Gross MR. Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol. 1996;11(2):92–8.
Article
CAS
PubMed
Google Scholar
Dingle H. Migration: the biology of life on the move. Oxford: Oxford University Press; 1996.
Google Scholar
Chapman BB, Brönmark C, Nilsson JÅ, Hansson LA. The ecology and evolution of partial migration. Oikos. 2011;120(12):1764–75.
Article
Google Scholar
McDowall R. Diadromy: origins and definitions of terminology. Copeia. 1992;1992(1):248–51.
Article
Google Scholar
Jonsson B, Jonsson N. Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fisher. 1993;3(4):348–65.
Article
Google Scholar
Hendry AP, Bohlin T, Jonsson B, Berg OK. To sea or not to sea? Anadromy versus non-anadromy in salmonids. In: Hendry AP, Stearns SC, editors. Evolution illuminated: salmon and their relatives. New York: Oxford University Press; 2004. p. 92–125.
Google Scholar
Gross MR, Coleman RM, McDowall RM. Aquatic productivity and the evolution of diadromous fish migration. Science. 1988;239(4845):1291–3.
Article
CAS
PubMed
Google Scholar
Fleming IA, Gross MR. Breeding competition in a Pacific salmon (coho: Oncorhynchus kisutch): measures of natural and sexual selection. Evolution. 1994;48(3):637–57.
PubMed
Google Scholar
Halttunen E, Gjelland KØ, Hamel S, Serra-Llinares RM, Nilsen R, Arechavala-Lopez P, Skarðhamar J, Johnsen IA, Asplin L, Karlsen Ø. Sea trout adapt their migratory behaviour in response to high salmon lice concentrations. J Fish Dis. 2017;41:953–67.
Article
PubMed
Google Scholar
Ferguson A. Genetics of sea trout, with particular reference to Britain and Ireland. In: Harris G, Milner N, editors. Sea trout: biology, conservation and management. Oxford: Blackwell publishing; 2006. p. 157–82.
Google Scholar
Ferguson A, Reed TE, McGinnity P, Prodöhl PA. Anadromy in brown trout (Salmo trutta): a review of the relative roles of genes and environmental factors and the implications for management and conservation. In: Harris GS (Ed.). Sea Trout: from Science to Management. Self-published; 2016.
Thompson TQ, Bellinger MR, O’Rourke SM, Prince DJ, Stevenson AE, Rodrigues AT, Sloat MR, Speller CF, Yang DY, Butler VL, et al. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. P Natl Acad Sci USA. 2019;116(1):177–86.
Article
CAS
Google Scholar
Barson NJ, Aykanat T, Hindar K, Baranski M, Bolstad GH, Fiske P, Jacq C, Jensen AJ, Johnston SE, Karlsson S, et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 2015;528:405–8.
Article
CAS
PubMed
Google Scholar
Czorlich Y, Aykanat T, Erkinaro J, Orell P, Primmer CR. Rapid sex-specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nat Ecol Evol. 2018;2(11):1800–7.
Article
PubMed
PubMed Central
Google Scholar
Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, Thorgaard GH, May B, Nichols KM. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol. 2016;25(8):1785–800.
Article
CAS
PubMed
Google Scholar
Wilcove DS, Wikelski M. Going, going, gone: is animal migration disappearing? PLoS Biol. 2008;6(7):1361–4.
Article
CAS
Google Scholar
Wysujack K, Greenberg L, Bergman E, Olsson I. The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol Freshw Fish. 2009;18(1):52–9.
Article
Google Scholar
Shaw AK. Drivers of animal migration and implications in changing environments. Evol Ecol. 2016;30(6):991–1007.
Article
Google Scholar
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: unraveling migratory connectivity. Trends Ecol Evol. 2002;17(2):76–83.
Article
Google Scholar
Rand PS, Goslin M, Gross MR, Irvine JR, Augerot X, McHugh PA, Bugaev VF. Global assessment of extinction risk to populations of sockeye salmon Oncorhynchus nerka. PLoS ONE. 2012;7(4):e34065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Limburg KE, Waldman JR. Dramatic declines in North Atlantic diadromous fishes. Bioscience. 2009;59(11):955–65.
Article
Google Scholar
Shelton AO, Sullaway GH, Ward EJ, Feist BE, Somers KA, Tuttle VJ, Watson JT, Satterthwaite WH. Redistribution of salmon populations in the northeast Pacific ocean in response to climate. Fish and Fisheries 2021, in press.
