Davis S, Bax N, Grewe P. Engineered underdominance allows efficient and economical introgression of traits into pest populations. J Theor Biol. 2001;7:83–98.
Article
Google Scholar
Ward CM, Su JT, Huang Y, Lloyd AL, Gould F, Hay BA. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution. 2011;65(4):1149–62.
Article
PubMed
Google Scholar
Unckless RL, Clark AG, Messer PW. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics. 2017;205(2):827–41.
Article
PubMed
Google Scholar
Sandler L, Hiraizumi Y, Sandler I. Meiotic drive in natural populations of drosophila melanogaster. I. The cytogenetic basis of segregation-distortion. Genetics. 1959;44(2):233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandler L, Golic K. Segregation distortion in drosophila. Trends Genetics. 1985;1(C):181–5.
Article
Google Scholar
Crow JF. Why is mendelian segregation so exact? BioEssays. 1991;13:305–12.
Article
CAS
PubMed
Google Scholar
Hartl DL. Genetic dissection of segregation distortion ii. mechanism of suppression of distortion by certain inversions. Genetics. 1975;80(3):539–47.
Article
PubMed Central
Google Scholar
Hiraizumi Y, Thomas AM. Suppressor systems of segregation distorter (sd) chromosomes in natural populations of drosophila melanogaster. Genetics. 1984;106(2):279–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brand CL, Larracuente AM, Presgraves DC. Origin, evolution, and population genetics of the selfish segregation distorter gene duplication in European and African populations of drosophila melanogaster. Evolution. 2015;69(5):1271–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Craig G, Hickey W, VandeHey R. An inherited male-producing factor in Aedes Aegypti. Science. 1960;132(3443):1887–9.
Article
PubMed
Google Scholar
Warmbrod KL, Kobokovich A, West R, Ray G, Trotochaud M, Montague M. Gene drives: pursuing opportunities, minimizing risk. Johns Hopkins Center for Health Security May: Report; 2020.
Moro D, Byrne M, Kennedy M, Campbell S, Tizard M. Identifying knowledge gaps for gene drive research to control invasive animal species: the next crispr step. Global Ecol Conserv. 2018;13:00363.
Google Scholar
Collins FH, James AA. Genetic modification of mosquitoes. Sci Med. 1996;3:52–61.
CAS
Google Scholar
Isaacs AT, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O, Vinetz JM, James AA. Engineered resistance to plasmodium falciparum development in transgenic anopheles stephensi. PLoS Pathog. 2011;7(4):1002017.
Article
CAS
Google Scholar
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient cas9-mediated gene drive for population modification of the malaria vector mosquito anopheles stephensi. Proc Natl Acad Sci. 2015;112(49):6736–43.
Article
CAS
Google Scholar
Collins JP. Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management. BMC Proc. 2018;12(S8):9.
Article
PubMed
PubMed Central
Google Scholar
Courtier-Orgogozo V, Morizot B, Boëte C. Agricultural pest control with crispr-based gene drive: time for public debate: should we use gene drive for pest control? EMBO Rep. 2017;18(6):878–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchman A, Marshall JM, Ostrovski D, Yang T, Akbari OS. Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proc Natl Acad Sci U S A. 2018;115(18):4725–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Lloyd AL, Legros M, Gould F. Gene-drive into insect populations with age and spatial structure: a theoretical assessment. Evol Appl. 2011;4(3):415–28.
Article
PubMed
Google Scholar
Akbari OS, Matzen KD, Marshall JM, Huang H, Ward CM, Hay BA. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol. 2013;23(8):671–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vella MR, Gunning CE, Lloyd AL, Gould F. Evaluating strategies for reversing crispr-cas9 gene drives. Sci Rep. 2017;7(1):11038.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci. 2017;114(2):255–64.
Article
CAS
Google Scholar
Noble C, Adlam B, Church GM, Esvelt KM, Nowak MA. Current crispr gene drive systems are likely to be highly invasive in wild populations. Elife. 2018;7:33423.
Article
Google Scholar
Edgington MP, Alphey LS. Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors. PLoS Comput Biol. 2018;14(3):1006059.
Article
CAS
Google Scholar
Dhole S, Vella MR, Lloyd AL, Gould F. Invasion and migration of spatially self-limiting gene drives: a comparative analysis. Evol Appl. 2018;11(5):794–808.
Article
PubMed
PubMed Central
Google Scholar
Edgington MP, Alphey LS. Modeling the mutation and reversal of engineered underdominance gene drives. J Theor Biol. 2019;479:14–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holman L. Evolutionary simulations of z-linked suppression gene drives. Proc Royal Soc B. 2019;286(1912):20191070.
