics. 2017;7(7):2023–38. http://www.g3journal.org/content/7/7/2023.abstract
de Jong WW, Caspers G, Leunissen JAM. Genealogy of the α-crystallin—small heat-shock protein superfamily. Int J Biol Macromol. 1998;22(3–4):151–62. https://0-doi-org.brum.beds.ac.uk/10.1016/s0141-8130(98)00013-0.
Article
PubMed
Google Scholar
Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J. 2010;24(10):3633–42. https://0-doi-org.brum.beds.ac.uk/10.1096/fj.10-156992.
Article
CAS
PubMed
Google Scholar
De Miguel N, Echeverria PC, Angel SO. Differential subcellular localization of members of the Toxoplasma gondii small heat shock protein family. Eukaryot Cell. 2005;4(12):1990–7. http://ec.asm.org/content/4/12/1990.abstract.
Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, et al. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ. 2011;34(9):1488–506. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-3040.2011.02347.x.
Article
CAS
PubMed
Google Scholar
Dabbaghizadeh A, Finet S, Morrow G, Moutaoufik MT, Tanguay RM. Oligomeric structure and chaperone-like activity of Drosophila melanogaster mitochondrial small heat shock protein Hsp22 and arginine mutants in the alpha-crystallin domain. Cell Stress Chaperones. 2017;22(4):577–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubrovsky EB, Dretzen G, Bellard M. The Drosophila broad-complex regulates developmental changes in transcription and chromatin structure of the 67B heat-shock gene cluster. J Mol Biol. 1994;241(3):353–62.
Article
CAS
PubMed
Google Scholar
Dubrovsky EB, Dretzen G, Berger EM. The Broad-Complex gene is a tissue-specific modulator of the ecdysone response of the Drosophila hsp23 gene. Mol Cell Biol. 1996;16(11):6542–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sirotkin K, Davidson N. Developmentally regulated transcription from Drosophila melanogaster chromosomal site 67B. Dev Biol. 1982;89(1):196–210.
Article
CAS
PubMed
Google Scholar
Ayme A, Tissières A. Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J. 1985;4(11):2949–54. https://0-doi-org.brum.beds.ac.uk/10.1002/j.1460-2075.1985.tb04028.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mestril R, Schiller P, Amin J, Klapper H, Ananthan J, Voellmy R. Heat shock and ecdysterone activation of the Drosophila melanogaster hsp23 gene; a sequence element implied in developmental regulation. EMBO J. 1986;5(7):1667–73. https://0-doi-org.brum.beds.ac.uk/10.1002/j.1460-2075.1986.tb04410.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jagla T, Dubińska-Magiera M, Poovathumkadavil P, Daczewska M, Jagla K. Developmental expression and functions of the small heat shock proteins in Drosophila. Int J Mol Sci. 2018;19(11):3441.
Article
PubMed Central
Google Scholar
Bettencourt BR, Hogan CC, Nimali M, Drohan BW. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70null flies. BMC Biol. 2008;6(1):5. https://0-doi-org.brum.beds.ac.uk/10.1186/1741-7007-6-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonsalves SE, Moses AM, Razak Z, Robert F, Westwood JT. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS ONE. 2011;6(1):e15934. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0015934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colinet H, Lee SF, Hoffmann A. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J Exp Biol. 2010;213(24):4146LP–50. http://jeb.biologists.org/content/213/24/4146.abstract.
Wang X-R, Wang C, Ban F-X, Zhu D-T, Liu S-S, Wang X-W. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress. Insect Sci. 2019;26:44–57. https://0-doi-org.brum.beds.ac.uk/10.1111/1744-7917.12505.
Article
CAS
PubMed
Google Scholar
Chu J, Jiang DL, Yan MW, Li YJ, Wang J, Wu FA, et al. Identifications, characteristics, and expression patterns of small heat shock protein genes in a major mulberry pest, Glyphodes pyloalis (Lepidoptera: Pyralidae). J Insect Sci. 2020. https://0-doi-org.brum.beds.ac.uk/10.1093/jisesa/ieaa029.
Article
PubMed
PubMed Central
Google Scholar
Yang CL, Meng JY, Zhou L, et al. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress Chaperones. 2021;26:527–39. https://0-doi-org.brum.beds.ac.uk/10.1007/s12192-021-01198-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, et al. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol. 2019. https://0-doi-org.brum.beds.ac.uk/10.1186/s13059-019-1660-0.