Krkošek M, Lewis MA, Volpe JP. Transmission dynamics of parasitic sea lice from farm to wild salmon. Proc Royal Soc London B: Biol Sci. 2005;272(1564):689–96.
Google Scholar
Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, Horsberg TE, Jackson D. Salmon lice—impact on wild salmonids and salmon aquaculture. J Fish Dis. 2013;36(3):171–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taranger GL, Karlsen O, Bannister RJ, Glover KA, Husa V, Karlsbakk E, Kvamme BO, Boxaspen KK, Bjorn PA, Finstad B, et al. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J Mar Sci. 2015;72(3):997–1021.
Article
Google Scholar
Jonsson B. Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. T Am Fish Soc. 1985;114(2):182–94.
Article
Google Scholar
Palstra FP, Ruzzante DE. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol. 2008;17(15):3428–47.
Article
PubMed
Google Scholar
Bentzen P, Olsen J, McLean J, Seamons T, Quinn T. Kinship analysis of Pacific salmon: insights into mating, homing, and timing of reproduction. J Hered. 2001;92(2):127–36.
Article
CAS
PubMed
Google Scholar
Fraser DJ, Duchesne P, Bernatchez L. Migratory charr schools exhibit population and kin associations beyond juvenile stages. Mol Ecol. 2005;14(10):3133–46.
Article
CAS
PubMed
Google Scholar
Killen SS, Marras S, Nadler L, Domenici P. The role of physiological traits in assortment among and within fish shoals. Philos Trans R Soc B. 2017;372(1727):20160233.
Article
Google Scholar
Elliott JM. Quantitative ecology and the brown trout. Oxford: Oxford University Press; 1994.
Google Scholar
Archer LC, Hutton SA, Harman L, McCormick SD, O’Grady MN, Kerry JP, Poole WR, Gargan P, McGinnity P, Reed TE. Food and temperature stressors have opposing effects in determining flexible migration decisions in brown trout (Salmo trutta). Global Change Biol. 2020;26(5):2878–96.
Article
Google Scholar
Archer LC, Hutton SA, Harman L, O'Grady MN, Kerry JP, Poole WR, Gargans P, McGinnity P, Reed TE. The interplay between extrinsic and intrinsic factors in determining migration decisions in brown trout (Salmo trutta): an experimental study. Front Ecol Evol 2019; 7.
Nevoux M, Finstad B, Davidsen JG, Finlay R, Josset Q, Poole R, Hojesjo J, Aarestrup K, Persson L, Tolyanen O, et al. Environmental influences of life history strategies in partial anadromous brown trout (Salmo trutta, Salmonidae). Fish Fish. 2019;20(6):1051–82.
Article
Google Scholar
Lemopoulos A, Uusi-Heikkila S, Huusko A, Vasemagi A, Vainikka A. Comparison of Migratory and resident populations of brown trout reveals candidate genes for migration tendency. Genome Biol Evol. 2018;10(6):1493–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemopoulos A, Uusi-Heikkila S, Hyvarinen P, Alioravainen N, Prokkola JM, Elvidge CK, Vasemagi A, Vainikka A. Association mapping based on a common-garden migration experiment reveals candidate genes for migration tendency in brown trout. G3-Genes Genom Genet. 2019;9(9):2887–96.
CAS
Google Scholar
Bekkevold D, Hansen MM, Mensberg KLD. Genetic detection of sex-specific dispersal in historical and contemporary populations of anadromous brown trout Salmo trutta. Mol Ecol. 2004;13(6):1707–12.
Article
CAS
PubMed
Google Scholar
Klemetsen A, Amundsen PA, Dempson J, Jonsson B, Jonsson N, O’connell M, Mortensen E. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish. 2003;12(1):1–59.
Article
Google Scholar
Cucherousset J, Ombredane D, Charles K, Marchand F, Baglinière J-L. A continuum of life history tactics in a brown trout (Salmo trutta) population. Can J Fish Aquat Sci. 2005;62(7):1600–10.
Article
Google Scholar
Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW, Hansen MM, Araki H, Skaala O, Svasand T. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish Fish. 2017;18(5):890–927.
Article
Google Scholar
Forseth T, Barlaup BT, Finstad B, Fiske P, Gjoaester H, Falkegard M, Hindar A, Mo TA, Rikardsen AH, Thorstad EB, et al. The major threats to Atlantic salmon in Norway. ICES J Mar Sci. 2017;74(6):1496–513.
