Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, Richardson AJ. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob Ecol Biogeogr. 2011;20:789–802. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1466-8238.2010.00636.x.
Article
Google Scholar
Ávila SP. Unravelling the patterns and processes of evolution of marine life in oceanic islands: a global framework. In: Fernández-Palacios JM, de Nascimento L, Hérnandez JC, Clemente S, González A, Díaz-González JP, editors. Climate Change Perspectives From the Atlantic: Past, Present and Future. Tenerife: Universidad de La Laguna; 2013. p. 95–125.
Google Scholar
Thorson G. Reproduction and larval development of Danish marine bottom invertebrates. Meddelelser fra Kommissionen for Danmarks Fiskeri- og Havundersøgelser, Serie Plankton. 1946;4:1–523.
Google Scholar
Thorson G. Reproduction and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc. 1950;25:1–45.
Article
CAS
PubMed
Google Scholar
Winston JE. Dispersal in marine organisms without a pelagic larval phase. Integr Compar Biol. 2012;52:447–57. https://0-doi-org.brum.beds.ac.uk/10.1093/icb/ics040.
Article
Google Scholar
Scheltema RS. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci. 1986;39:290–322.
Google Scholar
Pechenik JA. The relationship between temperature, growth rate, and duration of planktonic life in larvae of the gastropod Crepidula fornicata. J Exp Mar Biol Ecol. 1984;74:241–57. https://0-doi-org.brum.beds.ac.uk/10.1016/0022-0981(84)90128-X.
Article
Google Scholar
Johannesson K. The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar Biol. 1988;99:507–13. https://0-doi-org.brum.beds.ac.uk/10.1007/BF00392558.
Article
Google Scholar
Oliverio M. Larval development and allozyme variation in the East Atlantic Columbella (Gastropoda: Prosobranchia: Columbellidae). Sci Mar. 1995;59:77–86.
Google Scholar
Ávila SP, Melo PJ, Lima A, Amaral A, Martins AMF, Rodrigues A. Reproductive cycle of the rissoid Alvania mediolittoralis Gofas, 1989 (Mollusca, Gastropoda) at São Miguel island (Azores, Portugal). Invertebr Reprod Dev. 2008;52:31–40.
Article
Google Scholar
Crothers JH. Common topshells: An introduction to the biology of Osilinus lineatus with notes on other species in the genus. F Stud. 2001;10:115–60.
Google Scholar
Modica MV, Russini V, Fassio G, Oliverio M. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development. Mar Environ Res. 2017;127:92–101. https://0-doi-org.brum.beds.ac.uk/10.1016/j.marenvres.2017.04.001.
Article
CAS
PubMed
Google Scholar
Ponder WF. A review of the Genera of the Rissoidae (Mollusca: Mesogastropoda: Rissoacea). Rec Aust Museum. 1984;4:1–221. https://0-doi-org.brum.beds.ac.uk/10.3853/j.0812-7387.4.1985.100.
Article
Google Scholar
Gofas S. The littoral Rissoidae and Anabathridae of São Miguel, Azores. In: Martins AMF, editor. The Marine Fauna and Flora of the Azores. (Proceedings of the First International Workshop of Malacology, Vila Franca Do Campo, São Miguel, Azores). Açoreana, Supplement 2; 1990. p. 97–134.
Gofas S. Rissoidae (Mollusca: Gastropoda) from northeast Atlantic seamounts. J Nat Hist. 2007;41:779–885.
Article
Google Scholar
Davis GM, Wilke T, Spolsky C, Qiu CP, Qiu DC, Xia MY, et al. Cytochrome Oxidase I-based phylogenetic relationships among the Pomatiopsidae, Hydrobiidae, Rissoidae and Truncatellidae (Gastropoda: Caenogastropoda: Rissoacea). Malacologia. 1998;40:251–66.
Google Scholar
Ávila SP. The shallow-water Rissoidae (Mollusca, Gastropoda) of the Azores and some aspects of their ecology. Iberus. 2000;18:51–76.
Google Scholar
Costa AC, Ávila SP. Macrobenthic mollusc fauna inhabiting Halopteris spp. subtidal fronds in São Miguel island, Azores. Scientia Marina. 2001;65:117–26.
Article
Google Scholar
Ávila SP, Goud J, Martins AMF. Patterns of Diversity of the Rissoidae (Mollusca: Gastropoda) in the Atlantic and the Mediterranean Region. Sci World J. 2012. https://0-doi-org.brum.beds.ac.uk/10.1100/2012/164890.
