Sévêque A, Gentle LK, López-Bao JV, Yarnell RW, Uzal A. Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol Rev. 2020;95:1689–705.
Article
PubMed
Google Scholar
Hayward MW, Kerley GIH. Prey preferences and dietary overlap amongst Africa’s large predators. S Afr J Wildl Res. 2008;38:93–108.
Article
Google Scholar
Palomares F, Caro TM. Interspecific killing among mammalian carnivores. Am Nat. 1999;153:492–508.
Article
CAS
PubMed
Google Scholar
Donadio E, Buskirk SW. Diet, morphology, and interspecific killing in carnivora. Am Nat. 2006;167:524–36.
Article
PubMed
Google Scholar
de Oliveira TG, Pereira JA. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J Mamm Evol. 2014;21:427–36.
Article
Google Scholar
Linnell JDC, Strand O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers Distrib. 2000;6:169–76.
Article
Google Scholar
Levi T, Wilmers CC. Wolves–coyotes–foxes: a cascade among carnivores. Ecology. 2012;93:921–9.
Article
PubMed
Google Scholar
Newsome TM, Ripple WJ. A continental scale trophic cascade from wolves through coyotes to foxes. J Anim Ecol. 2015;84:49–59.
Article
PubMed
Google Scholar
Cozzi G, Broekhuis F, McNutt JW, Turnbull LA, Macdonald DW, Schmid B. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores. Ecology. 2012;93:2590–9.
Article
PubMed
Google Scholar
Creel S, Creel NM. Limitation of African wild dogs by competition with larger carnivores. Conserv Biol. 1996;10:526–38.
Article
Google Scholar
Dröge E, Creel S, Becker MS, M’soka J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol Evol. 2017;7:189–99.
Article
PubMed
Google Scholar
Darnell AM, Graf JA, Somers MJ, Slotow R, Szykman Gunther M. Space use of African wild dogs in relation to other large carnivores. PLoS ONE. 2014;9:e98846.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hayward MW, Porter L, Lanszki J, Kamler JF, Beck JM, Kerley GIH, et al. Factors affecting the prey preferences of jackals (Canidae). Mamm Biol. 2017;85:70–82.
Article
Google Scholar
Patalano M, Lovari S. Food habits and trophic niche overlap of the wolf Canis lupus, L. 1758 and the red Fox Vulpes vulpes (L. 1758) in a Mediterranean mountain area. Revue d’écologie. 1993;48:279–94.
Google Scholar
Lanszki J, Heltai M, Szabó L. Feeding habits and trophic niche overlap between sympatric golden jackal (Canis aureus) and red fox (Vulpes vulpes) in the Pannonian ecoregion (Hungary). Can J Zool. 2006;84:1647–56.
Article
Google Scholar
Lanszki J, Kurys A, Szabó L, Nagyapáti N, Porter LB, Heltai M. Diet composition of the golden jackal and the sympatric red fox in an agricultural area (Hungary). Folia Zool. 2016;65:310–22.
Article
Google Scholar
Bassi E, Donaggio E, Marcon A, Scandura M, Apollonio M. Trophic niche overlap and wild ungulate consumption by red fox and wolf in a mountain area in Italy. Mamm Biol. 2012;77:369–76.
Article
Google Scholar
Ferretti F, Pacini G, Belardi I, ten Cate B, Sensi M, Oliveira R, et al. Recolonizing wolves and opportunistic foxes: interference or facilitation? Biol J Linn Soc. 2021;132:196–210.
Article
Google Scholar
Schoener TW. Resource partitioning in ecological communities. Science. 1974;185:27–39.
Article
CAS
PubMed
Google Scholar
Manlick PJ, Woodford JE, Zuckerberg B, Pauli JN. Niche compression intensifies competition between reintroduced American martens (Martes americana) and fishers (Pekania pennanti). J Mammal. 2017;98:690–702.
Article
Google Scholar
Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
Article
Google Scholar
Barrull J, Mate I, Ruiz-Olmo J, Casanovas JG, Gosàlbez J, Salicrú M. Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: an integrated study based on camera trapping and diet. Mamm Biol. 2014;79:123–31.
Article
Google Scholar
Hoffmann M, Arnold J, Duckworth JW, Jhala Y, Kamler JF, Krofel M. Canis aureus. 2018. The IUCN red list of threatened species. doi:https://0-doi-org.brum.beds.ac.uk/10.2305/IUCN.UK.2018-2.RLTS.T118264161A163507876.en.
