Collins JP, Storfer A. Global amphibian declines: sorting the hypotheses. Divers Distrib. 2003;9(2):89–98.
Article
Google Scholar
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, et al. Status and trends of amphibian declines and extinctions worldwide. Science. 2004;306(October):1783–6.
Article
CAS
PubMed
Google Scholar
Campbell Grant EH, Miller DAW, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, et al. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci Rep. 2016;6:25625.
Article
CAS
Google Scholar
Blumer C, Zimmermann DR, Weilenmann R, Vaughan L, Pospischil A. Chlamydiae in free-ranging and captive frogs in Switzerland. Vet Pathol. 2007;44(2):144–50.
Article
CAS
PubMed
Google Scholar
Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4(2):125–34.
Article
Google Scholar
Price SJ, Garner TWJ, Nichols RA, Balloux F, Ayres C, Mora-Cabello De Alba A, et al. Collapse of amphibian communities due to an introduced Ranavirus. Curr Biol. 2014;24(21):2586–91.
Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis. 1999;5(6):735–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunner JL, Storfer A, Gray MJ, Hoverman JT. Ranavirus ecology and evolution: from epidemiology to extinction. In: Gray MJ, Chinchar G V, editors. Ranaviruses: Lethal pathogens of ectothermic vertebrates. New York: Springer; 2015.
Garner TWJ, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AA, et al. Mitigating amphibian chytridiomycoses in nature. Philos Trans R Soc B. 2016;371(1709):20160207.
Article
Google Scholar
Van Rooij P, Martel A, Haesebrouck F, Pasmans F. Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet Res. 2015;46(1):1–22.
Article
CAS
Google Scholar
Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA. 2013;110(38):15325–9
Thomas V, Wang Y, Van Rooij P, Verbrugghe E, Baláž V, Bosch J, et al. Mitigating Batrachochytrium salamandrivorans in Europe. Amphib Reptil. 2019;40(3):265–90.
Article
Google Scholar
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363:1459–63.
Article
CAS
PubMed
Google Scholar
Lips KR. Overview of chytrid emergence and impacts on amphibians. Philos Trans R Soc B. 2016;371(1709):20150465.
Article
Google Scholar
Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin LC, et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA. 1998;95(15):9031–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science. 2009;326:582–5.
Article
CAS
PubMed
Google Scholar
Marantelli G, Berger L, Speare R, Keegan L. Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pac Conserv Biol. 2004;10:173–9.
Article
Google Scholar
Blaustein AR, Romansic JM, Scheessele EA, Han BA, Pessier AP, Longcore JE. Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol. 2005;19(5):1460–8.
Article
Google Scholar
Kilpatrick AM, Briggs CJ, Daszak P. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol. 2010;25(2):109–18.
Article
PubMed
Google Scholar
Walker SF, Bosch J, Gomez V, Garner TW, Cunningham AA, Schmeller DS, et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol Lett. 2010;13:372–82.
Article
PubMed
Google Scholar
Baláž V, Vörös J, Civiš P, Vojar J, Hettyey A, Sós E, et al. Assessing Risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection. Conserv Biol. 2014;28(1):213–23.
Article
PubMed
Google Scholar
Conlon JM. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res. 2011;343(1):201–12.
Article
CAS
PubMed
Google Scholar
Daly JW. The chemistry of poisons in amphibian skin. Proc Natl Acad Sci USA. 1995;92(1):9–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macfoy C, Danosus D, Sandit R, Jones TH, Garraffo MH, Spande TF, et al. Alkaloids of anuran skin: antimicrobial function? Zeitschrift für Naturforsch. 2005;60:932–7.
Article
CAS
Google Scholar
Gomes A, Giri B, Saha A, Mishra R, Dasgupta SC, Debnath A, et al. Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potentials for possible drug development. Indian J Exp Biol. 2007;45(7):579–93.
CAS
PubMed
Google Scholar
Tempone AG, de Souza Carvalho Melhem M, Oliveira Prado F, Motoie G, Mitsuyoshi Hiramoto R, Maria Antoniazzi M, et al. Amphibian secretions for drug discovery studies: a search for new antiparasitic and antifungal compounds. Lett Drug Des Discov. 2007;4(1):67–73.
König E, Bininda-Emonds ORP, Shaw C. The diversity and evolution of anuran skin peptides. Peptides. 2015;63:96–117. https://0-doi-org.brum.beds.ac.uk/10.1016/j.peptides.2014.11.003.
Article
CAS
PubMed
Google Scholar
Chinchar GV, Wang J, Murti G, Carey C, Rollins-Smith LA. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology. 2001;288(2):351–7.