Article
Google Scholar
Thorstad EB, Finstad B. Impacts of salmon lice emanating from salmon farms on wild Atlantic salmon and sea trout. NINA Report. 2018;1449:1–22.
Google Scholar
Skaala Ø, Kålås S, Borgstrøm R. Evidence of salmon lice-induced mortality of anadromous brown trout (Salmo trutta) in the Hardangerfjord, Norway. Marine Biol Res. 2014;10(3):279–88.
Article
Google Scholar
Johnsen IA, Stien LH, Sandvik AD, Asplin L, Oppedal F. Optimal estimation of lice release from aquaculture based on ambient temperatures. Aquacult Env Interac. 2020;12:179–91.
Article
Google Scholar
Harvey AC, Quintela M, Glover KA, Karlsen O, Nilsen R, Skaala O, Saegrov H, Kalas S, Knutar S, Wennevik V. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. Roy Soc Open Sci. 2019;6(10):190426.
Article
CAS
Google Scholar
Fjørtoft HB, Nilsen F, Besnier F, Stene A, Bjorn PA, Tveten AK, Aspehaug VT, Finstad B, Glover KA. Salmon lice sampled from wild Atlantic salmon and sea trout throughout Norway display high frequencies of the genotype associated with pyrethroid resistance. Aquacult Env Interac. 2019;11:459–68.
Article
Google Scholar
Thorstad EB, Todd CD, Uglem I, Bjørn PA, Gargan PG, Vollset KW, Halttunen E, Kålås S, Berg M, Finstad B. Marine life of the sea trout. Mar Biol. 2016;163(3):47.
Article
Google Scholar
Glover KA, Skaala O, Nilsen F, Olsen R, Teale AJ, Taggart JB. Differing susceptibility of anadromous brown trout (Salmo trutta L.) populations to salmon louse (Lepeophtheirus salmonis (Kroyer, 1837)) infection. ICES J Mar Sci. 2003;60(5):1139–48.
Article
Google Scholar
Skaala Ø. A summary of 20 years (1998–2017) of scientific work on genetics and survival in anadromous brown trout (Salmo trutta L) and Atlantic salmon (S. salar L) in the river Guddalselva western Norway. Fisken Og Havet. 2017;5:46.
Google Scholar
Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ. The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev. 2013;88(3):602–25.
Article
PubMed
Google Scholar
Halttunen E, Gjelland KØ, Hamel S, Serra-Llinares RM, Nilsen R, Arechavala-Lopez P, Skarðhamar J, Johnsen IA, Asplin L, Karlsen Ø. Sea trout adapt their migratory behaviour in response to high salmon lice concentrations. J Fish Dis. 2017;00:1–15.
Google Scholar
Fjørtoft HB, Besnier F, Stene A, Nilsen F, Bjørn PA, Tveten A-K, Finstad B, Aspehaug V, Glover KA. The Phe362Tyr mutation conveying resistance to organophosphates occurs in high frequencies in salmon lice collected from wild salmon and trout. Sci Rep-Uk. 2017;7(1):14258.
Article
CAS
Google Scholar
Wolf P. A trap for the capture of fish and other organisms moving downstream. T Am Fish Soc. 1951;80(1):41–5.
Article
Google Scholar
Gibbons JW, Andrews KM. PIT tagging: simple technology at its best. Bioscience. 2004;54(5):447–54.
Article
Google Scholar
Eisbrenner WD, Botwright N, Cook M, Davidson EA, Dominik S, Elliott NG, Henshall J, Jones SL, Kube PD, Lubieniecki KP. Evidence for multiple sex-determining loci in Tasmanian Atlantic salmon (Salmo salar). Heredity. 2014;113(1):86.
Article
CAS
PubMed
Google Scholar
Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y. The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl. 2013;6(3):486–96.
Article
CAS
PubMed
Google Scholar
Ayllon F, Solberg MF, Besnier F, Fjelldal PG, Hansen TJ, Wargelius A, Edvardsen RB, Glover KA. Autosomal sdY pseudogenes explain discordances between phenotypic sex and DNA marker for sex identification in Atlantic salmon. Front Genet. 2020;11:544207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quéméré E, Perrier C, Besnard A-L, Evanno G, Baglinière J-L, Guiguen Y, Launey S. An improved PCR-based method for faster sex determination in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Conserv Genet Resour. 2014;6(4):825–7.
Article
Google Scholar
Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KLD. Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Mol Ecol. 2007;16(7):1413–25.