Article
Google Scholar
Ávila SP, Melo C, Silva L, Ramalho RS, Quartau R, Hipólito A, et al. A review of the MIS 5e highstand deposits from Santa Maria Island (Azores, NE Atlantic): Palaeobiodiversity, palaeoecology and palaeobiogeography. Quat Sci Rev. 2015;114:126–48. https://0-doi-org.brum.beds.ac.uk/10.1016/j.quascirev.2015.02.012.
Article
Google Scholar
Criscione F, Ponder WF. A phylogenetic analysis of rissooidean and cingulopsoidean families (Gastropoda: Caenogastropoda). Mol Phyl Evol. 2013;66:1075–82. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2012.11.026.
Article
Google Scholar
Cordeiro R, Ávila SP. New species of Rissoidae (Mollusca, Gastropoda) from the Archipelago of the Azores (northeast Atlantic) with an updated regional checklist for the family. ZooKeys. 2015;480:1–19. https://0-doi-org.brum.beds.ac.uk/10.3897/zookeys.480.8599.
Article
Google Scholar
Criscione F, Ponder WF, Köhler F, Takano T, Kano Y. A molecular phylogeny of Rissoidae (Caenogastropoda: Rissooidea) allows testing the diagnostic utility of morphological traits. Zool J Linn Soc. 2016;179:23–40. https://0-doi-org.brum.beds.ac.uk/10.1111/zoj.12447.
Article
Google Scholar
Baptista L, Santos AM, Cabezas MP, Cordeiro R, Melo C, Ávila SP. Intertidal or subtidal/circalittoral species: which appeared first? A phylogenetic approach to the evolution of non-planktotrophic species in Atlantic Archipelagos. Mar Biol. 2019;166:1–16. https://0-doi-org.brum.beds.ac.uk/10.1007/s00227-019-3536-y.
Article
Google Scholar
Duff M le, Hily C. La zone intertidale du site Natura 2000 de Guisseny - Inventaire des habitats marins. Brest; 2001.
Davidson IC. Structural gradients in an intertidal hard-bottom community: examining vertical, horizontal, and taxonomic clines in zoobenthic biodiversity. Mar Biol. 2005;146:827–39. https://0-doi-org.brum.beds.ac.uk/10.1007/s00227-004-1478-4.
Article
Google Scholar
Cordeiro R, Borges JP, Martins AMF, Ávila SP. Checklist of the littoral gastropods (Mollusca: Gastropoda) from the Archipelago of the Azores (NE Atlantic). Biodivers J. 2015;6:855–900.
Google Scholar
Borges LMSS, Hollatz C, Lobo J, Cunha AM, Vilela AP, Calado GG, et al. With a little help from DNA barcoding: Investigating the diversity of Gastropoda from the Portuguese coast. Sci Rep. 2016;6:20226. https://0-doi-org.brum.beds.ac.uk/10.1038/srep20226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miralles L, Ardura A, Arias A, Borrell YJ, Clusa L, Dopico E, et al. Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions. Mar Pollut Bull. 2016;112:183–8. https://0-doi-org.brum.beds.ac.uk/10.1016/j.marpolbul.2016.08.022.
Article
CAS
PubMed
Google Scholar
Ávila SP. Zonação intertidal de uma comunidade malacológica na “Poça da Barra”, uma lagoa localizada na plataforma costeira da Vila das Lajes do Pico. Açores Açoreana. 1998;8:457–85.
Google Scholar
Buršić M, Iveša L, Jaklin A, Arko PM. A preliminary study on the diversity of invertebrates associated with Corallina officinalis Linnaeus in southern Istrian peninsula. Acta Adriat. 2019;60:127–35. https://0-doi-org.brum.beds.ac.uk/10.32582/aa.60.2.2.
Article
Google Scholar
Scheltema RS. Planktonic and non-planktonic development among prosobranch gastropods and its relationship to the geographic range of species. In: Ryland JS, Tyles PA, editors. Reproduction, Genetics and Distribution of Marine Organisms. Fredensborg: Olsen and Olsen; 1989. p. 183–8.
Google Scholar
Scheltema RS. The relevance of passive dispersal for the biogeography of Caribbean mollusks. Am Malacol Bull. 1995;11:99–115.
Google Scholar
Ponder WF. A gravel beach shelled micro-gastropod assemblage from Ceuta, Strait of Gibraltar, with the description of a new truncatelloidean genus. Bull du Muséum Natl d’histoire Nat Sect A, Zool Biol Écol Anim. 1990;12:291–311.