Article
CAS
PubMed
Google Scholar
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.
Article
CAS
PubMed
Google Scholar
Rollins-Smith LA, Conlon JM. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol. 2005;29(7):589–98.
Article
CAS
PubMed
Google Scholar
Conlon JM, Mechkarska M, Lukic ML, Flatt PR. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides. 2014;57:67–77. https://0-doi-org.brum.beds.ac.uk/10.1016/j.peptides.2014.04.019.
Article
CAS
PubMed
Google Scholar
Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN. Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim Conserv. 2007;10(4):425–8.
Article
Google Scholar
Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, et al. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol. 2009;33(12):1247–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayes RA, Crossland MR, Hagman M, Capon RJ, Shine R. Ontogenetic variation in the chemical defenses of cane toads (Bufo marinus): toxin profiles and effects on predators. J Chem Ecol. 2009;35(4):391–9.
Article
CAS
PubMed
Google Scholar
Ujszegi J, Móricz ÁM, Krüzselyi D, Hettyey A. Skin toxin production of toads changes during early ontogeny but is not adjusted to the microbiota of the aquatic environment. Evol Ecol. 2017;31(6):925–36.
Article
Google Scholar
Üveges B, Fera G, Móricz ÁM, Krüzselyi D, Bókony V, Hettyey A. Age- and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol Biol. 2017;17:137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cunha Filho GA, Schwartz CA, Resck IS, Murta MM, Lemos SS, Castro MS, et al. Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major components from skin secretion of the toad Bufo rubescens. Toxicon. 2005;45(6):777–82.
Article
CAS
PubMed
Google Scholar
Barnhart K, Forman ME, Umile TP, Kueneman J, McKenzie V, Salinas I, et al. Identification of bufadienolides from the boreal toad, Anaxyrus boreas, active against a fungal pathogen. Microb Ecol. 2017;74:990–1000. https://0-doi-org.brum.beds.ac.uk/10.1007/s00248-017-0997-8.
Article
CAS
PubMed
Google Scholar
Conlon JM, Seidel B, Nielsen PF. An atypical member of the brevinin-1 family of antimicrobial peptides isolated from the skin of the European frog Rana dalmatina. Comp Biochem Physiol C. 2004;137(2):191–6.
Google Scholar
Mebs D, Wagner MG, Pogoda W, Maneyro R, Kwet A, Kauert G. Lack of bufadienolides in the skin secretion of red bellied toads, Melanophryniscus spp. (Anura, Bufonidae), from Uruguay. Comp Biochem Physiol C. 2007;144(4):398–402.
Delfino G, Brizzi R, Alvarez BB. Serous cutaneous glands in Phyllomedusa hypochondrialis (Anura, Hylidae): secretory patterns during ontogenesis. Tissue Cell. 1998;30(1):30–40.
Article
CAS
PubMed
Google Scholar
Viertel B, Richter S. Anatomy: viscera and endocrines. In: McDiarmid RW, Altig R, editors. Tadpoles: the biology of anuran larvae. Chicago: University of Chicago Press; 1999. p. 92–148.
Google Scholar
Lacombe C, Cifuentes-Diaz C, Dunia I, Auber-Thomay M, Nicolas P, Amiche M. Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study. Eur J Cell Biol. 2000;79(9):631–41.
Article
CAS
PubMed
Google Scholar
Terreni A, Nosi D, Greven H, Delfino G. Development of serous cutaneous glands in Scinax nasica (Anura, Hylidae): patterns of poison biosynthesis and maturation in comparison with larval glands in specimens of other families. Tissue Cell. 2003;35:274–87.
Article
CAS
PubMed
Google Scholar
Quagliata S, Malentacchi C, Delfino C, Brunasso AMG, Delfino G. Adaptive evolution of secretory cell lines in vertebrate skin. Caryologia. 2006;59(2):187–206.
Article
Google Scholar
Flajnik MF, Hsu E, Kaufman JF, Du Pasquier L. Changes in the immune system during metamorphosis of Xenopus. Immunol Today. 1987;8(2):58–64.
Article
CAS
PubMed
Google Scholar
Schadich E, Cole ALJ, Squire M, Mason D. Skin peptides of different life stages of Ewing’s tree frog. J Exp Zool A. 2010;313A(8):532–7.
Wabnitz PA, Walters H, Tyler MJ, Wallace JC, Bowie JH. First record of host defence peptides in tadpoles. The magnificent tree frog Litoria splendida. J Pept Res. 1998;52(6):477–81.
Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, et al. Life history linked to immune investment in developing amphibians. Conserv Physiol. 2016;4(1):cow025.
Gosner KL. A simplified table for staging anuran embryos larvae with notes on identification. Herpetologica. 1960;16(3):183–90.
Google Scholar
Hettyey A, Tóth Z, Van Buskirk J. Inducible chemical defences in animals. Oikos. 2014;23:1025–8.
Article
Google Scholar
Groner ML, Rollins-Smith LA, Reinert LK, Hempel J, Bier ME, Relyea RA. Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis. J Exp Biol. 2014;217(October):351–8.
PubMed
Google Scholar
Simmaco M, Mangoni ML, Boman A, Barra D, Boman HG. Experimental infections of Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the normal flora. Scand J Immunol. 1998;48(4):357–63.
Article
CAS
PubMed
Google Scholar
Mangoni ML, Miele R, Renda TG, Barra D, Simmaco M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J. 2001;15:1431–2.
Article
CAS
PubMed
Google Scholar
Woodhams DC, Bigler L, Marschang R. Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses. BMC Vet Res. 2012;8:197–209.
Article
PubMed
PubMed Central
Google Scholar
Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, et al. Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis Aquat Organ. 2012;98(1):11–25.
Article
CAS
PubMed
Google Scholar
Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, et al. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science. 2013;342(6156):366–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KP. Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun. 2015;83(12):4565–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, et al. Review of the amphibian immune response to chytridiomycosis, and future directions. Front Immunol. 2018;9:2536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gabor CR, Fisher MC, Bosch J. A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels. PLoS ONE. 2013;8(2):e56054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabor CR, Fisher MC, Bosch J. Elevated corticosterone levels and changes in amphibian behavior are associated with Batrachochytrium dendrobatidis (Bd) infection and Bd lineage. PLoS ONE. 2015;10(4):1–13.
Article
CAS
Google Scholar
Simmaco M, Boman A, Mangoni ML, Mignogna G, Miele R, Barra D, et al. Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Lett. 1997;416(3):273–5. https://0-doi-org.brum.beds.ac.uk/10.1016/S0014-5793(97)01216-7.
Article
CAS
PubMed
Google Scholar
Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol. 2011;51(4):552–62.
Article
CAS
PubMed
Google Scholar
Garner TWJ, Walker S, Bosch J, Leech S, Rowcliffe JM, Cunningham AA, et al. Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos. 2009;118(5):783–91.
Article
Google Scholar
Luquet E, Garner TW, Léna JP, Bruel C, Joly P, Lengagne T, et al. Genetic erosion in wild populations makes resistance to a pathogen more costly. Evolution (N Y). 2012;66(6):1942–52.
Google Scholar
Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol. 1996;11(8):317–21.
Article
CAS
PubMed
Google Scholar
McMahon TA, Brannelly LA, Chatfield MWH, Johnson PTJ, Joseph MB, McKenzie VJ, et al. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proc Natl Acad Sci USA. 2013;110(1):210–5.
Article
CAS
PubMed
Google Scholar
Lichtstein D, Gati I, Babila T, Haver E, Katz U. Effect of salt acclimation on digitalis-like compounds in the toad. Biochim Biophys Acta. 1991;1073:65–8.
Article
CAS
PubMed
Google Scholar
Lichtstein D, Gati I, Haver E, Katz U. Digitalis-like compounds in the toad Bufo viridis: tissue and plasma levels and significance in osmotic stress. Life Sci. 1992;51:119–28.
Article
CAS
PubMed
Google Scholar
Toledo RC, Jared C. Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A. 1995;111(1):1–29.
Article
Google Scholar
Hayes RA, Piggott AM, Dalle K, Capon RJ. Microbial biotransformation as a source of chemical diversity in cane toad steroid toxins. Bioorg Med Chem Lett. 2009;19(6):1790–2. https://0-doi-org.brum.beds.ac.uk/10.1016/j.bmcl.2009.01.064.
Article
CAS
PubMed
Google Scholar
Tempone AG, Pimenta DC, Lebrun I, Sartorelli P, Taniwaki NN, de Andrade HF, et al. Antileishmanial and antitrypanosomal activity of bufadienolides isolated from the toad Rhinella jimi parotoid macrogland secretion. Toxicon. 2008;52(1):13–21.
Article
CAS
PubMed
Google Scholar
Kleinhenz P, Boone MD, Fellers G. Effects of the amphibian Chytrid fungus and four insecticides on Pacific Treefrogs (Pseudacris regilla). J Herpetol. 2012;46(4):625–31.