Article
CAS
Google Scholar
Champer J, Zhao J, Champer SE, Liu J, Messer PW. Population dynamics of underdominance gene drive systems in continuous space. ACS Synth Biol. 2020;9(4):779–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall JM, Akbari OS. Gene drive strategies for population replacement. In: Genetic Control of Malaria and Dengue, pp. 169–200. Elsevier, 2016.
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T. A crispr-cas9 gene drive system targeting female reproduction in the malaria mosquito vector anopheles gambiae. Nat Biotechnol. 2016;34:78–83.
Article
CAS
PubMed
Google Scholar
Beaghton A, Beaghton PJ, Burt A. Vector control with driving y chromosomes: modelling the evolution of resistance. Malaria J. 2017;16(1):286.
Article
CAS
Google Scholar
Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A. A crispr-cas9 gene drive targeting doublesex causes complete population suppression in caged anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36(11):1062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA. Evolutionary dynamics of CRISPR gene drives. Sci Adv. 2017;3(4).
Tanaka H, Stone HA, Nelson DR. Spatial gene drives and pushed genetic waves. Proc Natl Acad Sci. 2017;114(32):8452–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girardin L, Calvez V, Débarre F. Catch me if you can: a spatial model for a brake-driven gene drive reversal. Bull Math Biol. 2019;81(12):5054–88.
Article
CAS
PubMed
Google Scholar
Bull JJ, Remien CH, Gomulkiewicz R, Krone SM. Spatial structure undermines parasite suppression by gene drive cargo. PeerJ. 2019;7:7921.
Article
Google Scholar
Champer J, Kim I, Champer SE, Clark AG, Messer PW. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. bioRxiv. 2019;28:769810.
Google Scholar
Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, Hovde BT, Baker D, Monnat RJ, Burt A, Crisanti A. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011;473(7):212–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larracuente AM, Presgraves DC. The selfish segregation distorter gene complex of drosophila melanogaster. Genetics. 2012;192(1):33–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gantz VM, Bier E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015;348(6233):442–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindholm AK, Musolf K, Weidt A, König B. Mate choice for genetic compatibility in the house mouse. Ecol Evol. 2013;3(5):1231–47.
Article
PubMed
PubMed Central
Google Scholar
Grunwald HA, Gantz VM, Poplawski G, Xu X-RS, Bier E, Cooper KL. Super-mendelian inheritance mediated by crispr-cas9 in the female mouse germline. Nature. 2019;566(7742):105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Min J, Noble C, Najjar D, Esvelt KM. Daisy quorum drives for the genetic restoration of wild populations. BioRxiv. 2017;115618.
Alphey LS, Crisanti A, Randazzo FF, Akbari OS. Opinion: standardizing the definition of gene drive. Proc Natl Acad Sci. 2020;117(49):30864–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, Meacci D, Gribble M, Morselli G, Burt A, et al. A male-biased sex-distorter gene drive for the human malaria vector anopheles gambiae. Nat Biotechnol. 2020;38:1054–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
North AR, Burt A, Godfray HCJ. Modelling the suppression of a malaria vector using a crispr-cas9 gene drive to reduce female fertility. BMC Biol. 2020;18(1):1–14.
Article
CAS
Google Scholar
Gokhale CS, Reeves RG, Reed FA. Dynamics of a combined medea-underdominant population transformation system. BMC Evol Biol. 2014;14(1):98.
Article
PubMed
PubMed Central
Google Scholar
Faber NR, McFarlane GR, Gaynor RC, Pocrnic I, Whitelaw CBA, Gorjanc G. Novel combination of crispr-based gene drives eliminates resistance and localises spread. Sci Rep. 2021;11(1):1–15.
Article
CAS
Google Scholar
Oberhofer G, Ivy T, Hay BA. Cleave and rescue, a novel selfish genetic element and general strategy for gene drive. Proc Natl Acad Sci. 2019;116(13):6250–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oberhofer G, Ivy T, Hay BA. Gene drive and resilience through renewal with next generation cleave and rescue selfish genetic elements. Proc Natl Acad Sci. 2020;117(16):9013–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhole S, Lloyd AL, Gould F. Tethered homing gene drives: a new design for spatially restricted population replacement and suppression. Evol Appl. 2019;12(8):1688–702.
Article
PubMed
PubMed Central
Google Scholar
Noble C, Min J, Olejarz J, Buchthal J, Chavez A, Smidler AL, DeBenedictis EA, Church GM, Nowak MA, Esvelt KM. Daisy-chain gene drives for the alteration of local populations. Proc Natl Acad Sci. 2019;116(17):8275–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgington MP, Harvey-Samuel T, Alphey L. Split drive killer-rescue provides a novel threshold-dependent gene drive. Sci Rep. 2020;10(1):1–13.