Google Scholar
Tringali LP. Marine malacological records (Gastropoda : Prosobranchia, Heterobranchia, Opisthobranchia and Pulmonata) from Torres de Alcalé, Mediterranean Morocco, with the description of a new philinid species. Bollettino Malacologico. 2001;37:207–22.
Google Scholar
Ó Foighil D. Planktotrophic larval development is associated with a restricted geographic range in Lasaea, a genus of brooding, hermaphrodite bivalves. Mar Biol. 1989;103:349–58. https://0-doi-org.brum.beds.ac.uk/10.1007/BF00397269.
Article
Google Scholar
Collin R. Phylogenetic relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Syst Biol. 2003;52:618–40.
Article
PubMed
Google Scholar
Donald KM, Kennedy M, Spencer HG. Cladogenesis as the result of long-distance rafting events in South Pacific topshells (Gastropoda, Trochidae). Evolution. 2005;59:1701–11. https://0-doi-org.brum.beds.ac.uk/10.1111/j.0014-3820.2005.tb01819.x.
Article
CAS
PubMed
Google Scholar
Käse RH, Krauss W. The Gulf Stream, the North Atlantic Current, and the origin of the Azores Current. In: Krauss W, editor. The warmwatersphere of the North Atlantic Ocean. Berlin, Stuttgart: Gebrüder Borntraeger; 1996. p. 291–337.
Google Scholar
Carracedo LI, Gilcoto M, Mercier H, Pérez FF. Progress in Oceanography Seasonal dynamics in the Azores – Gibraltar Strait region: A climatologically-based study. Prog Oceanogr. 2014;122:116–30. https://0-doi-org.brum.beds.ac.uk/10.1016/j.pocean.2013.12.005.
Article
Google Scholar
Klein B, Siedler G. On the origin of the Azores Current. J Geophys Res: Oceans. 1989;94:6159–68. https://0-doi-org.brum.beds.ac.uk/10.1029/JC094iC05p06159.
Article
Google Scholar
Fründt B, Waniek J. Impact of the Azores Front propagation on deep ocean particle flux. Cent Eur J Geosci. 2012;4:531–44. https://0-doi-org.brum.beds.ac.uk/10.2478/s13533-012-0102-2.
Article
Google Scholar
Onken R. The azores countercurrent. J Phys Oceanogr. 1993;23:1638–46. https://0-doi-org.brum.beds.ac.uk/10.1175/1520-0485.
Article
Google Scholar
Alves MLGR, de Verdière A. Instability Dynamics of a Subtropical Jet and Applications to the Azores Front Current System: Eddy-Driven Mean Flow. J Phys Oceanogr. 1999;29:837–64. https://0-doi-org.brum.beds.ac.uk/10.1175/1520-0485.
Article
Google Scholar
Comas-Rodriguez I, Hernandez-Guerra A, Fraile-Nuez E, Benitez-Barrios VM, Perez-Hernandez MD, et al. The Azores Current System from a meridional section at 24.5°W. J Geophys Res. 2011;116:C09021. https://0-doi-org.brum.beds.ac.uk/10.1029/2011JC007129.
Article
Google Scholar
GEBCO. 2019.
Portuguese Hydrographic Institute. 2014. https://www.hidrografico.pt/op/33.
Baptista L, Santos AM, Melo CS, Rebelo AC, Madeira P, Cordeiro R, et al. Untangling the origin of the newcomer Phorcus sauciatus (Mollusca: Gastropoda) in a remote Atlantic archipelago. Mar Biol. 2021;168:9. https://0-doi-org.brum.beds.ac.uk/10.1007/s00227-020-03808-5.
Article
Google Scholar
Ladoukakis ED, Zouros E. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. Journal of Biological Research-Thessaloniki. 2017;24:1–7. https://0-doi-org.brum.beds.ac.uk/10.1186/s40709-017-0060-4.
Article
CAS
Google Scholar
Avise JC. Molecular markers, natural history and evolution. 2nd ed. Sunderland, Massachusetts: Sinauer Associates Inc.; 2004.
Google Scholar
Wilke T, Davis GM. Infraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia ventrosa (Hydrobiidae: Rissooidea: Gastropoda): Do their different life histories affect biogeographic patterns and gene flow? Biol J Linn Soc. 2000;70:89–105. https://0-doi-org.brum.beds.ac.uk/10.1006/bijl.1999.0388.
Article
Google Scholar
Wilke T, Falniowski A. The genus Adriohydrobia (Hydrobiidae: Gastropoda): polytypic species or polymorphic populations? J Zool Syst Evol Res. 2001;39:227–34. https://0-doi-org.brum.beds.ac.uk/10.1046/j.1439-0469.2001.00171.x.