Article
CAS
PubMed
Google Scholar
Peakall R, Smouse P. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchd-an update. Bioinformatics. 2012;28:2537–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol. 2013;4(8):782–8.
Article
Google Scholar
RCoreTeam: R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna. 2018.
Rousset F. GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103–6.
Article
PubMed
Google Scholar
Waples RS. Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered. 2014;106(1):1–19.
Article
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57:289–300.
Google Scholar
Carvajal-Rodriguez A. Myriads: P-value-based multiple testing correction. Bioinformatics. 2017;1:3.
Google Scholar
Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14(1):209–14.
Article
CAS
PubMed
Google Scholar
Ferchaud AL, Perrier C, April J, Hernandez C, Dionne M, Bernatchez L. Making sense of the relationships between Ne, Nb and Nc towards defining conservation thresholds in Atlantic salmon (Salmo salar). Heredity (Edinb). 2016;117(4):268–78.
Article
CAS
Google Scholar
Waples RS. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989;121(2):379–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waples RS. Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol. 2005;14(11):3335–52.
Article
CAS
PubMed
Google Scholar
Jones OR, Wang J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour. 2010;10(3):551–5.
Article
PubMed
Google Scholar
Økland F, Jonsson B, Jensen A, Hansen L. Is there a threshold size regulating seaward migration of brown trout and Atlantic salmon? J Fish Biol. 1993;42(4):541–50.
Article
Google Scholar
Adamack AT, Gruber B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol. 2014;5(4):384–7.
Article
Google Scholar
Wang JL. Estimating genotyping errors from genotype and reconstructed pedigree data. Methods Ecol Evol. 2018;9(1):109–20.
Article
Google Scholar
L’Abee-Lund JH, Jensen AJ, Johnsen BO. Interpopulation variation in male parr maturation of anadromous brown trout (Salmo trutta) in Norway. Can J Zool. 1990;68(9):1983–7.
Article
Google Scholar
Dellefors C, Faremo U. Early sexual maturation in males of wild sea trout, Salmo trutta L, inhibits smoltification. J Fish Biol. 1988;33(5):741–9.
Article
Google Scholar
Birnie-Gauvin K, Thorstad EB, Aarestrup K. Overlooked aspects of the Salmo salar and Salmo trutta lifecycles. Rev Fish Biol Fisher. 2019;29(4):749–66.
Article
Google Scholar
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22(4):1–20.
Article
Google Scholar
Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered. 2004;95(6):536–9.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B (Methodological). 1995;57:289–300.
Article
Google Scholar
Wang J. Estimation of effective population sizes from data on genetic markers. Phil Trans Royal Soc B: Biol Sci. 2005;360(1459):1395–409.
Article
CAS
Google Scholar
Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD. Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol Ecol. 2002;11(12):2523–35.
Article
PubMed
Google Scholar
Hansen MM, Fraser DJ, Meier K, Mensberg KLD. Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol Ecol. 2009;18(12):2549–62.
Article
CAS
PubMed
Google Scholar
Hansen MM, Limborg MT, Ferchaud AL, Pujolar JM. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol Biol. 2014;14:122.
Article
PubMed
PubMed Central
Google Scholar
Charlier J, Palme A, Laikre L, Andersson J, Ryman N. Census (NC) and genetically effective (Ne) population size in a lake-resident population of brown trout Salmo trutta. J Fish Biol. 2011;79(7):2074–82.
Article
CAS
PubMed
Google Scholar
Serbezov D, Jorde PE, Bernatchez L, Olsen EM, Vollestad LA. Short-term genetic changes: evaluating effective population size estimates in a comprehensively described brown trout (Salmo trutta) population. Genetics. 2012;191(2):579–92.
Article
PubMed
PubMed Central
Google Scholar
Jorde PE, Ryman N. Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics. 1996;143(3):1369–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlier J, Laikre L, Ryman N. Genetic monitoring reveals temporal stability over 30 years in a small, lake-resident brown trout population. Heredity. 2012;109(4):246–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franklin IR. Evolutionary change in small populations. In: Soulé ME, Wilcox BA, editors. Conservation biology: an evolutionary-ecological perspective. Sunderland: Sinauer; 1980. p. 135–49.
Google Scholar
Frankham R, Bradshaw CJ, Brook BW. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv. 2014;170:56–63.
Article
Google Scholar
Franklin IR, Frankham R. How large must populations be to retain evolutionary potential? Anim Conserv. 1998;1(1):69–70.