Šálek M, Červinka J, Banea OC, Krofel M, Ćirović D, Selanec I, et al. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur J Wildl Res. 2014;60:193–200.
Article
Google Scholar
Koepfli K-P, Pollinger J, Godinho R, Robinson J, Lea A, Hendricks S, et al. Genome-wide evidence reveals that African and Eurasian golden jackals are distinct species. Curr Biol. 2015;25:2158–65.
Article
CAS
PubMed
Google Scholar
Trouwborst A, Krofel M, Linnell JDC. Legal implications of range expansions in a terrestrial carnivore: the case of the golden jackal (Canis aureus) in Europe. Biodivers Conserv. 2015;24:2593–610.
Article
Google Scholar
Ranc N, Álvares F, Banea O, Berce T, Caganacci F, Červinka J, et al. The golden jackal in Europe: where to go next? In: Proceedings of the 2nd international jackal symposium. Marathon Bay, Attiki, Greece. 2018. p. 9.
Hoffmann M, Sillero-Zubiri C. Vulpes vulpes. 2016. The IUCN red list of threatened species. doi:https://0-doi-org.brum.beds.ac.uk/10.2305/IUCN.UK.2021-1.RLTS.T23062A193903628.en.
Macdonald DW. The ecology of carnivore social behaviour. Nature. 1983;301:379–84.
Article
Google Scholar
Larivière S, Pasitschniak-Arts M. Vulpes vulpes. Mamm Species. 1996. https://0-doi-org.brum.beds.ac.uk/10.2307/3504236.
Article
Google Scholar
Šálek M, Drahníková L, Tkadlec E. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mamm Rev. 2015;45:1–14.
Article
Google Scholar
Scheinin S, Yom-Tov Y, Motro U, Geffen E. Behavioural responses of red foxes to an increase in the presence of golden jackals: a field experiment. Anim Behav. 2006;71:577–84.
Article
Google Scholar
Shamoon H, Saltz D, Dayan T. Fine-scale temporal and spatial population fluctuations of medium sized carnivores in a Mediterranean agricultural matrix. Landsc Ecol. 2017. https://0-doi-org.brum.beds.ac.uk/10.1007/s10980-017-0517-8.
Article
Google Scholar
Lapini L, Perco F, Benussi E. Nuovi dati sullo sciacallo dorato (Canis aureus L., 1758) in Italia (Mammalia, Carnivora, Canidae). Gortania Atti Mus Friul Storia Nat. 1993;14:233–40.
Google Scholar
Polis GA, Myers CA, Holt RD. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst. 1989;20:297–330.
Article
Google Scholar
Gittleman JL. Carnivore body size: ecological and taxonomic correlates. Oecologia. 1985;67:540–54.
Article
PubMed
Google Scholar
Lapini L, Dall’Asta A, Dublo L, Spoto M, Vernier E. Materiali per una teriofauna dell’Italia nord-orientale (Mammalia, Friuli–Venezia Giulia). Gortania Atti Mus Friul Storia Nat. 1996;17:149–248.
Google Scholar
Lapini L, Molinari P, Dorigo L, Are G, Beraldo P. Reproduction of the golden jackal (Canis aureus moreoticus Geoffroy Saint Hilaire, 1835) in Julian pre-Alps, with new data on its range-expansion in the high-Adriatic hinterland (Mammalia, Carnivora, Canidae). Boll Mus Civ Storia Nat Venezia. 2009;60:169–86.
Google Scholar
Lapini L, Conte D, Zupan M, Kozlan L. Italian jackals 1984–2011: an updated review (Canis aureus: Carnivora, Canidae). Boll Mus Civ Storia Nat Venezia. 2011;62:219–32.
Google Scholar
Lapini L, Dreon AL, Caldana M, Luca M, Villa M. Distribuzione, espansione e problemi di conservazione di Canis aureus in Italia (Carnivora: Canidae). Quad Mus Civ Storia Nat Ferrara. 2018;6:89–96.
Google Scholar
Torretta E, Dondina O, Delfoco C, Riboldi L, Orioli V, Lapini L, et al. First assessment of habitat suitability and connectivity for the golden jackal in north-eastern Italy. Mamm Biol. 2020;100:631–43.
Article
Google Scholar
Barabesi L, Franceschi S. Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics. 2011;22:271–8.
Article
Google Scholar
Barabesi L, Fattorini L. Random versus stratified location of transects or points in distance sampling: theoretical results and practical considerations. Environ Ecol Stat. 2013;20:215–36.
Article
Google Scholar
Ancrenaz M, Hearn AJ, Ross J, Sollmann R, Wilting A. Handbook for wildlife monitoring using camera-traps. BBEC II Secretariat. 2012.
Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Kong Dan Vidensk Selsk Biol Skr. 1948;5:1–34.
Google Scholar
Worton BJ. Kernel methods for estimating the utilization distribution in home-range studies. Ecology. 1989;70:164–8.
Article
Google Scholar
Silverman BW. Density estimation for statistics and data analysis. Boca Raton: Chapman & Hall/CRC; 1998.
Google Scholar
Seaman DE, Millspaugh JJ, Kernohan BJ, Brundige GC, Raedeke KJ, Gitzen RA. Effects of sample size on kernel home range estimates. J Wildl Manag. 1999;63:739.
Article
Google Scholar
Seaman DE, Powell RA. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology. 1996;77:2075–85.
Article
Google Scholar
Fieberg J, Kochanny CO. Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manag. 2005;69:1346–59.
Article
Google Scholar
Calenge C. Home range estimation in R: The adehabitatHR package. 2018.
Hirzel AH, Hausser J, Chessel D, Perrin N. Ecological-Niche Factor Analysis: how to compute habitat-suitability maps without absence data? Ecology. 2002;83:2027–36.
Article
Google Scholar
Basille M, Calenge C, Marboutin É, Andersen R, Gaillard J-M. Assessing habitat selection using multivariate statistics: some refinements of the ecological-niche factor analysis. Ecol Model. 2008;211:233–40.
Article
Google Scholar
Rinnan D. CENFA: climate and ecological niche factor analysis. 2018.
Ridout MS, Linkie M. Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat. 2009;14:322–37.
Article
Google Scholar
Torretta E, Serafini M, Puopolo F, Schenone L. Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (N-W Italy). Acta Ethologica. 2016;19:123–32.
Article
Google Scholar
Kelly MJ, Holub EL. Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeast Nat. 2008;15:249–62.
Article
Google Scholar
Monterroso P, Alves PC, Ferreras P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol. 2014;68:1403–17.
Article
Google Scholar
Torretta E, Mosini A, Piana M, Tirozzi P, Serafini M, Puopolo F, et al. Time partitioning in mesocarnivore communities from different habitats of NW Italy: insights into martens’ competitive abilities. Behaviour. 2017;154:241–66.
Article
Google Scholar
Pewsey A, Neuhäuser M, Ruxton GD. Circular statistics in R. 1st ed. Oxford, New York: Oxford University Press; 2013.
Google Scholar
Linkie M, Ridout MS. Assessing tiger-prey interactions in Sumatran rainforests: tiger-prey temporal interactions. J Zool. 2011;284:224–9.
Article
Google Scholar
Meredith M, Ridout M. Overview of the “overlap” package. 2014.
Lund U, Agostinelli C, Agostinelli MC. Package “circular.” Repos CRAN. 2017.
Brunner H, Coman BJ. The identification of mammalian hair. Melbourne: Inkata Press; 1974.
Google Scholar
Teerink BJ. Hair of West-European mammals: atlas and identification key. Cambridge: Cambridge Univ. Press; 1991.
Google Scholar
De Marinis AM, Asprea A. Hair identification key of wild and domestic ungulates from southern Europe. Wildl Biol. 2006;12:305–20.
Article
Google Scholar
Dove CJ, Koch S. Microscopy of feathers: A practical guide for forensic feather identification. J Am Soc Trace Evid Exam. 2010;1:15–7.
Google Scholar
Kruuk H, Parish T. Feeding specialization of the European badger Meles meles in Scotland. J Anim Ecol. 1981;50:773.
Article
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar
Pianka ER. The structure of lizard communities. Annu Rev Ecol Syst. 1973;4:53–74.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. https://www.r-project.org/.
Burchett WW, Ellis AR, Harrar SW, Bathke AC. Nonparametric inference for multivariate data: the R Package npmv. J Stat Softw. 2017;76:1–18.
Article
Google Scholar
Marucco F, Avanzinelli E, Bassano B, Bionda R, Bisi F, Calderola S, et al. La popolazione di lupo sulle Alpi Italiane 2014–2018. Relazione tecnica, Progetto LIFE 12 NAT/ IT/00080 WOLFALPS – Azione A4 e D1. 2018.
Krofel M, Giannatos G, Ćirovič D, Stoyanov S, Newsome T. Golden jackal expansion in Europe: a case of mesopredator release triggered by continent-wide wolf persecution? Hystrix Ital J Mammal. 2017. https://0-doi-org.brum.beds.ac.uk/10.4404/hystrix-28.1-11819.