Article
Google Scholar
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45. https://0-doi-org.brum.beds.ac.uk/10.1038/nrg1348.
Article
CAS
PubMed
Google Scholar
Bhargava A, Fuentes F. Mutational Dynamics of Microsatellites. Mol Biotechnol. 2010;44:250–66. https://0-doi-org.brum.beds.ac.uk/10.1007/s12033-009-9230-4.
Article
CAS
PubMed
Google Scholar
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol. 2014;4:4399–428. https://0-doi-org.brum.beds.ac.uk/10.1002/ece3.1305.
Article
PubMed
PubMed Central
Google Scholar
Farrell ED, Carlsson JEL, Carlsson J. Next gen pop gen: Implementing a high-throughput approach to population genetics in boarfish (Capros aper). R Soc Open Sci. 2016;3: 160651. https://0-doi-org.brum.beds.ac.uk/10.1098/rsos.160651.
Article
PubMed
PubMed Central
Google Scholar
Kawai K, Hughes RN, Takenaka O. Isolation and characterization of microsatellite loci in the marine gastropod Nucella lapillus. Mol Ecol Notes. 2001;1:270–2. https://0-doi-org.brum.beds.ac.uk/10.1046/j.1471-8278.2001.00103.x.
Article
CAS
Google Scholar
Dupont L, Viard F. Isolation and characterization of highly polymorphic microsatellite markers from the marine invasive species Crepidula fornicata (Gastropoda: Calyptraeidae). Mol Ecol Notes. 2003;3:498–500. https://0-doi-org.brum.beds.ac.uk/10.1046/j.1471-8286.2003.00491.x.
Article
CAS
Google Scholar
McInerney CE, Allcock AL, Johnson MP, Prodöhl PA. Characterization of polymorphic microsatellites for the periwinkle gastropod, Littorina littorea (Linnaeus, 1758) and their cross-amplification in four congeners. Conserv Genet. 2009;10:1417–20. https://0-doi-org.brum.beds.ac.uk/10.1007/s10592-008-9750-7.
Article
CAS
Google Scholar
Weetman D, Hauser L, Shaw PW, Bayes MK. Microsatellite markers for the whelk Buccinum undatum. Mol Ecol Notes. 2005;5:361–2. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1471-8286.2005.00926.x.
Article
CAS
Google Scholar
Cárdenas L, Daguin C, Castilla JC, Viard F. Isolation and characterization of 11 polymorphic microsatellite markers for the marine gastropod Concholepas concholepas (Brugière, 1789). Mol Ecol Notes. 2007;7:464–6. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1471-8286.2006.01619.x.
Article
CAS
Google Scholar
Beldade R, Bell CA, Raimondi PT, George MK, Miner CM, Bernardi G. Isolation and characterization of 8 novel microsatellites for the black abalone, Haliotis cracherodii, a marine gastropod decimated by the withering disease. Conserv Genet Resour. 2012;4:1071–3. https://0-doi-org.brum.beds.ac.uk/10.1007/s12686-012-9709-3.
Article
Google Scholar
Vega-Retter C, Briones M, Véliz D. Characterization of sixteen microsatellite loci from the marine gastropod Monetaria caputdraconis (Gastropoda: Cypraeidae) by next generation sequencing. Rev Biol Mar Oceanogr. 2016;51:695–8. https://0-doi-org.brum.beds.ac.uk/10.4067/S0718-19572016000300021.
Article
Google Scholar
López-Márquez V, García-Jiménez R, Calvo M, Templado J, Machordom A. Isolation of microsatellite loci for the endangered vermetid gastropod Dendropoma lebeche using Illumina MiSeq next generation sequencing technology. Mol Biol Rep. 2018;45:2775–81. https://0-doi-org.brum.beds.ac.uk/10.1007/s11033-018-4346-x.
Article
CAS
PubMed
Google Scholar
Brante A, Fernández M, Viard F. Microsatellite evidence for sperm storage and multiple paternity in the marine gastropod Crepidula coquimbensis. J Exp Mar Biol Ecol. 2011;396:83–8. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jembe.2010.10.001.
Article
CAS
Google Scholar
le Cam S, Riquet F, Pechenik JA. Paternity and gregariousness in the ex-changing sessile marine gastropod Crepidula convexa: comparison with other protandrous Crepidula species. J Hered. 2014;105:397–406.