Article
CAS
Google Scholar
Willis K, Burt A. Double drives and private alleles for localised population genetic control. PLoS Genet. 2021;17(3):1009333.
Article
CAS
Google Scholar
Champer J, Champer SE, Kim IK, Clark AG, Messer PW. Design and analysis of crispr-based underdominance toxin-antidote gene drives. Evol Appl. 2021;14(4):1052–69.
Article
CAS
PubMed
Google Scholar
Champer J, Kim IK, Champer SE, Clark AG, Messer PW. Performance analysis of novel toxin-antidote crispr gene drive systems. BMC Biol. 2020;18(1):1–17.
Article
CAS
Google Scholar
Backus GA, Gross K. Genetic engineering to eradicate invasive mice on islands: modeling the efficiency and ecological impacts. Ecosphere. 2016;7(12):116.
Article
Google Scholar
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–59.
Article
CAS
PubMed
Google Scholar
Beeman RW, Friesen KS, Denell RE. Maternal-effect selfish genes in flour beetles. Science. 1992;256:89–92.
Article
CAS
PubMed
Google Scholar
Wade MJ, Beeman RW. The population dynamics of maternal-effect selfish genes. Genetics. 1994;138:1309–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C-H, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, Hay B. A synthetic maternal-effect selfish genetic element drives population replacement in drosophila. Science. 1997;316:597–600.
Article
Google Scholar
Akbari OS, Chen C-H, Marshall JM, Huang H, Antoshechkin I, Hay BA. Novel synthetic medea selfish genetic elements drive population replacement in drosophila; a theoretical exploration of medea-dependent population suppression. ACS Synth biol. 2014;3(12):915–28.
Article
CAS
PubMed
Google Scholar
Reeves RG, Bryk J, Altrock PM, Denton JA, Reed FA. First steps towards underdominant genetic transformation of insect populations. PLoS ONE. 2014;9(5).
Marshall JM, Hay BA. Inverse medea as a novel gene drive system for local population replacement a theoretical analysis. J Heredity. 2011;103(3):336–41.
Article
Google Scholar
Marshall JM, Pittman GW, Buchman AB, Hay BA. Semele: a killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics. 2011;187(2):535–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofbauer J, Sigmund K. Evolutionary games and population dynamics. Cambridge: Cambridge University Press; 1998.
Book
Google Scholar
Feldman MW, Liberman U. A symmetric two-locus fertility model. Genetics. 1985;109(1):229–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagylaki T. Evolution under fertility and viability selection. Genetics. 1987;115(2):367–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandler L, Novitski E. Meiotic drive as an evolutionary force. Am Nat. 1957;91:105–10.
Article
Google Scholar
Palopoli MF, Wu CI. Rapid evolution of a coadapted gene complex: evidence from the segregation distorter (sd) system of meiotic drive in drosophila melanogaster. Genetics. 1996;143:1675–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol & Evol. 2016;31(4):315–26.
Article
Google Scholar
Lyon MF. Transmission ratio distortion in mice. Ann Rev Genet. 2003;37(1):393–408.
Article
CAS
PubMed
Google Scholar
Price TA, Wedell N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica. 2008;132(3):295.
Article
PubMed
Google Scholar
Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Royal Soc B: Biol Sci. 2003;270(1518):921–8.
Article
CAS
Google Scholar
Burt A, Deredec A. Self-limiting population genetic control with sex-linked genome editors. Proc Biol Sci/Royal Soc. 2018;285(1883):20180776.
Google Scholar
Marshall JM, Hay BA. Confinement of gene drive systems to local populations: a comparative analysis. J Theor Biol. 2012;294:153–71.
Article
PubMed
Google Scholar
Backus GA, Delborne JA. Threshold-dependent gene drives in the wild: spread, controllability, and ecological uncertainty. BioScience. 2019;69(11):900–7.
Article
Google Scholar
Marshall JM. The effect of gene drive on containment of transgenic mosquitoes. J Theor Biol. 2009;258(2):250–65.
Article
CAS
PubMed
Google Scholar
Frieß JL, von Gleich A, Giese B. Gene drives as a new quality in gmo releases—a comparative technology characterization. PeerJ. 2019;7:6793.
Article
CAS
Google Scholar
Deredec A, Burt A, Godfray HCJ. The population genetics of using homing endonuclease genes in vector and pest management. Genetics. 2008;179(4):2013–26.