Article
PubMed
PubMed Central
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Flouri T, Beutel RG, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1257570.
Article
CAS
PubMed
Google Scholar
Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci. 1997;94(15):7799–806. http://www.pnas.org/content/94/15/7799.abstract.
Colinet H, Lee SF, Hoffmann A. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 2010;277(1):174–85. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1742-4658.2009.07470.x.
Article
CAS
PubMed
Google Scholar
Goto SG, Yoshida KM, Kimura MT. Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol. 1998;44(10):1009–15.
Article
CAS
PubMed
Google Scholar
Liu G, Roy J, Johnson EA. Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics. 2006;25(1):134–41. https://0-doi-org.brum.beds.ac.uk/10.1152/physiolgenomics.00262.2005.
Article
CAS
PubMed
Google Scholar
Pace RM, Grbić M, Nagy LM. Composition and genomic organization of arthropod Hox clusters. EvoDevo. 2016;7:11. https://0-doi-org.brum.beds.ac.uk/10.1186/s13227-016-0048-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan EJ, Leask MP, Dearden PK. Genome architecture facilitates phenotypic plasticity in the honeybee (Apis mellifera). Mol Biol Evol. 2020;37(7):1964–78. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msaa057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cameron RC, Duncan EJ, Dearden PK. Biased gene expression in early honeybee larval development. BMC Genomics. 2013;14:903. https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2164-14-903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frydenberg J, Barker JSF, Loeschcke V. Characterization of the shsp genes in Drosophila buzzatii and association between the frequency of Valine mutations in hsp23 and climatic variables along a longitudinal gradient in Australia. Cell Stress Chaperones. 2010;15(3):271–80. https://0-doi-org.brum.beds.ac.uk/10.1007/s12192-009-0140-y.
Article
CAS
PubMed
Google Scholar
Sandaltzopoulos R, Mitchelmore C, Bonte E, Wall G, Becker PB. Dual regulation of the Drosophila hsp26 promoter in vitro. Nucleic Acids Res. 1995;23(13):2479–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddihough G, Pelham HR. Activation of the Drosophila hsp27 promoter by heat shock and by ecdysone involves independent and remote regulatory sequences. EMBO J. 1986;5(7):1653–8. https://0-doi-org.brum.beds.ac.uk/10.1002/j.1460-2075.1986.tb04408.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieira FG, Sánchez-Gracia A, Rozas J. Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol. 2007;8(11):R235. https://0-doi-org.brum.beds.ac.uk/10.1186/gb-2007-8-11-r235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux J, Robinson-Rechavi M. Developmental constraints on vertebrate genome evolution. PLOS Genet. 2008;4(12):e1000311. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pgen.1000311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, et al. Gene content evolution in the arthropods. Genome Biol. 2020;21(1):15. https://0-doi-org.brum.beds.ac.uk/10.1186/s13059-019-1925-7.
Article
PubMed
PubMed Central
Google Scholar
Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: simplicity meets complexity. J Biol Chem. 2019;294(6):2121–32. https://0-doi-org.brum.beds.ac.uk/10.1074/jbc.REV118.002809.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876–82. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/25.24.4876.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–9. https://0-doi-org.brum.beds.ac.uk/10.1093/oxfordjournals.molbev.a003851.
Article
CAS
PubMed
Google Scholar
Rambaut A. FigTree: tree figure drawing tool version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree. 2012.
Van Bortle K, Ramos E, Takenaka N, Yang J, Wahi JE, Corces VG. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res. 2012;22(11):2176–87. https://0-doi-org.brum.beds.ac.uk/10.1101/gr.136788.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. https://0-doi-org.brum.beds.ac.uk/10.1186/gb-2008-9-9-r137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA, editors. Methods in molecular biology, vol. 132. Bioinformatics methods and protocols. Totowa: Humana Press; 1999. p. 365–86.
Google Scholar
Duncan EJ, Hyink O, Dearden PK. Notch signalling mediates reproductive constraint in the adult worker honeybee. Nat Commun. 2016;7:12427. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms12427.
Article
CAS
PubMed
PubMed Central
Google Scholar