Article
Google Scholar
Reed DH, Briscoe DA, Frankham R. Inbreeding and extinction: the effect of environmental stress and lineage. Conserv Genet. 2002;3(3):301–7.
Article
CAS
Google Scholar
Bekkevold D, Hojesjo J, Nielsen EE, Aldven D, Als TD, Sodeland M, Kent MP, Lien S, Hansen MM. Northern European Salmo trutta (L.) populations are genetically divergent across geographical regions and environmental gradients. Evol Appl. 2020;13(2):400–16.
Article
CAS
PubMed
Google Scholar
Fraser DJ, Hansen MM, Østergaard S, Tessier N, Legault M, Bernatchez L. Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Mol Ecol. 2007;16(18):3866–89.
Article
PubMed
Google Scholar
Griffiths SW, Armstrong JD. Kin-biased territory overlap and food sharing among Atlantic salmon juveniles. J Anim Ecol. 2002;71(3):480–6.
Article
Google Scholar
Olsén KH, Petersson E, Ragnarsson B, Lundqvist H, Järvi T. Downstream migration in Atlantic salmon (Salmo salar) smolt sibling groups. Can J Fish Aquat Sci. 2004;61(3):328–31.
Article
Google Scholar
Hoare D, Krause J, Peuhkuri N, Godin JG. Body size and shoaling in fish. J Fish Biol. 2000;57(6):1351–66.
Article
Google Scholar
Killen SS, Marras S, Nadler L, Domenici P. The role of physiological traits in assortment among and within fish shoals. Phil Trans R Soc B. 2017;372(1727):20160233.
Article
PubMed
PubMed Central
Google Scholar
Carlsson J, Carlsson JEL, Olsen KH, Hansen MM, Eriksson T, Nilsson J. Kin-biased distribution in brown trout: an effect of redd location or kin recognition? Heredity. 2004;92(2):53–60.
Article
CAS
PubMed
Google Scholar
Bohlin T, Dellefors C, Faremo U. Date of smolt migration depends on body-size but not age in wild sea-run brown trout. J Fish Biol. 1996;49(1):157–64.
Article
Google Scholar
Griffiths SW, Brockmark S, Höjesjö J, Johnsson J. Coping with divided attention: the advantage of familiarity. Proc Royal Soc B: Biol Sci. 2004;271(1540):695.
Article
CAS
Google Scholar
Skaala O, Besnier F, Borgstrom R, Barlaup B, Sorvik AG, Normann E, Ostebo BI, Hansen MM, Glover KA. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol Appl. 2019;12(5):1001–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes WPA, Ibbotson AT, Griffiths SW, Maxwell DL, Davison PI, Riley WD. Does relatedness influence migratory timing and behaviour in Atlantic salmon smolts? Anim Behav. 2015;106:191–9.
Article
Google Scholar
Meli A, Fraser DJ. Kinship analysis of brook trout Salvelinus fontinalis during their breeding migration. J Fish Biol. 2013;82(5):1514–22.
Article
CAS
PubMed
Google Scholar
Martinez J, Moran P, Perez J, De Gaudemar B, Beall E, Garcia-Vazquez E. Multiple paternity increases effective size of southern Atlantic salmon populations. Mol Ecol. 2000;9(3):293–8.
Article
CAS
PubMed
Google Scholar
Goodwin JC, Andrew King R, Iwan Jones J, Ibbotson A, Stevens JR. A small number of anadromous females drive reproduction in a brown trout (Salmo trutta) population in an English chalk stream. Freshwater Biol. 2016;61(7):1075–89.
Article
Google Scholar
Pulido F. Evolutionary genetics of partial migration–the threshold model of migration revis (it) ed. Oikos. 2011;120(12):1776–83.
Article
Google Scholar
Curry RA, Bernatchez L, Whoriskey F, Audet C. The origins and persistence of anadromy in brook charr. Rev Fish Biol Fisher. 2010;20(4):557–70.
Article
Google Scholar
Holecek DE, Scarnecchia DL, Miller SE. Smoltification in an impounded, adfluvial redband trout population upstream from an impassable dam: does it persist? T Am Fish Soc. 2012;141(1):68–75.
Article
Google Scholar
Quinn TP, Bond MH, Brenkman SJ, Paradis R, Peters RJ. Re-awakening dormant life history variation: stable isotopes indicate anadromy in bull trout following dam removal on the Elwha River, Washington. Environ Biol Fish. 2017;100(12):1659–71.
Article
Google Scholar