Article
PubMed
PubMed Central
Google Scholar
North AR, Godfray HCJ. The dynamics of disease in a metapopulation: the role of dispersal range. J Theor Biol. 2017;418:57–65.
Article
PubMed
PubMed Central
Google Scholar
North AR, Burt A, Godfray HCJ. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 2019;17(1):1–12.
Article
Google Scholar
Hofbauer J, Schuster P, Sigmund K. Game dynamics in mendelian populations. Biol Cybern. 1982;43:51–7.
Article
Google Scholar
van Veelen M. Hamiltons missing link. J Theor Biol. 2007;246:551–4.
Article
PubMed
Google Scholar
Traulsen A, Reed FA. From genes to games: cooperation and cyclic dominance in meiotic drive. J Theor Biol. 2012;299:120–5.
Article
PubMed
Google Scholar
Traulsen A, Claussen JC, Hauert C. Coevolutionary dynamics in large, but finite populations. Phys Rev E. 2006;74:011901.
Article
CAS
Google Scholar
Traulsen A, Claussen JC, Hauert C. Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett. 2005;95:238701.
Article
PubMed
CAS
Google Scholar
Ohtsuki H, Nowak MA. The replicator equation on graphs. J Theor Biol. 2006;243:86–97.
Article
PubMed
PubMed Central
Google Scholar
Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol Biol Evol. 2019;36(3):632–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez CHM, Wu SL, Bennett JB, Marshal JM. MGDrivE: a modular simulation framework for the spread of gene drives through spatially explicit mosquito populations. Methods Ecol Evol. 2019;11(2):229–39.
Article
Google Scholar
Godfray HCJ, North A, Burt A. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biol. 2017;15(1):1–12.
Article
Google Scholar
North A, Burt A, Godfray HCJ. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J Appl Ecol. 2013;50(5):1216–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dyer KA, Hall DW. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc Royal Soc B. 2019;286(1917):20192529.
Article
Google Scholar
Larner W, Price T, Holman L, Wedell N. An x-linked meiotic drive allele has strong, recessive fitness costs in female drosophila pseudoobscura. Proc Royal Soc B. 2019;286(1916):20192038.
Article
Google Scholar
Finnegan SR, White NJ, Koh D, Camus MF, Fowler K, Pomiankowski A. Meiotic drive reduces egg-to-adult viability in stalk-eyed flies. Proc Royal Soc B. 2019;286(1910):20191414.
Article
CAS
Google Scholar
Altrock PM, Traulsen A, Reeves RG, Reed FA. Using underdominance to bi-stably transform local populations. J Theor Biol. 2010;267:62–75.
Article
PubMed
Google Scholar
Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. eLife. 2014;3:20131071.
Article
Google Scholar
DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM. Safeguarding crispr-cas9 gene drives in yeast. Nat Biotechnol. 2015;33(12):1250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Champer J, Lee E, Yang E, Liu C, Clark AG, Messer PW. A toxin-antidote crispr gene drive system for regional population modification. Nat Commun. 2020;11(1):1–10.
Article
CAS
Google Scholar
Prowse TA, Adikusuma F, Cassey P, Thomas P, Ross JV. A y-chromosome shredding gene drive for controlling pest vertebrate populations. Elife. 2019;8:41873.
Article
CAS
Google Scholar
Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature. 1968;218:368–9.
Article
CAS
PubMed
Google Scholar
Gould F, Huang Y, Legros M, Lloyd AL. A killer-rescue system for self-limiting gene drive of anti-pathogen constructs. Proc Royal Soc B: Biol Sci. 2008;275(1653):2823–9.
Article
Google Scholar
Dhole S, Lloyd AL, Gould F. Gene drive dynamics in natural populations: he importance of density-dependence, space and sex. arXiv 2020; arXiv:2005.01838.
Altrock PM, Traulsen A, Reed FA. Stability properties of underdominance in finite subdivided populations. PLoS Comput Biol. 2011;7:1002260.
Article
CAS
Google Scholar
Goddard MR, Burt A. Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci. 1999;96(24):13880–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haig D. Games in Tetrads: segregation, recombination, and meiotic drive. Am Nat. 2010;176(4):404–13.
Article
PubMed
Google Scholar
Crow JF, Kimura M. An introduction to population genetics theory. New York: Harper and Row; 1970.
Gomulkiewicz R, Thies ML, Bull JJ. Evading resistance to gene drives. Genetics. 2021;217(2).
Champer J, Liu J, Oh SY, Reeves R, Luthra A, Oakes N, Clark AG, Messer PW. Reducing resistance allele formation in crispr gene drive. Proc Natl Acad Sci. 2018;115(21):5522–7.
Article
CAS
PubMed
PubMed Central
Google Scholar