Article
PubMed
Google Scholar
Xue D, Zhang T, Liu J-X. Microsatellite evidence for high frequency of multiple paternity in the marine gastropod Rapana venosa. PLoS ONE. 2014;9:e86508. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0086508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemppainen P, Panova M, Hollander J, Johannesson K. Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J Evol Biol. 2009;22:2000–11. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1420-9101.2009.01810.x.
Article
CAS
PubMed
Google Scholar
Teske PR, Sandoval-Castillo J, Waters J, Beheregaray LB. An overview of Australia’s temperate marine phylogeography, with new evidence from high-dispersal gastropods. J Biogeogr. 2017;44:217–29. https://0-doi-org.brum.beds.ac.uk/10.1111/jbi.12783.
Article
Google Scholar
Dupont L, Bernas D, Viard F. Sex and genetic structure across age groups in populations of the European marine invasive mollusc, Crepidula fornicata L. (Gastropoda). Biol J Linn Soc. 2007;90:365–74. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1095-8312.2007.00731.x.
Article
Google Scholar
Ribeiro PA, Branco M, Hawkins SJ, Santos AM. Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity. J Biogeogr. 2010;37:1782–96. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-2699.2010.02330.x.
Article
Google Scholar
Pálsson S, Magnúsdóttir H, Reynisdóttir S, Jónsson ZO, Örnólfsdóttir EB. Divergence and molecular variation in common whelk Buccinum undatum (Gastropoda: Buccinidae) in Iceland: a trans-Atlantic comparison. Biol J Linn Soc. 2013;111:145–59. https://0-doi-org.brum.beds.ac.uk/10.1111/bij.12191.
Article
Google Scholar
Cahill AE, Viard F. Genetic structure in native and non-native populations of the direct-developing gastropod Crepidula convexa. Mar Biol. 2014;161:2433–43. https://0-doi-org.brum.beds.ac.uk/10.1007/s00227-014-2519-2.
Article
Google Scholar
Wort EJG, Chapman MA, Hawkins SJ, Henshall L, Pita A, Rius M, et al. Contrasting genetic structure of sympatric congeneric gastropods: Do differences in habitat preference, abundance and distribution matter? J Biogeogr. 2019;46:369–80. https://0-doi-org.brum.beds.ac.uk/10.1111/jbi.13502.
Article
Google Scholar
Bell JJ. Similarity in connectivity patterns for two gastropod species lacking pelagic larvae. Mar Ecol Prog Ser. 2008;357:185–94. https://0-doi-org.brum.beds.ac.uk/10.3354/MEPS07301.
Article
Google Scholar
Donald KM, Keeney DB, Spencer HG. Contrasting population makeup of two intertidal gastropod species that differ in dispersal opportunities. J Exp Mar Biol Ecol. 2011;396:224–32. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jembe.2010.10.028.
Article
Google Scholar
Donald KM, McCulloch GA, Dutoit L, Spencer HG. Population structure of the New Zealand whelk, Cominella glandiformis (Gastropoda: Buccinidae), suggests sporadic dispersal of a direct developer. Biol J Linn Soc. 2020;130:49–60. https://0-doi-org.brum.beds.ac.uk/10.1093/biolinnean/blaa033.
Article
Google Scholar
Quintero-Galvis JF, Bruning P, Paleo-López R, Gomez D, Sánchez R, Cárdenas L. Temporal variation in the genetic diversity of a marine invertebrate with long larval phase, the muricid gastropod Concholepas concholepas. J Exp Mar Biol Ecol. 2020;530–531: 151432. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jembe.2020.151432.
Article
Google Scholar
Albano PG, Sabelli B, Bouchet P. The challenge of small and rare species in marine biodiversity surveys: Microgastropod diversity in a complex tropical coastal environment. Biodivers Conserv. 2011;20:3223–37. https://0-doi-org.brum.beds.ac.uk/10.1007/s10531-011-0117-x.
Article
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14. https://0-doi-org.brum.beds.ac.uk/10.1089/10665270050081478.
Article
CAS
PubMed
Google Scholar
Clement M, Posada D, Crandall KA. TCS: A computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9. https://0-doi-org.brum.beds.ac.uk/10.1046/j.1365-294x.2000.01020.x.
Article
CAS
PubMed
Google Scholar
Santos AM, Cabezas MP, Tavares AI, Xavier R, Branco M. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics. 2016. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btv636.
Article
PubMed
PubMed Central
Google Scholar
Sneath P, Sokal RR. Unweighted Pair Group Method with Arithmetic Mean. In: Numerical Taxonomy. San Francisco: Freeman; 1973. p. 230–234.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btu033.