Article
Google Scholar
Hanlon SM, Lynch KJ, Kerby J, Parris MJ. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis Aquat Organ. 2015;112(3):237–42.
Article
PubMed
Google Scholar
Venesky MD, Parris MJ, Storfer A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. EcoHealth. 2009;6(4):565–75.
Article
PubMed
Google Scholar
Venesky MD, Hanlon SM, Lynch K, Parris MJ, Rohr JR. Optimal digestion theory does not predict the effect of pathogens on intestinal plasticity. Biol Lett. 2013;9(2):20130038.
Article
PubMed
PubMed Central
Google Scholar
Parris MJ, Cornelius TO. Fungal pathogen causes competitive and developmental stress in larval amphibian communities. Ecology. 2004;85(12):3385–95.
Article
Google Scholar
McMahon TA, Rohr JR. Transition of Chytrid fungus infection from mouthparts to hind limbs during Amphibian metamorphosis. EcoHealth. 2015;12(1):188–93.
Article
PubMed
Google Scholar
Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L, et al. Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Mol Ecol. 2009;18(3):415–29.
Article
CAS
PubMed
Google Scholar
Bosch J, Martínez-Solano I. Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Peñalara Natural Park, Spain. Oryx. 2006;40(1):84–9.
Article
Google Scholar
Ficetola GF, Valentini A, Miaud C, Noferini A, Mazzotti S, Dejean T. Batrachochytrium dendrobatidis in amphibians from the Po River Delta, Northern Italy. Acta Herpetol. 2011;6(2):297–302.
Google Scholar
Vörös J, Herczeg D, Fülöp A, Gál J, Dán Á, Harmos K, et al. Batrachochytrium dendrobatidis in Hungary: an overview of recent and historical occurrence. Acta Herpetol. 2018;13:125–40.
Google Scholar
APHA. Standard methods for the examination of water and wastewater. 16. Washington, D.C: American Public Health Association; 1985. 1268 p.
Bishop PJ, Speare R, Poulter R, Butler M, Speare BJ, Hyatt A, et al. Elimination of the amphibian chytrid fungus Batrachochytrium dendrobatidis by Archey’s frog Leiopelma archeyi. Dis Aquat Organ. 2009;84(1):9–15.
Article
PubMed
Google Scholar
Young S, Speare R, Berger L, Skerratt LF. Chloramphenicol with fluid and electrolyte therapy cures terminally ill green tree frogs (Litoria caerulea) with chytridiomycosis. J Zoo Wildl Med. 2012;43(2):330–7.
Article
PubMed
Google Scholar
Ujszegi J, Molnár K, Hettyey A. How to disinfect anuran eggs? Sensitivity of anuran embryos to chemicals widely used for the disinfection of larval and post-metamorphic amphibians. J Appl Toxicol. 2021;41:387–98.
Article
CAS
PubMed
Google Scholar
Shine R, Amiel J, Munn AJ, Stewart M, Vyssotski AL, Lesku JA. Is “cooling then freezing” a humane way to kill amphibians and reptiles? Biol Open. 2015;4(7):760–3.
Article
PubMed
PubMed Central
Google Scholar
Garner TW, Rowcliffe JM, Fisher MC. Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Glob Change Biol. 2011;17(2):667–75.
Article
Google Scholar
Johnson ML, Berger L, Philips L, Speare R. Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ. 2003;57(3):255–60.
Article
CAS
PubMed
Google Scholar
Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ. 2004;60(2):141–8.
Article
CAS
PubMed
Google Scholar
Kriger KM, Hero J-M, Ashton KJ. Cost efficiency in the detection of chytridiomycosis using PCR assay. Dis Aquat Organ. 2006;71:149–54.
Article
CAS
PubMed
Google Scholar
Woodhams DC, Rollins-smith LA, Carey C, Reinert L, Tyler MJ, Alford RA. Population trends associated with skin peptide defenses against Chytridiomycosis in Australian frogs. Oecologia. 2006;146(4):531–40.
Article
PubMed
Google Scholar
Conlon JM. Purification of naturally occurring peptides by reversed-phase HPLC. Nat Protoc. 2007;2(1):191–7.
Article
CAS
PubMed
Google Scholar
Hagman M, Hayes RA, Capon RJ, Shine R. Alarm cues experienced by cane toad tadpoles affect post-metamorphic morphology and chemical defences. Funct Ecol. 2009;23:126–32.
Article
Google Scholar
Grafen A, Hails R. Modern statistics for the life sciences. Oxford, New York: Oxford University Press; 2002. p. 351.
Google Scholar
Engqvist L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav. 2005;70(4):967–71.
Article
Google Scholar