Article
Google Scholar
Carbyn L. Coyote population fluctuations and spatial distribution in relation to wolf territories in Riding Mountain National Park, Manitoba. Can Field-Naturalist. 1982;96:176–183.
Merkle J, Stahler DR, Smith DW. Interference competition between gray wolves and coyotes in Yellowstone National Park. Can J Zool. 2009;87:56–63.
Article
Google Scholar
Lourenço R, Penteriani V, Rabaça JE, Korpimäki E. Lethal interactions among vertebrate top predators: a review of concepts, assumptions and terminology: lethal interactions among vertebrate top predators. Biol Rev. 2014;89:270–83.
Article
PubMed
Google Scholar
Raichev EG, Tsunoda H, Newman C, Masuda R, Georgiev DM, Kaneko Y. The reliance of the golden jackal (Canis aureus) on anthropogenic foods in winter in central Bulgaria. Mammal Study. 2013;38:19–27.
Article
Google Scholar
Chourasia P, Mondal K, Sankar K, Qureshi Q. Den site selection by golden jackal (Canis aureus) in a semi arid forest ecosystem in western India. Bull Pure Appl Sci Zool. 2020;39a:160.
Article
Google Scholar
Robinson QH, Bustos D, Roemer GW. The application of occupancy modeling to evaluate intraguild predation in a model carnivore system. Ecology. 2014;95:3112–23.
Article
Google Scholar
Johnson WE, Franklin WL. Spatial resource partitioning by sympatric grey fox (Dusicyon griseus) and culpeo fox (Dusicyon culpaeus) in southern Chile. Can J Zool. 1994;72:1788–93.
Article
Google Scholar
Lucherini M, Reppucci JI, Walker RS, Villalba ML, Wurstten A, Gallardo G, et al. Activity pattern segregation of carnivores in the High Andes. J Mammal. 2009;90:1404–9.
Article
Google Scholar
Viota M, Rodríguez A, López-Bao JV, Palomares F. Shift in microhabitat use as a mechanism allowing the coexistence of victim and killer carnivore predators. Open J Ecol. 2012;02:115–20.
Article
Google Scholar
Gómez-Ortiz Y, Monroy-Vilchis O, Castro-Arellano I. Temporal coexistence in a carnivore assemblage from central Mexico: temporal-domain dependence. Mammal Res. 2019;64:333–42.
Article
Google Scholar
Díaz-Ruiz F, Delibes-Mateos M, García-Moreno JL, María López-Martín J, Ferreira C, Ferreras P. Biogeographical patterns in the diet of an opportunistic predator: the red fox Vulpes vulpes in the Iberian Peninsula. Mammal Rev. 2013;43:59–70.
Article
Google Scholar
Soe E, Davison J, Süld K, Valdmann H, Laurimaa L, Saarma U. Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: a quantitative review. Mammal Rev. 2017;47:198–211.
Article
Google Scholar
Tsunoda H, Saito MU. Variations in the trophic niches of the golden jackal Canis aureus across the Eurasian continent associated with biogeographic and anthropogenic factors. J Vertebr Biol. 2020. https://0-doi-org.brum.beds.ac.uk/10.25225/jvb.20056.
Article
Google Scholar
Radović A, Kovačić D. Diet composition of the golden jackal (Canis aureus L.) on the Pelješac Peninsula, Dalmatia, Croatia. Period Biol. 2010;112:219–24.
Google Scholar
Tsunoda H, Raichev EG, Newman C, Masuda R, Georgiev DM, Kaneko Y. Food niche segregation between sympatric golden jackals and red foxes in central Bulgaria. J Zool. 2017;303:64–71.
Article
Google Scholar
Lanszki J, Heltai M. Food preferences of golden jackals and sympatric red foxes in European temperate climate agricultural area (Hungary). Mammalia. 2010. https://0-doi-org.brum.beds.ac.uk/10.1515/mamm.2010.005.
Article
Google Scholar
Prugh LR, Sivy KJ. Enemies with benefits: integrating positive and negative interactions among terrestrial carnivores. Ecol Lett. 2020;23:902–18.
Article
PubMed
Google Scholar
Sivy KJ, Pozzanghera CB, Grace JB, Prugh LR. Fatal attraction? Intraguild facilitation and suppression among predators. Am Nat. 2017;190:663–79.
Article
PubMed
Google Scholar
Gese EM, Stotts TE, Grothe S. Interactions between coyotes and red foxes in Yellowstone National Park, Wyoming. J Mammal. 1996;77:377–82.
Article
Google Scholar