Article
PubMed
PubMed Central
Google Scholar
Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1471-8286.2005.01155.x.
Article
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537–9. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/bts460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tibihika PD, Curto M, Dornstauder-Schrammel E, Winter S, Alemayehu E, Waidbacher H, et al. Application of microsatellite genotyping by sequencing (SSR-GBS) to measure genetic diversity of the East African Oreochromis niloticus. Conserv Genet. 2019;20:357–72. https://0-doi-org.brum.beds.ac.uk/10.1007/s10592-018-1136-x.
Article
CAS
Google Scholar
Curto M, Winter S, Seiter A, Schmid L, Scheicher K, Barthel LMF, et al. Application of a SSR-GBS marker system on investigation of European Hedgehog species and their hybrid zone dynamics. Ecol Evol. 2019;9:2814–32. https://0-doi-org.brum.beds.ac.uk/10.1002/ece3.4960.
Article
PubMed
PubMed Central
Google Scholar
Lanner J, Gstöttenmayer F, Curto M, Geslin B, Huchler K, Orr MC, et al. Evidence for multiple introductions of an invasive wild bee species currently under rapid range expansion in Europe. BMC Ecol Evol. 2021;21:71. https://0-doi-org.brum.beds.ac.uk/10.1186/s12862-020-01729-x.
Article
Google Scholar
Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11:591–611. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1755-0998.2011.03014.x.
Article
CAS
PubMed
Google Scholar
Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, et al. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE. 2012;7:e30953. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0030953.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Barba M, Miquel C, Lobréaux S, Quenette PY, Swenson JE, Taberlet P. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resour. 2016;17:492–507. https://0-doi-org.brum.beds.ac.uk/10.1111/1755-0998.12594.
Article
CAS
PubMed
Google Scholar
Darby BJ, Erickson SF, Hervey SD, Ellis-felege SN. Digital fragment analysis of short tandem repeats by high-throughput amplicon sequencing. Ecol Evol. 2016;6:4502–12. https://0-doi-org.brum.beds.ac.uk/10.1002/ece3.2221.
Article
PubMed
PubMed Central
Google Scholar
Vartia S, Villanueva-Cañas JL, Finarelli J, Farrell ED, Collins PC, Hughes GM, et al. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. R Soc Open Sci. 2016;3: 150565. https://0-doi-org.brum.beds.ac.uk/10.1098/rsos.150565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Botstein D, White R, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.
CAS
PubMed
PubMed Central
Google Scholar
Litt M, Hauge X, Sharma V. Shadow bands seen when typing polymorphic dinucleotide repeats — Some causes and cures. Biotechniques. 1993;15:280–4.
CAS
PubMed
Google Scholar
Ginot F, Bordelais I, Nguyen S, Gyapay G. Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs. Nucleic Acids Res. 1996;4:540–1. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/24.3.540.
Article
Google Scholar
Addison JA, Hart M. Spawning, copulation, and inbreeding coefficients in marine invertebrates. Biol Lett. 2005;1:450–3. https://0-doi-org.brum.beds.ac.uk/10.1098/rsbl.2005.0353.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zouros E, Foltz DW. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia. 1984;25:583–91.
Google Scholar
Papetti C, Schiavona L, Milan M, Lucassen M, Cavaco JA, Paterno M, et al. Genetic variability of the striped venus Chamelea gallina in the northern Adriatic Sea. Fish Res. 2018;201:68–78. https://0-doi-org.brum.beds.ac.uk/10.1016/j.fishres.2018.01.006.
Article
Google Scholar
Turini FG, Steinert C, Heubl G, Bringmann G, Lombe BK, Mudogo V, et al. Microsatellites facilitate species delimitation in Congolese Ancistrocladus (Ancistrocladaceae), a genus with pharmacologically potent naphthylisoquinoline alkaloids. Taxon. 2014;63:329–41. https://0-doi-org.brum.beds.ac.uk/10.12705/632.36.
Article
Google Scholar
Weersing K, Toonen RJ. Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser. 2009;393:1–12. https://0-doi-org.brum.beds.ac.uk/10.3354/meps08287.
Article
Google Scholar
Sokolov EP. An improved method for DNA isolation from mucopolysaccharide-rich molluscan tissues. J Molluscan Stud. 2000;66:573–5. https://0-doi-org.brum.beds.ac.uk/10.1093/mollus/66.4.573.
Article
Google Scholar
Sunnucks P. Efficient genetic markers for population biology. Trends in Ecol Evol. 2000;15:199–203. https://0-doi-org.brum.beds.ac.uk/10.1016/s0169-5347(00)01825-5.
Article
CAS
Google Scholar
Teske PR, Golla TR, Sandoval-Castillo J, Emami-Khoyi A, van der Lingen CD, von der Heyden S, et al. Mitochondrial DNA is unsuitable to test for isolation by distance. Sci Rep. 2018;8:1–9. https://0-doi-org.brum.beds.ac.uk/10.1038/s41598-018-25138-9.
Article
CAS
Google Scholar
Hart MW, Sunday J. Things fall apart: Biological species form unconnected parsimony networks. Biol Lett. 2007;3:509–12. https://0-doi-org.brum.beds.ac.uk/10.1098/rsbl.2007.0307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palumbi SR. Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst. 1994;25:547–72. https://0-doi-org.brum.beds.ac.uk/10.1146/annurev.es.25.110194.002555.
Article
Google Scholar
Waters JM, Craw D. Cyclone-driven marine rafting: storms drive rapid dispersal of buoyant kelp rafts. Mar Ecol Prog Ser. 2018;602:77–85. https://0-doi-org.brum.beds.ac.uk/10.3354/meps12695.
Article
CAS
Google Scholar
Lee HJ, Boulding EG. Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol Ecol. 2009;81:2165–84. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2009.04169.x.
Article
CAS
Google Scholar
Kojima S, Hayashi I, Kim D, Iijima A, Furota T. Phylogeography of an intertidal direct-developing gastropod Batillaria cumingi around the Japanese Islands. Mar Ecol Prog Ser. 2004;276:161–72. https://0-doi-org.brum.beds.ac.uk/10.3354/meps276161.
Article
CAS
Google Scholar
Sá-Pinto A, Branco M, Sayanda D, Alexandrino P. Patterns of colonization, evolution and gene flow in species of the genus Patella in the Macaronesian Islands. Mol Ecol. 2007;17:519–32. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2007.03563.x.
Article
CAS
PubMed
Google Scholar
Aurelle D, Guillemaud T, Afonso P, Morato T, Wirtz P, Santos RS, et al. Genetic study of Coris julis (Osteichtyes, Perciformes, Labridae) evolutionary history and dispersal abilities. Comptes Rendus Biol. 2003;326:771–85. https://0-doi-org.brum.beds.ac.uk/10.1016/j.crvi.2003.08.001.
Article
CAS
Google Scholar
Domingues VS, Santos RS, Brito A, Almada VC. Historical population dynamics and demography of the Eastern Atlantic pomacentrid Chromis limbata (Valenciennes, 1833). Mol Phylogenet Evol. 2006;40:139–47. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ympev.2006.02.009.
Article
CAS
PubMed
Google Scholar
Domingues VS, Santos RS, Brito A, Alexandrou M, Almada VC. Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). J Exp Mar Biol Ecol. 2007;346:102–13. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jembe.2007.03.002.
Article
CAS
Google Scholar
González-Wangüemert M, Cánovas F, Pérez-Ruzafa A, Marcos C, Alexandrino P. Connectivity patterns inferred from the genetic structure of white seabream (Diplodus sargus L.). J Exp Mar Biol Ecol. 2010;383:23–31. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jembe.2009.10.010.
Article
CAS
Google Scholar
Francisco SM, Almada VC, Faria C, Velasco EM, Robalo JI. Phylogeographic pattern and glacial refugia of a rocky shore species with limited dispersal capability: the case of Montagu’s blenny (Coryphoblennius galerita, Blenniidae). Mar Biol. 2014;161:2509–20. https://0-doi-org.brum.beds.ac.uk/10.1007/s00227-014-2523-6.
Article
Google Scholar
Stefanni S, Castilho R, Sala-Bozano M, Robalo JO, Francisco SM, Santos RS, et al. Establishment of a coastal fish in the Azores: recent colonisation or sudden expansion of an ancient relict population? Heredity. 2015;115:527–37. https://0-doi-org.brum.beds.ac.uk/10.1038/hdy.2015.55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salgueiro P, Palmeirim JM, Ruedi M, Coelho MM. Gene flow and population structure of the endemic Azorean bat (Nyctalus azoreum) based on microsatellites: implications for conservation. Conserv Genet. 2008;9:1163–71. https://0-doi-org.brum.beds.ac.uk/10.1007/s10592-007-9430-z.
Article
CAS
Google Scholar
Salgueiro P, Coelho MM, Palmeirim JM, Ruedi M. Mitochondrial DNA variation and population structure of the island endemic Azorean bat (Nyctalus azoreum). Mol Ecol. 2004;13:3357–66. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2004.02354.x.
Article
CAS
PubMed
Google Scholar
Neves VC, Griffiths K, Savory FR, Furness RW, Mable BK. Are European starlings breeding in the Azores archipelago genetically distinct from birds breeding in mainland Europe? Eur J Wildl Res. 2010;56:95–100. https://0-doi-org.brum.beds.ac.uk/10.1007/s10344-009-0316-x.
Article
Google Scholar
Thiel M, Haye PA. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol. 2006;44:323–429. https://0-doi-org.brum.beds.ac.uk/10.1201/9781420006391.ch7.
Article
Google Scholar
Thiel M, Gutow L. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol. 2005;42:181–264. https://0-doi-org.brum.beds.ac.uk/10.1201/9780203507810.ch6.
Article
Google Scholar
Thiel M, Gutow L. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol. 2005;43:279–418. https://0-doi-org.brum.beds.ac.uk/10.1201/9781420037449.ch7.
Article
Google Scholar
Ávila SP, Medeiros A, Martins AMF, Silva A, Melo C, Gomes C, et al. Lajes do Pico “À Ban-baxe-muro.” Publiçor; 2011.
Silva A, Brotas V, Valente A, Sá C, Diniz T, Patarra RF, et al. Coccolithophore species as indicators of surface oceanographic conditions in the vicinity of Azores islands. Estuar Coast Shelf Sci. 2013;118:50–9. https://0-doi-org.brum.beds.ac.uk/10.1016/j.ecss.2012.12.010.
Article
CAS
Google Scholar
Sala I, Caldeira RMA, Estrada-Allis SN, Froufe E, Couvelard X. Lagrangian transport pathways in the northeast Atlantic and their environmental impact. Limnol Oceanogr Fluids Environ. 2013;3:40–60. https://0-doi-org.brum.beds.ac.uk/10.1215/21573689-2152611.
Article
Google Scholar
Sala I, Harrison CS, Caldeira RMA. The role of the Azores Archipelago in capturing and retaining incoming particles. J Mar Syst. 2016;154:146–56. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jmarsys.2015.10.001.
Article
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial Cytochrome C Oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.
CAS
PubMed
Google Scholar
Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial Cytochrome C Oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour. 2013;13:851–61. https://0-doi-org.brum.beds.ac.uk/10.1111/1755-0998.12138.
Article
CAS
PubMed
Google Scholar
ExPASy Translate Tool. https://web.expasy.org/translate/. Accessed 15 July 2020.
GenBank Database. https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/genbank/. Accessed 15 Jan 2021.
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597-600. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/gkt376.
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msw054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1755-0998.2010.02847.x.
Article
PubMed
Google Scholar
Andrews S. FastQC - A quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. https://0-doi-org.brum.beds.ac.uk/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Miller MP, Knaus BJ, Mullins TD, Haig SM. SSR_pipeline: A bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data. J Hered. 2013;104:881–5. https://0-doi-org.brum.beds.ac.uk/10.1093/jhered/est056.
Article
CAS
PubMed
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115. https://0-doi-org.brum.beds.ac.uk/10.1093/nar/gks596.
Article
CAS
PubMed
PubMed Central
Google Scholar
GitHub mcurto – SSR-GBS-pipeline. https://github.com/mcurto/SSR-GBS-pipeline. Accessed 15 Apr 2020.
Chapuis MPM, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007;24:621–31. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msl191.
Article
CAS
PubMed
Google Scholar
Holla S, Khan J, Sowjanya MS, Shashidhar H. Monomorphic molecular markers are as informative as polymorphic molecular markers. Indian J Genet Plant Breed. 2014;74:596. https://0-doi-org.brum.beds.ac.uk/10.5958/0975-6906.2014.00896.7.
Article
Google Scholar
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16:1099–106. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-294X.2007.03089.x.
Article
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnely P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubisz M, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:1322–32. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1755-0998.2009.02591.x.
Article
PubMed
PubMed Central
Google Scholar
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Earl DA, VonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61.
Article
Google Scholar
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res. 2015;15:1179–91. https://0-doi-org.brum.beds.ac.uk/10.1111/1755-0998.12387.
Article
CAS
Google Scholar
Excoffier L, Smouse PE, Quattro JM. Analysis of Molecular Variance Inferred from Metric Distances Among DNA Haplotyes: Application. Genetics. 1992;491:479–91.
Article
Google Scholar